
Learning Time Series Models for Pedestrian Motion Prediction∗

Chenghui Zhou1, Borja Balle1, and Joelle Pineau1

Abstract— Robot systems deployed in real-world environ-
ments often need to interact with other dynamic objects, such
as pedestrians, cars, bicycles or other vehicles. In such cases, it
is useful to have a good predictive model of the object’s motion
to factor in when optimizing the robot’s own behaviour. In this
paper we consider motion models cast in the Predictive Linear
Gaussian (PLG) model, and propose two learning approaches
for this framework: one based on the method of moments
and the other on a least-squares criteria. We evaluate the
approaches on several synthetic datasets, and deploy the system
on a wheelchair robot, to improve its ability to follow a walking
companion.

I. INTRODUCTION
Time series data is ubiquitous in robotics, where streams

of sensor readings are acquired in real-time, and used by the
robot to decide on a course of action. In some cases, the
sensor data contains observations of dynamic objects in the
environment, and then the robot’s decision depend on the
motion patterns of the said object. It is particularly useful
for the robot to be able to accurately predict the trajectory
of the moving object in order to adapt its own course of
action. A key challenge here is to obtain a good predictive
model of the object’s motion.

This paper tackles the problem of inferring a dynamic
model directly from time-series data. This contribution is
motivated by previous work on building algorithms for robust
person following for social and service robots [1], [2],
[3], [4], [5], [6]. Smart wheelchairs built in our lab are
designed to operate in a variety of human environments,
and have a crucial need to adapt their motion behaviour
to the presence of pedestrians [6]. This arises when the
smart wheelchair is in autonomous navigation mode and
wishes to reach a goal while avoiding incoming pedestrians
(Figure 1 (left)). Another case is when the wheelchair user is
accompanying a walking person (or a group of people), and
the wheelchair must adapt its motion to the walking patterns
of others (Figure 1 (right)). In such situations, having an
accurate predictive motion model of the person (or the group)
would be very useful. Up until recently, our system used a
linear model with constant position and velocity, defined by
hand-specified parameters, to predict behaviours of nearby
pedestrians, but we observed that this model lacks flexibility
and is often inaccurate.

In short, we aim to develop a system that can automatically
learn the motion model of a dynamic object from real-data.

*This project was financially supported by by the Natural Resources
and Engineering Research Council Canada (NSERC) through the NSERC
Canadian Field Robotics Network (NCFRN) and Discovery program.

1School of Computer Science, McGill University,
Montréal, Canada. {chenghui.zhou@mail.mcgill.ca,
bballe@cs.mcgill.ca,jpineau@cs.mcgill.ca}

Fig. 1. Smart wheelchair avoiding a collision (left) and moving with
companions (right).

It should make fast predictions (to accommodate real-time
planning), deal with high-dimensional observations, show
robustness when learning from small amount of data, and,
ideally, provide a notion of uncertainty over its predictions.

Several methods have been considered for this problem.
Auto-regressive moving-average (ARMA) models [7] can
be estimated from data using least-squares approaches, but
they typically focus on one-dimensional time series with
observations corrupted by white noise. An alternative is
to consider arbitrary linear dynamical systems (LDS) and
estimate parameters via the Expectation-Maximization (EM)
algorithm [8]; this approach is reasonably flexible but is
limited to learning a locally optimal solution, and as we will
see in our results, does not produce very good predictions.
Finally, predictive linear gaussian (PLG) models provide a
multi-variate extension of ARMA models specialized for
gaussian noise [9]. PLGs are appealing for robotics appli-
cations because they can tackle multi-variate time series and
are optimized for predicting future observations. However,
existing learning algorithms for PLG suffer from severe
limitations and are only practical for one-dimensional ob-
servations.

The primary technical contribution of this paper is to
extend methods for learning PLG models by proposing
method of moments and least-squares solutions. The algo-
rithms we propose are more robust than the previous PLG
learning algorithm and extend easily to the multi-variate case.
Using synthetic data, we provide a rigorous experimental
comparison between the existing EM for LDS, and the new
least-squares and method of moments approaches for PLG.
We then apply the least-squares for PLG method to learn
the walking behaviours of pedestrians during deployment of
our smart wheelchair. Results show good performance across
the variety of settings considered. We also show how our
framework can incorporate sparsity constraints to help scale

learning from high-dimensional observations.

II. TIME-SERIES MODELS WITH GAUSSIAN
NOISE

In this section we introduce the two time series models that
will be used throughout the paper. One is the classic linear
dynamical system (LDS) [10], the other is the less known
predictive linear-gaussian model (PLG) [9]. Both models
are characterised by the linearity of their state update and
observation generation, and the assumption that the noise
distribution is Gaussian. In fact, both models are known to
be equivalent up to some natural transformation of their state
representation. The fundamental difference between the two
models is in how the state is represented: in one the state is
a latent vector that evolves over time, while in the other the
state is the distribution over future observations parametrised
by their mean and covariance [9]. In the two models t denotes
a discrete variable indexing time, and the time series is
given by a sequence of multi-variate observations (yt)t≥0
with yt ∈ Rm, where m represents the dimension of the
observation vectors.

A. Linear Dynamical Systems

The discrete-time uncontrolled stochastic linear dynamical
system (LDS) is a classical model for time series widely
used in control theory, signal processing, and econometrics
[11]. In an LDS, the observation at time t is a noisy linear
transformation yt = Oxt + δt of a hidden state vector
xt ∈ Rn that evolves over time, and the perturbation follows
a multi-variate Gaussian distribution δt ∼ N (0,∆). Note
that the mean and covariance of δt are independent of time
– i.e. the observation noise process is stationary. The noises
δt, δt′ at different time steps are assumed to be independent,
and in particular E[δtδ

>
t′] = 0 for t 6= t′. The hidden state

evolves following linear dynamics perturbed by Gaussian
noise: xt+1 = Txt + σt, where σt ∼ N (0,Σ) and again
we assume E[σtσ

>
t′] = 0 for t 6= t′. In general, the state

and observation noises at the same time t are not necessarily
independent; their covariance is denoted by Λ = E[σtδ

>
t].

To completely specify the model, an initial setting for the
hidden state is required. A usual assumption is that x0 is
drawn from a Gaussian distribution N (µ0,Σ0). Predicting
and filtering with an LDS can be done with the classical
Kalman filter.

B. Predictive Linear–Gaussian Models

The predictive linear–gaussian (PLG) model was intro-
duced in a series of papers [9], [12] inspired by the success
of the predictive state representation for time series with
discrete observations in reinforcement learning. Predictive
models are characterised by the use of a set of sufficient
statistics about the future of the process as their state;
see [13] for a general discussion of the principles behind
predictive representations. In this paper we focus on the
multi-variate uncontrolled PLG presented in [9].

To define a PLG with a state of length n we start by
grouping n consecutive observations from the time series

(yt)t≥0 into a single vector:

Yt =


yt
yt+1

...
yt+n−1

 ∈ R(n·m) .

The first assumption of the model is that such vectors follow
a joint multi-variate Gaussian distribution. In particular, after
observing y0, . . . , yt, the state at time t is given by the mean
µt and the covariance Σt of the next n observations: Yt+1 ∼
N (µt,Σt).

The second assumption of the model is that the state can
be updated linearly once yt+1 is given. This can also be
formulated in terms of the distribution of yt+n conditioned
on Yt. In particular, we assume that yt+n|Yt ∼ N (GYt,∆),
which can also be written as yt+n|Yt = GYt + δt+n, where
δt+n|Yt ∼ N (0,∆). Here G ∈ Rm×(n·m) is a mean update
matrix and ∆ ∈ Rm×m is a noise covariance matrix. We note
that ∆ is the covariance of the noise δt+n conditioned on Yt;
however, Yt and δt+n are not in general independent, and
we write C = E[Ytδ

>
t+n] ∈ R(n·m)×m for their covariance.

To complete the specification of a PLG model one needs to
specify the initial mean µ0 and covariance Σ0 of the first n
observations in Y0.

In order to derive the state update equations for the PLG
we shall introduce the following notation. Let ∆′, C ′, G′ ∈
R(n·m)×(n·m) be the block-matrices given by

∆′ =

[
0 0
0 ∆

]
, C ′ =

[
0 C

]
, G′ =

[
0 I
G

]
.

Let us write J = [I 0] ∈ Rm×(n·m) and Ft = (G′Σt +
C ′
>

)J>. Now we can use the two assumptions of the PLG
model to write the joint distribution of Yt and yt+n as a
multi-variate Gaussian distribution with mean µ′t and covari-
ance Σ′t. An important observation is that this distribution is
also the joint distribution of yt and Yt+1. In particular, we
have

µ′t =

[
Jµt

G′µt

]
,

Σ′t =

[
JΣtJ

> F>t
Ft G′ΣtG

′> + ∆′ +G′C ′ + C ′
>
G′
>

]
.

Using this distribution and the formula for the conditional
distribution of a multi-variate Gaussian given some of its
coordinates we obtain the following state update equations
describing the distribution of Yt+1 given yt:

µt+1|yt = G′µt + Ft(JΣtJ
>)−1(yt − Jµt) ,

Σt+1 = G′ΣtG
′> + ∆′ +G′C ′

+ C ′
>
G′
> − Ft(JΣtJ

>)−1F>t .

III. LEARNING ALGORITHMS

The learning setup we consider assumes there is a fixed
stochastic process capable of generating independent real-
isations of the same time series, and we can use many
of these realisations in order to estimate the target model.

More precisely, for 1 ≤ i ≤ N we assume that y(i) =

(y
(i)
0 , y

(i)
1 , . . . y

(i)
T) are independent identically distributed

time series of length T drawn from the same process. We use
the data in (y(1), . . . ,y(N)) to estimate the parameters of the
models. We choose this learning setup because it is the one
we encounter in practice for the smart wheelchair application
that attracted our attention to the problem considered in
this paper; minor variants (e.g. data coming from a single
trajectory) could be accommodated without difficulty.

We now review existing methods proposed to estimate
parameters in the LDS and PLG models (Sec. III-A and III-
B). We then proceed to describe our two proposed algorithms
for learning the state update matrix G in a PLG model:
one based on a moment matching approach (Sec. III-C), and
another based on least-squares regression (Sec. III-D and III-
E). The methods differ in how they estimate the state update
matrix (G); once that is done, both algorithms recover the
noise covariances in the same way, which is described in
Sec III-F.

A. Learning LDS via Expectation–Maximization

Most applications of LDS assume that the parameters
are designed by experts. For those cases where learning
is required, the standard approach is to use Expectation–
Maximisation (EM), which implements an iterative heuristic
to maximise the likelihood of the training data under the
estimated model. The EM algorithm was first proposed for
hidden Markov models [14], [15], and latter adapted to many
other latent variable models with parametric observation dis-
tributions like LDS [8], [16]. In general, EM algorithms are
guaranteed to converge to a local maxima of the likelihood
function, and several re-starting heuristics can be considered
to improve the chances of finding a global maxima. A full
review of the algorithm is beyond the scope of this paper,
and we assume readers are familiar with the method.

Note that subspace identification methods can also be used
to learn LDS from data [17]. However, the approach followed
by these methods assumes that the training data comes in the
form of one long uninterrupted trajectory. Since this is not
the setting arising in our applications, we shall not consider
this family of methods in the present paper.

B. Learning PLG: Previous approach

For PLG, the first learning methods were proposed in
[9] for the univariate case. Rudary et al. compared their
methods with EM for LDS, showing improved likelihood
on the training data. However our attempts to replicate these
results in the multi-variate case failed, mainly the learning
algorithm from [9] is specifically designed for the univariate
setting with a fixed initial state (see later in Fig. 2). This lead
us to design two new learning algorithms for multi-variate
PLG, which are presented in this section. In particular, the
second of these algorithms follows the same principle as the
algorithm in [9]: the method of moments. This is a common
inference principle in statistics and econometrics [18] that
was initially proposed by Pearson [19]. It is based on finding
equations that relate the parameters of a certain model to its

observed moments, and then deriving a learning algorithm
by solving for the parameters using empirical moments.
The method of moments has seen a renewed interest in the
machine learning community in the last few years due to its
high computational efficiency [20].

C. Learning PLG via Method of Moments

Our first PLG learning algorithm is based on finding a
G that relates two covariance matrices of observations, and
can be interpreted as a method of moments because it finds
the parameters that best explain the relation between several
(empirical) moments associated with the PLG model.

To describe the algorithm we start by introducing a back-
ward history vector

Bt =

 yt−l
...

yt−1

 ∈ R(m·l) ,

for some length l ≥ 1. Note that from this point of view, Yt
can be interpreted as a forward history vector at time t. Using
Bt and Yt we can define a covariance matrix at time t that
captures the relation between past and future observations:

ΣYt,Bt
= E[YtB

>
t] ∈ R(n·m)×(m·l) .

Similarly, we define a covariance matrix between the past
from time t and the observation yt+n that is generated
immediately after Yt:

Σyt+n,Bt
= E[yt+nB

>
t] ∈ Rm×(m·l) .

Given the training data (y(1), . . . ,y(N)), these covariance
matrices are estimated as follows:

Σ̂Yt,Bt
=

1

N

N∑
i=1

Y
(i)
t B

(i)
t

>
,

Σ̂yt+n,Bt
=

1

N

N∑
i=1

y
(i)
t+nB

(i)
t

>
.

Note that these matrices are only defined for l ≤ t ≤ T −n.
Using the notation we just defined, the moment-matching

learning algorithm is given by

ĜMM =

(
T−n∑
t=l

Σ̂yt+n,Bt

)(
T−n∑
t=l

Σ̂Yt+n,Bt

)†k
,

where we use A†k to denote the pseudo-inverse of the best
rank k approximation of A given by SVD1. The rank k
is a regularisation parameter to avoid overfitting (see the
discussion below); in practice, the optimal k can be selected
by cross-validation. Its purpose is to avoid a blow-up in
the estimation noise present in

∑T−n
t=l Σ̂Yt+n,Bt

due to the
pseudo-inverse operation.

1If the full SVD is A = USV >, the best rank k approximation to A
is obtained as Ak = UkSkV

>
k , where Uk, Vk contain the first k columns

of U and V respectively, and Sk contains the top k singular values of A.
Thus, by properties of the pseudo-inverse we have A†k = VkS

−1
k U>k .

In order to understand the motivation behind this learning
algorithm one can compute an expression for Σyt+n,Bt as
follows:

Σyt+n,Bt = E[yt+nB
>
t] = E[(GYt + δt+n)B>t]

= GE[YtB
>
t] + E[δt+n]E[B>t] = GΣYt,Bt ,

where we used linearity of expectation, that Bt and δt+n are
independent, and that E[δt+n] = 0. This relation explains
how G can be recovered from Σyt+n,Bt

and ΣYt,Bt
. Since

the relation is the same for all t, we decide to average the
different covariance estimates in order to obtain a better
solution for ĜMM. The choice of l and k is typically done
by cross-validation, but at least one should have k ≤ l. In
addition, the bigger l is, the more likely it is that ΣYt,Bt

will contain enough information to recover G properly, i.e.
to ensure that the system of linear equations solved by this
method is not underdetermined.

D. Learning PLG via Least-Squares Regression

Our second PLG learning algorithm is a simple least-
squares regression which proceeds by computing the min-
imiser ĜLS of

min
G

1

N · (T − n+ 1)

N∑
i=1

T−n∑
t=0

‖y(i)t+n −GY
(i)
t ‖2 .

By using the well-known closed-form solution to least-
squares problems we can write a direct solution for G
without the need to perform any optimisation as follows.
For 1 ≤ i ≤ K we define the block-Hankel matrix

H(i) =


y
(i)
0 · · · y

(i)
T−n

...
. . .

...
y
(i)
n−1 · · · y

(i)
T−1

 ∈ R(n·m)×(T−n+1) .

Using these we define the matrix H =
[H(1) · · ·H(N)]. Similarly, we define the matrix
Y = [y

(1)
n · · · y(1)T · · · y

(N)
n · · · y(N)

T]. With this notation
the solution ĜLS to the least-squares problem above can be
obtained as

ĜLS = Y H† ,

where H† = H>(HH>)−1 denotes the Moore–Penrose
pseudo-inverse.

The rationale behind this learning algorithm is clear: try
to find a mean update matrix G that best predicts the next
observation given the past n observations as specified by
the PLG model. We will see in our experiments that in
general this learning algorithm performs quite well with
small amounts of data. On the other hand, for large amounts
of data the algorithm is biased – due to the use of dependent2

samples to estimate G – and is outperformed by the method
of moments presented above.

2Note that although the different series y(i) are mutually independent,
the observations within a single sequence are dependent, leading to a least-
squares estimation with dependent observations.

E. Least-Squares Regression for PLG with Sparsity

In some cases it is possible that learning the mean update
matrix G directly with the least-squares criteria leads to
overfitting, especially when the number of parameters is large
in comparison to the amount of available training data. The
traditional approach in machine learning to remedy such
situation is to include a regularisation term in the least-
squares optimisation to help prevent overfitting by trading
off training accuracy for model complexity [16]. One such
approach is to use a `1-type penalty inducing sparsity in the
set of parameters to be learned. In the case of a PLG, a
sparse G can be interpreted as saying that every entry in
the observation yt+n depends only on a few entries from
Yt. Following this approach, we obtain a learning algorithm
based on computing the minimiser ĜSP of

min
G

1

N · (T − n+ 1)

N∑
i=1

T−n∑
t=0

‖y(i)t+n−GY
(i)
t ‖2 +λ‖G‖1,1 ,

where λ > 0 is a regularisation parameter and ‖G‖1,1 =∑
i,j |Gi,j | is the `1 norm over all the entries in G. This opti-

misation problem can be easily reduced to the Lasso [21] and
then solved using commonly available implementations [22].
This extension of the least-squares method is particularly ap-
propriate for learning high-dimensional systems from limited
data.

F. Estimating the Covariances

Assuming an estimate Ĝ for G is known, we finally
describe how to obtain the remaining parameters of the
model. The initial state distribution is straightforward:

µ̂0 =
1

N

N∑
i=1

Y
(i)
0 ,

Σ̂0 =
1

N

N∑
i=1

(Y
(i)
0 − µ̂0)(Y

(i)
0 − µ̂0)> .

In order to estimate the covariances related to the noise,
one first needs to estimate the noise vectors. Thus, we define
δ̂
(i)
t+n = y

(i)
t+n − ĜY

(i)
t for 1 ≤ i ≤ N and 0 ≤ t ≤ T − n.

These noise estimates can be used to approximate the noise
and the noise-state covariances:

∆̂ =
1

N(T − n+ 1)

N∑
i=1

T−n∑
t=0

δ̂
(i)
t+n(δ̂

(i)
t+n)> ,

Ĉ =
1

N(T − n+ 1)

N∑
i=1

T−n∑
t=0

Y
(i)
t (δ̂

(i)
t+n)> .

IV. EMPIRICAL COMPARISON

We consider several synthetic cases to carefully examine
the empirical performance of each approach. We then present
results with data collected onboard our smart wheelchair
robot with real pedestrians.

Fig. 2. (left) Comparison of learning methods on the synthetic linear model. (center) Results for PLG learning with least-squares including training sets
of size 10 and 50. (right) Results for PLG learning using Rudary et al. [9] original learning method.

A. Synthetic Data: A Simple Linear System

We generated synthetic data from the PLG system equiv-
alent to the linear dynamical system with update and obser-
vation matrices

T =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 O =

[
1 0 0 0
0 1 0 0

]
.

Noise covariances are set to ∆ = 0.09 · I2 and Σ =
0.09 · I4. The initial state is fixed to [2, 1, 0.2, 0.2]>. This
represents a 2D constant velocity model with hidden state
containing position and velocity across the x and y axis:
xt = [px, py, vx, vy]>. It is easy to see that the observations
correspond to the x and y position of the state.

We compare the following methods: PLG learning with
methods of moment (labeled: covariance with SVD), PLG
learning with the least-square method, as well as LDS
learning via the EM algorithm. Learning for each method
is done using 100, 500, 1000, 5000, 10,000 and 50,000
sequences. Each sequence has length 30.

Results are shown in Figure 2 (left). The x-axis of the
graph is the log sample size. To calculate the mean error,
we take the distance of the predicted position and the actual
position and average it over the length of the test sequence,
which is 100, as well as over all sequences. The variance
plotted is calculated by adding the squared distance between
actual positions and their corresponding predicted positions
and averaging the sum over the number of predictions.
Our results show that both PLG learning methods easily
outperform the EM algorithm. The PLG learning via least-
squares converges fastest to a reasonably good solution. The
PLG learning via SVD is able to reach a slightly better
result as the number of sequences in the data set increases.
The least-squares method appears to be flat over all training
sample sizes. However, if we decrease the sample size even
further, we can in fact observe the decreasing trend in the
leftmost portion of Figure 2 (center) (we do not include the
other methods on this graph as their performance is very
poor in the small data regime).

Figure 2 (right) shows the performance of the original
learning method from Rudary et al. [9]. Note the instabil-

ity and large prediction error (y-axis). While the method
performs well for one-dimensional systems, this clearly
does not extend to multi-dimensional cases, thus motivating
our development of least-squares and method-of-moments
approaches.

We can also measure performance in terms of model
likelihood, where better models score higher. Results in
Figure 3 (left) follow a similar trend as in Figure 2 (left);
the discrimination between the two PLG learning methods
is less obvious here, though the SVD method has slightly
higher likelihood with more data.

Next, we consider longer prediction horizons, showing
the prediction error 2 steps ahead (Fig. 3, center) and 5
steps ahead (Fig. 3, right) – whereas graphs presented above
considered only the next step prediction. Results follow the
same trend as those of Figure 2 (left), with an advantage
again for the least-squares method when there is little data,
better performance of the SVD method with more data, and
consistently poorer performance with EM. Note that the y-
axis is not the same for the different prediction horizons;
predictions get consistently worse for all methods with
increased prediction horizon.

Next, we consider the same update matrix and observation
matrix as above, but change the two noise covariances’ di-
agonal entries from 0.09 to 0.0001 and the basic experiment.
Results are presented in Figure 4 (left). The performance of
EM, relative to the others, improves significantly. However
least-squares still converges fastest to a very good solution,
with the SVD learner reaching similar performance with
significantly more data.

We repeated our experimental protocol on another model
with different parameterisation. Parameters are chosen so that
the system is stable (spectral radius of T is < 1), yet the
observations and states have non-zero cross-covariances. The

Fig. 3. (left) Comparison of likelihood of learned models on the synthetic linear model. (center) Comparison of prediction accuracy for 2 steps ahead on
the synthetic linear model. (right) Comparison of prediction accuracy for 5 steps ahead on the synthetic linear model.

Fig. 4. (left) Comparison of learning methods on a synthetic linear model with smaller noise. (center) Comparison of learning methods on more complex
synthetic model. (right) Learning methods comparison on six state dimension synthetic data experiment.

parameters are as follows:

T =


0.8 0 1.1 0
0 0.3 0 0.7
0 0 0.2 0
0 0 0 1


O =

[
1.1 0 0.5 0
0 1.5 0 0.5

]

Σ = 10−3 ·


10.3 2.2 2.2 2.2
2.2 10.3 2.2 2.2
2.2 2.2 10.3 2.2
2.2 2.2 2.2 10.3


∆ = 10−3 ·

[
10.1 2

2 10.1

]
.

The result of this experiment is plotted in Figure 4
(center). The trends are quite different here. While the least-
squares learning maintains good performance, we observe
that EM achieves similarly good performance albeit with
higher variance, while the PLG learning with SVD is unable
to converge to a good solution.

We also considered a system with state dimension 6 and

observation dimension 3 given by

T =


1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1


O =

 1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 .

The state and observation noise covariances are again di-
agonal with 0.09 variances, and the initial state has mean
[0.3,−0.1, 0.4, 0.02, 0.01,−0.04]> and diagonal covariance
with 0.1 variances. Experiments consider data sets containing
100, 500, 1000, 5000 and 10000 trajectories. We sample 10
data sets for each of the sample sizes. The length of each
sequence in the training set is 48. The validation set and
test set each contain 1000 sequences of length 70. We do
not include performance of the EM method for this larger
model because EM failed to converge on this domain. In
Figure 4 (left) we compare both PLG learning methods,
which show similar trends as above. In Figure 5 (left) we
include for the first time the PLG least-squares learning with
the sparsity constraint3 defined in Sec. III-E. We observe that

3For each training set size, we used a validation set to select the
regularization parameter, and plot results obtained on the test set using that
regularization parameter.

Fig. 5. (left) Comparison between least-squares method with and without sparsity under the 6 dimensional synthetic data model. (center) Result on
non-linear synthetic data experiment. (right) Comparison of a true walking trajectory with predictions from learned models.

it offers better stability compared to the standard PLG with
least-squares. Note that the results in Figure 4 (left) consider
smaller training sets of size 50, 100, 500 and 1000, where the
advantage of the sparsity constraint is particularly notable.

B. Synthetic Data: Non-Linear Systems

To test robustness of our approach to data generated by a
non-linear system we consider the 5-dimensional vehicle re-
entry problem described in Sec. 4 of Julier & Uhlmann [23].
We refer the reader to the original publication for the true
model parameters. We ran experiments for sample sizes
of 500, 1000, 5000, 10000 and 30000 sequences. Each
sequence is of length 30. We generated ten training set for
each of the sample sizes. For each of the training set, we
learn models with state dimensions from 5 up to 11 due
to the non-linearity. The best prediction mean error among
all the state dimensions learnt is used for the plots. Result
of this nonlinear synthetic data experiment are shown in
Figure 5 (center). The EM method and the SVD method both
show some trend towards improving as the amount of data
increases, with SVD outperforming EM for all sample sizes.
But the most salient finding is the solid performance of the
least-squares method, which has the most stable performance
and best prediction for all sizes of training sets.

C. Real Data: Person Tracking

Finally, we present results of experiments with real data
involving a 2-dimensional time series. At each time step we
collect the x and y position of a walking pedestrian. These
positions are measured using laser range-finders onboard
the robot smart wheelchair platform. Two subjects were
recruited to walk near the robot; each was instructed to
perform two types of trajectory: straight to simulate usual
pedestrian traffic, and curvy to simulate pedestrians avoiding
the wheelchair.

All collected data was combined into the training set after
some pre-processing. During data collection, pedestrians
sometimes walked outside the range of the laser sensors.
Some of the sequences can be as long as a few thousands
time steps, while others are much shorter. To form our train-
ing data set, we split long sequences into segments of at most
30 consecutive time steps, and remove all sequences shorter

TABLE I
EMPIRICAL RESULTS FOR REAL DATA

Type of Model Prediction Mean Error Variance
LDS with EM(8) 0.195 0.081
PLG with SVD (5) 0.187 5.96
PLG with SVD (6) 0.248 0.214
PLG with least-squares (10) 0.118 0.037

than two time steps. In total, we obtain about 5000 training
sequences. Since the model state dimension is unknown,
we learn multiple models with different state dimensions.
The best prediction mean error among all learned models
with different state dimensions for each learning method is
presented in Table I, along with the specific state dimen-
sion selected (shown in brackets beside the method name).
Figure 5 (right) shows a real pedestrian trajectory and the
predictions produced by three different models. We observe
that least-squares produces the smoothest and more accurate
prediction, with EM behaving erratically at the beginning of
the sequence and SVD producing large oscillations after the
pedestrian takes a mildly sharp turn.

For this fixed amount of real data, results show that the
least-squares method has the least mean error and variance.
The EM method performs somewhat worse than least-squares
learning in terms of error and variance. We observe a trade-
off between error and variance with the SVD method. This
trade-off was not observed in the other two algorithms.

V. CONCLUSIONS

The work presented in this paper tackles the problem of
learning a predictive model for dynamical systems. While
the use of predictive motion models goes far back in the
literature, the set of learning algorithms is rather limited,
and so far dominated by Expectation-Maximization-type of
approaches. In this paper we consider the recent framework
of Predictive Learning Gaussian (PLG) model, and propose
two learning algorithms for this model, one based on the
methods of moment SVD criteria, and the other based on a
least-squares criteria. It is perhaps most interesting to note
that while the LDS and PLG models can be shown to be
equivalent in terms of dynamics, they lead to important
differences in terms of learning algorithms. Throughout

several experiments, we observed that the PLG with least-
squares approach consistently learned quickly from small
amounts of data and provided robust performance to several
challenges including varying noise, non-linearity, and higher-
dimensions. It is worth noting that the least-squares method
gives a biased estimate of the model, so in the case where a
lot of data is available, better performance can be obtained
with the SVD-based algorithm. Finally, while the work
focused on learning predictive models of pedestrians for
assistive robots, the methods presented can be applied across
several other domains requiring predicting the trajectory of
a moving object.

ACKNOWLEDGMENT

We thank Angus Leigh for his help in collecting the data
for the real person tracking experiment.

REFERENCES

[1] E. A. Topp and H. I. Christensen, “Tracking for following and passing
persons.” in IROS, 2005.

[2] R. Gockley, J. Forlizzi, and R. Simmons, “Natural person-following
behavior for social robots,” in HRI, 2007.

[3] K. Arras, B. Lau, S. Grzonka, M. Luber, O. Mozos, D. Meyer-
Delius, and W. Burgard, “Range-based people detection and tracking
for socially enabled service robots,” in Towards Service Robots for
Everyday Environments, 2012, pp. 235–280.

[4] D. V. Lu and W. D. Smart, “Towards more efficient navigation for
robots and humans,” in IROS, 2013.

[5] A. Cosgun, D. A. Florencio, and H. I. Christensen, “Autonomous
person following for telepresence robots,” in ICRA, 2013.

[6] A. Leigh, J. Pineau, N. Olmedo, and H. Zhang, “Person tracking and
following with 2d laser scanners,” in ICRA, 2015.

[7] W. Fuller, Introduction to statistical time series. Wiley, 2009.
[8] Z. Ghahramani and G. Hinton, “Parameter estimation for linear

dynamical systems,” U. of Toronto, Tech. Rep. CRG-TR-96-2, 1996.
[9] M. Rudary, S. Singh, and D. Wingate, “Predictive linear-gaussian

models of stochastic dynamic systems,” in UAI 21, 2005.
[10] S. Roweis and Z. Ghahramani, “A unifying review of linear gaussian

models,” Neural computation, vol. 11, no. 2, pp. 305–345, 1999.
[11] R. Kalman, “Mathematical description of linear dynamical systems,”

J. Society for Industrial & Applied Mathematics, 1963.
[12] S. Singh, M. James, and M. Rudary, “Predictive state representations:

A new theory fo rmodeling dynamical systems,” in UAI 20, 2004.
[13] M. Littman, R. Sutton, and S. Singh, “Predictive representations of

state,” in NIPS 14, 2001.
[14] L. Baum and T. Petrie, “Statistical inference for probabilistic functions

of finite state markov chains,” Annals of Mathematical Statistics,
vol. 37, no. 6, pp. 1554–1563, 1966.

[15] L. Rabiner, “A tutorial on hidden markov models and selected ap-
plications in speech recognition,” Proc. of the IEEE, vol. 77, no. 2,
1989.

[16] C. Bishop, Pattern recognition and machine learning. Springer, 2006.
[17] P. Van Overschee and B. De Moor, Subspace identification for linear

systems: Theory, Implementation, Applications. Springer Science &
Business Media, 2012.

[18] A. R. Hall, Generalized method of moments. Oxford University Press
Oxford, 2005.

[19] K. Pearson, “Contributions to the mathematical theory of evolution,”
Philosophical Transactions of the Royal Society of London. A, pp.
71–110, 1894.

[20] A. Anandkumar, R. Ge, D. Hsu, S. M. Kakade, and M. Telgarsky,
“Tensor decompositions for learning latent variable models,” Journal
of Machine Learning Research, vol. 15, no. 1, pp. 2773–2832, 2014.

[21] R. Tibshirani, “Regression shrinkage and selection via the lasso,” J.
of the Royal Statistics Society B, vol. 58, no. 1, pp. 267–288, 1996.

[22] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Van-
derplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
E. Duchesnay, “Scikit-learn: Machine learning in Python,” Journal
of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[23] S. J. Julier and J. K. Uhlmann, “New extension of the kalman filter to
nonlinear systems,” in AeroSense’97. International Society for Optics
and Photonics, 1997, pp. 182–193.

