Treating Epilepsy via Adaptive Neurostimulation

Joelle Pineau, PhD
School of Computer Science, McGill University

Congress of the Canadian Neurological Sciences Foundation
June 9, 2010
Learning objectives

- Review the neurostimulation hypothesis for treating epilepsy.
- Understand the basic principles of adaptive neurostimulation.
- Study a mathematical framework for optimizing the choice of neurostimulation parameters.
- Observe results from applying adaptive neurostimulation \textit{in vitro}.
Disclosure statement

This research was supported by the Natural Sciences and Engineering Research Council of Canada and the Canadian Institutes of Health Research.

This is joint work with Massimo Avoli, MD, PhD; Keith Bush, PhD; Arthur Guez; Gabriella Panuccio, MD, PhD; and Robert Vincent.
Epilepsy

- **Epilepsy is a neurological disorder marked by spontaneous seizures.**
 - Affects ~1% of world's population.
 - Up to 20-25% of those do not benefit from standard treatments (anti-convulsants, surgery).

- **Causes are varied** (pre-disposition, head trauma, fever, tumor, etc.)

- **What is a seizure?**
 - Abnormal electrical activity in the brain, may produce physical convulsions, or other symptoms.
Anatomy of a seizure \textit{(in vitro)}
Neurostimulation hypothesis

External perturbation of an epileptic neural system can alter dynamics away from excitability.
Deep brain stimulation (DBS)

- Implanted electrodes electrically stimulate brain tissue.

- Recent clinical trials of DBS:
 - Stimulation of the Anterior Nucleus of the Thalamus in Epilepsy (SANTÉ)
 » 157 people; 17 sites in US; 2003-2008; sponsored by MedtronicNeuro
 - Randomized Controlled Trial of Hippocampal Stimulation for Temporal Lobe Epilepsy (METTLE)
 » 90 people; 1 site in Canada; 2008-2011; sponsored by U. of Calgary
 - RNS™ System Long-Term Treatment Clinical Investigation:
 » 280 people; 28 sites in US; 2006-2013; sponsored by NeuroPace
 » Closed-loop stimulation “detect-then-stimulate”

Many parameters to control: stimulation site, stimulation frequency/intensity, stimulation pattern, …
Electrophysiology results from *in vitro* model

The literature repeatedly shows 1Hz, 10-200µA, fixed stimulation successfully suppresses seizures in vitro. [D’Arcangelo et al., Neurobiology of Disease. 2005].

![Graph showing electrophysiological results](image-url)
A few interesting open questions

• What parameter settings (stimulation site, frequency, intensity, pattern) achieve maximal suppression?

• Can we reduce the number and/or intensity of stimulations, while maintaining suppression efficacy?

• How can we customize parameters for different subjects?
Adaptive neurostimulation paradigm

Objective: create a stimulation device which is

1. **Optimal**: maximize seizure reduction + minimize stimulation.
2. **Responsive**: strategy evolves as a function of the observation.
3. **Automatic**: stimulation strategy learned from data.
Adaptive neurostimulation example
Methods: Data collection *in vitro*

- Electrophysiological recording in the Entorhinal Cortex (B), with stimulation at fixed frequencies in the Subiculum (A).
Methods: Data collection and labeling

Experimental protocol:
• Control (min. 3 seizures)
• Periodic pacing at 0.2Hz (min. 20 minutes).
• Recovery (until interval between ictal events stabilizes).
• Etc. with 0.5Hz, 1.0Hz, 2.0Hz.

Then, manually identify:
• Seizure occurrences
• Neurostimulation parameters:
 {0Hz, 0.2Hz, 0.5Hz, 1.0Hz, 2.0Hz}
Methods: Signal processing

- Select **decision window** duration: 1 sec.

- Select **observation window** duration: 13 sec.

- Extract **observation features** using signal processing techniques:
 - Range, energy, multi-scale Fourier transform
Methods: Training data

- Form an input vector, x_t, for each decision window, t:
 \[x_t = \{z_t, a_t, c_t, z_{t+1}\} \]
 where z_t = observation features at t
 a_t = neurostimulation parameters at t
 c_t = cost function at t

- The cost function depends on the occurrence of seizures and stimulation delivered:
 \[c_t = c_t^{seizure} + \alpha c_t^{stim} \]
 where $c_t^{seizure} = \begin{cases} 1 & \text{if seizure occurred at time } t, \\ 0 & \text{otherwise} \end{cases}$
 $c_t^{stim} = \begin{cases} 1 & \text{if stimulation occurred at time } t, \\ 0 & \text{otherwise} \end{cases}$
 α is a free parameter.
Methods: Minimizing the cost function

• The objective is to select actions such as to minimize the expected cumulative cost:
 \[E [c_t + c_{t+1} + c_{t+2} + \ldots + c_T | z_t] \]

• Use regression analysis to estimate the cost for different action choices from the training data:
 \[Q_k(z_p, a_t) = c_t + \max_{a \in A} Q_{k-1}(z_{t+1}, a) \]

• Select the action which minimizes the expected cost:
 \[a_t := \arg\max_{a \in A} Q_k(z_p, a) \]
Experimental protocol for validation

1. Control period (min. 3 seizures).
2. Periodic pacing at 1.0 Hz (min. 20 minutes).
3. Recovery period.
4. Adaptive stimulation strategy (min. 20 minutes).
5. Recovery period, no stimulation.
6. Periodic pacing at effective frequency \(f = n_s/T \)

where \(n_s = \) number of stimulations during adaptive protocol

\(T = \) duration of adaptive protocol
Proportion of time spent in seizure

- Proportion of time spent in seizure, averaged over N=11 slices.

* = statistically significant at $p=0.05$
Effective frequency of the adaptive protocol
Suppression efficacy for slices with \(eff > 1 \text{Hz} \)

\[\text{N} = 11 \quad \text{N} = 4\]

* = statistically significant at \(p = 0.1 \)
Adaptive protocol example #1

(a) Adaptive controller suppresses a seizure by increasing the frequency of stimulation.
Adaptive protocol example #2

(a) Adaptive controller suppresses a seizure by increasing the frequency of stimulation.

(b) A short seizure develops, stimulation is applied to shorten its duration.
Adaptive protocol example #3

(a) *Adaptive controller suppresses a seizure by increasing the frequency of stimulation.*

(b) *A short seizure develops, stimulation is applied to shorten its duration.*

(c) *Adaptive controller increases frequency to suppress seizure, then decreases frequency.*
In vivo: Challenges

<table>
<thead>
<tr>
<th>In vitro model</th>
<th>In vivo model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited slice-to-slice variation.</td>
<td>Larger variance between subjects.</td>
</tr>
<tr>
<td>Short lifespan.</td>
<td>Longer lifetime; disease can evolve over time.</td>
</tr>
<tr>
<td>In vitro model has known periodic pacing strategy.</td>
<td>No known open-loop strategies.</td>
</tr>
<tr>
<td>Restricted parameter space.</td>
<td>Higher-dimensional action space (more electrodes, intensity settings, etc.)</td>
</tr>
</tbody>
</table>
Discussion

• Animal models of epilepsy provide a rich framework for investigating adaptive neurostimulation strategies.

• Most adaptive neurostimulation approaches adopt a “detect-then-stimulate” paradigm.

• Our work leverages techniques from the control literature.
 – Goal is to directly minimize a cost function.
 – Explicit seizure prediction (or detection) is not required.

• Results show good suppression in vitro, in some cases using significantly less stimulation than periodic pacing.

• Preliminary evidence suggests that neurostimulation can be used to probe the excitability of the system.
References

