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Abstract

We describe a computational model of epileptiform activity mimicking the activity exhibited by an animal model of
epilepsy in vitro. The computational model permits generation of synthetic data to assist in the evaluation of new
algorithms for epilepsy treatment via adaptive neurostimulation. The model implements both single-compartment
pyramidal neurons and fast-spiking interneurons, arranged in a one-dimensional network using both excitatory and
inhibitory synapses. The model tracks changes in extracellular ion concentrations, which determine the reversal
potentials of membrane currents. Changes in simulated ion concentration provide positive feedback which drives the
system towards the epileptiform state. One mechanism of positive feedback explored by this model is the conversion of
pyramidal cells from regular spiking to intrinsic bursting as extracellular potassium concentration increases. One of the
main contributions of this work is the development of a slow depression mechanism that enforces seizure termination.
The network spontaneously leaves the seizure-like state as the slow depression variable decreases. This is one of the
first detailed computational models of epileptiform activity which exhibits realistic transitions between inter-seizure
and seizure states, and back, with state durations similar to the in vitro model. We validate the computational model
by comparing its state durations to those of the biological model. We also show that electrical stimulation of the
computational model achieves seizure suppression comparable to that observed in the in vitro model.
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1. Introduction

Implanted electrical stimulation devices have
emerged as a means to alleviate seizures (also known
as ictal discharges or events) in patients with refractory
epilepsy (Uthman et al., 2004). A recent development
is the design of responsive stimulation algorithms
which apply electrical stimulation only when it is most
useful (Sun et al., 2008). Many of the methods being
considered for the design of these dynamic or adaptive
strategies require a large quantity of data to support
both the design and validation of potential responsive
stimulation algorithms (Guez et al., 2008; Bush &
Pineau, 2009). Models of epilepsy, whether biological
or computational, are a potential source of data for
either designing or evaluating these algorithms.

In vitro models of epilepsy using rodent brain slice
preparations provide a means to study the disease in a
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relatively consistent manner. They involve a significant
reduction in the size and complexity of the neural cir-
cuits compared to the intact brain, while maintaining
most of the key electrographic features of epilepsy seen
in vivo. One common acute in vitro model of epilepsy is
the 4-aminopyridine (4-AP) model. Brain slices treated
with micromolar concentrations of 4-AP exhibit epilep-
tiform activity consisting of events analogous to both ic-
tal discharges and interictal spikes 1. These ictal events
may last for several tens of seconds, with interictal pe-
riods of several minutes, repeating over a period of sev-
eral hours.

While in vitro models of epilepsy are useful for re-
search, they nonetheless require large investments in
training, equipment, and animal care. In contrast, com-
putational models can provide large amounts of data for

1An ictal discharge or ictal event is an electrographic anomaly
lasting several seconds or more (and is often called a seizure), whereas
an interictal discharge or interictal spike is typically a brief event last-
ing less than a second.
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little cost. Experiments on computational models are,
by nature, perfectly reproducible, and may permit pre-
cise manipulations which may be difficult or impossible
in a biological model.

To generate useful synthetic data, a computational
model of epilepsy must mimic key characteristics of the
corresponding biological system. One important char-
acteristic is the timing and duration of the epileptiform
events, because this likely reflects fundamental proper-
ties of the epileptic network. However, prior compu-
tational models do not exhibit spontaneous transitions
between epileptiform and normal states (Netoff et al.,
2004; Bazhenov et al., 2004; Cressman et al., 2009; Ul-
lah et al., 2009; Fröhlich et al., 2010), or they exhibit
only brief events that resemble interictal spikes (Traub
et al., 1995, 2001; Franaszczuk et al., 2003). Alterna-
tively, many existing computational models are either
too abstract (Biswal & Dasgupta, 2002; Ohayon et al.,
2004; Suffczynski et al., 2004) or too computationally
demanding (Traub et al., 2005) to permit the kinds of
investigations needed for responsive stimulation algo-
rithms.

In this paper, we present a computational model of
epileptiform behavior in brain slices treated with 4-AP
in vitro (Avoli et al., 2002). The primary goal of this
research is the creation of a computational model of
epilepsy that generates data which can be used to de-
velop and test dynamic electrical stimulation algorithms
for seizure suppression.

This model builds on prior work on bursting behavior
in low-magnesium preparations (Golomb et al., 2006),
using a simple single-compartment model for cortical
pyramidal cells and fast-spiking inhibitory interneurons.
Instead of a using a mean-field approximation for mod-
eling synaptic currents, we use an explicit model of in-
dividual synapses (Destexhe et al., 1998).

We further extend this prior work by incorporating
a model of changes in extracellular ion (Na+, K+) con-
centration before and during seizures (Heinemann et al.,
1977; Kager et al., 2000). These ion concentration
changes may be an important contributor to the initia-
tion and maintenance of ictal behavior (Fröhlich et al.,
2008).

Less well understood, however, are the mecha-
nisms which account for seizure termination (Löscher
& Köhling, 2010). Our model incorporates a slow,
activity-dependent reduction in synaptic efficiency,
which accounts for the transition from seizure to non-
seizure states. While this mechanism is too simple to
enable a direct comparison, this slow depression mech-
anism follows a time course similar to the observed re-
lationship between seizure termination and intracellular

or extracellular acidosis (Xiong et al., 2000; Ziemann
et al., 2008).

Given the goal of providing simulated data for adap-
tive stimulation experiments, the computational model
must respond to electrical stimulation in a realistic man-
ner. We are particularly concerned with the effects of
fixed-frequency stimulation or “periodic pacing” in the
0.5-1 Hz range. Stimulation in this frequency range
has been shown consistently to reduce or suppress ic-
tal events in vitro (D’Arcangelo et al., 2005; Durand &
Bikson, 2001). We demonstrate that our model responds
to a simulated electrode input from a stimulation device
with a reduction in duration and frequency of seizure-
like events that is similar to that observed in in vitro
models.

The primary contribution of this paper is to propose a
bistable network that roughly matches the observed sta-
tistical distribution of ictal/interictal phases in the 4-AP
in vitro model. We show that our computational model
can spontaneously transition between the ictal and in-
terictal states, over simulations covering several tens of
minutes. The model is computationally efficient and can
generate data for many hundreds of seconds of simu-
lated time. We also make the model available for the
use of other researchers2.

2. Methods

A set of six examples of biological data were acquired
using rat brain slices in vitro, using the protocol detailed
in this section. These data were then compared with
the results observed in the computational model, which
combines elements from several previously published
models, as described below.

2.1. In vitro data collection
Male, adult Sprague-Dawley rats (250-300 g) were

decapitated under deep isoflurane anesthesia. The brain
was quickly removed and placed in cold (0 − 2◦ C) ar-
tificial cerebrospinal fluid (aCSF), having the follow-
ing composition (mM): 124 NaCl, 2 KCl, 2 MgSO4,
2 CaCl2, 1.25 KH2-PO4, 26 NaHCO3 and 10 D-
glucose, continuously bubbled with gas mixture (O2
95% and CO2 5%) to equilibrate at pH∼7.40. Combined
hippocampus-entorhinal cortex (EC) slices 450 µm
thick were cut as previously described (D’Arcangelo
et al., 2005) using a VT1000S vibratome (Leica, Ger-
many). Slices were then transferred to an interface

2Source code may be downloaded at http://www.cs.mcgill.
ca/~rvince3/ivmodel.tar.gz
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recording chamber, lying between warm (∼ 32◦ C)
aCSF and humidified gas (O2 95% and CO2 5%), where
they were allowed to recover for at least one hour before
beginning continuous bath application (1 ml/min) of 4-
aminopyridine (4-AP). 4-AP is a potassium (K+) chan-
nel blocker which increases neuronal excitability (Per-
reault & Avoli, 1991). Consequently, continuous perfu-
sion of brain slices with micromolar concentrations of
4-AP leads to the generation of spontaneous epilepti-
form discharges resembling electrographic seizures and
interictal spikes. We analyzed six slices obtained from
six animals. All of the procedures were carried on in
accordance to the CCAC (Canadian Council for Animal
Care) and McGill University guidelines.

Field potential recording was performed with aCSF-
filled pipettes (tip diameter < 10 µm; resistance= 5-10
MΩ) pulled from borosilicate capillary tubing (World
Precision Instruments Inc., Sarasota, FL, USA) using
a P-97 puller (Sutter Instrument, Novato, CA, USA).
Extracellular signals were fed to a Cyberamp 380 am-
plifier (Molecular Devices, Palo Alto, CA) connected
to a digital interface device (Digidata 1322A, Molec-
ular Devices). Data were acquired at a sampling rate
of 5 kHz, using the software Clampex 8.2 (Molecular
Devices), stored on the hard drive and analyzed off-
line. Recording electrodes were placed in the deep lay-
ers of the medial EC. Extracellular current pulses (100-
250 µA, pulse width 100 µsec) were delivered in the
subiculum through a bipolar concentric Pt-Ir electrode
(FHC, Bowdoin, ME, USA) plugged into a high volt-
age stimulus isolator unit (A360, WPI Inc., Sarasota,
Florida, USA) connected to the pulse generator Pulse-
master A300 (WPI Inc., Sarasota, Florida, USA).

An input/output curve was generated to adjust the
stimulus intensity to reliably obtain an interictal-like
event in the EC. The apparatus parameters were then
fixed and the periodic pacing protocols at 0.5 Hz and
1.0 Hz were implemented. Each stimulation phase pro-
ceeded until at least 4 consecutive ictal-like discharges
were observed (control) or until at least three times the
previously observed interval between consecutive ictal-
like discharges (stimulation) had elapsed. Each stimu-
lation phase was immediately preceded by a control pe-
riod and followed by a post-stimulation recovery period,
which served as the control recording for the following
stimulation protocol. Ictal discharge onset and termina-
tion were labeled in-house via visual inspection.

2.2. Computational model

To investigate the effects of extracellular ion concen-
trations on neuronal network dynamics, we used model

neurons which extend standard Hodgkin-Huxley kinet-
ics (Hodgkin & Huxley, 1952). The membrane current
Ix associated with an arbitrary ion channel x is deter-
mined by equations of the general form:

Ix = ḡxr(Vm − Ex), (1)

where ḡx is the maximal conductance of the ion chan-
nel, Vm is the membrane potential, Ex is the equilibrium
potential of the ion, and r is a gating variable which de-
scribes the fraction of gates which are in the open state.

A typical gating variable r follows a differential equa-
tion of the form:

dr
dt
= φ

r∞ − r
τr
, (2)

where r∞ and τr are the equilibrium value and time con-
stants of the gate, respectively. Both of these are often
functions of the membrane potential, Vm. The rate is
modulated by the temperature correction factor, φ.

In some cases, the values of r∞ and τr may be ex-
pressed as a function of a forward rate constant αr and
backward rate constant βr:

r∞ =
αr

αr + βr
(3)

and
τr =

1
αr + βr

. (4)

In this case, Equation 2 may be rewritten as:

dr
dt
= φ(αr(1 − r) − βrr). (5)

The forward rate constant αr represents the rate at
which the gate is transitioning to an open state, whereas
βr represents the rate of conversion to a closed state.
Both values are often functions of the membrane poten-
tial Vm, although they may also depend on other factors,
such as extracellular ion concentrations.

2.2.1. Excitatory cell model
The excitatory cell model is a single-compartment

pyramidal cell model that is relatively simple but which
can be tuned to either a regular spiking (RS) mode or
to an intrinsic bursting (IB) mode with only a small
parameter change (Golomb & Amitai, 1997; Golomb
et al., 2006). This enables the computational model to
reflect the observed tendency for some neurons to tran-
sition from RS to IB mode in the presence of elevated
K+ (Jensen et al., 1994). This behavior is illustrated in
Figure 1. This change manifests itself both as a change
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in both the pattern and the average rate of firing. The ef-
fect on the mean rate is illustrated in Figure 2 B. These
effects should tend to increase the probability of the fir-
ing of the postsynaptic neurons in response to the firing
of a presynaptic neuron.

The membrane potential Vm is governed by the cur-
rent balance equation

C
dVm

dt
= −INa−INaP−IKdr−IKslow−Ileak−Isyn+Iapp, (6)

where C = 1 µF/cm2 is the specific capacitance of the
membrane. In addition to the applied (electrode) cur-
rent Iapp and synaptic current Isyn, the model includes
five ion currents: the fast sodium current INa, the per-
sistent sodium current INaP, the delayed-rectifier potas-
sium current IKdr, the slow potassium current IKslow, and
a leak current Ileak (Golomb & Amitai, 1997; Golomb
et al., 2006).

For the fast Na+ current INa, the activation is assumed
to be instantaneous, so the current is given by:

INa = ḡNam3
∞h(Vm − ENa), (7)

where

m∞ =
1

1 + exp
(−(Vm−θm)

σm

) , (8)

h∞ =
1

1 + exp
(−(Vm−θh)

σh

) (9)

τh = 1 +
7.5

1 + exp
(−(Vm−θth)

σth

) , (10)

where ENa is the calculated reversal potential of Na+,
and m and h are the activation and inactivation variables
(i.e. fraction of open channels). The constants are given
in Table 1. The relationship between the inactivation
variable h, τh, and h∞ is given by Equation 2, with the
temperature correction factor φ = 10 at the simulation
temperature of 37◦ (Golomb et al., 2006).

The persistent Na+ current, INaP, is a non-inactivating
current. It plays a critical role in the generation of in-
trinsic bursting behavior (Golomb et al., 2006), so it is
of particular interest in our model. Again, the activation
of this current is assumed to be instantaneous, and so it
follows the equations:

INaP = ḡNaP p∞(Vm − ENa), (11)

where the activation variable p is given by

p∞ =
1

1 + exp
(
−(Vm−θp)
σp

) , (12)

where p is the activation of the channel. All other con-
stants are given in Table 1.

The delayed-rectifier K+ current, IKdr, is also a non-
inactivating current, obeying the following equations:

IKdr = ḡKdrn4(Vm − EK), (13)

where

n∞ =
1

1 + exp
(−(Vm−θn)

σn

) (14)

τn = 1 +
5

1 + exp
(−(V−θtn)
σtn

) , (15)

where n is the activation of the channel, EK is the calcu-
lated reversal potential of K+. Again, all constants are
given in Table 1.

The slow K+ current, IKslow, is also a non-inactivating
current. It represents the collective effects of potassium
currents with time constants in the tens or hundreds of
milliseconds, those which typically are responsible for
spike rate adaptation in regular spiking cells (Golomb
et al., 2006). The kinetics are as follows:

IKslow = ḡKslowz(Vm − EK), (16)

where

z∞ =
1

1 + exp
(−(Vm−θz)

σz

) , (17)

τz = 75, (18)

where z is the activation of the channel; constants are
specified in Table 1.

Finally, the leak current Ileak is simply:

Ileak = gleak(Vm − Eleak), (19)

where Eleak, the reversal potential of the leak current, is
calculated from the ion concentrations.

The synaptic current Isyn is the sum of three individ-
ual synaptic currents:

Isyn = INMDA + IAMPA + IGABAA , (20)

these are further described in Section 2.2.3.

2.2.2. Inhibitory cell model
We model inhibitory cells using the Wang-Buzsáki

model of fast-spiking (FS) interneurons (Wang &
Buzsáki, 1996). The membrane potential Vm is given
by the current balance equation:

C
dVm

dt
= −INa(i) − IKdr(i) − Ileak(i) − Isyn + Iapp. (21)
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Table 1: Constants for the model excitatory cell, taken directly
from Golomb et al. (2006).

Symbol Value Units
θm -30 mV
σm 9.5 mV
θh -45 mV
σh -7 mV
θth -40.5 mV
σth -6 mV
θp -47 mV
σp 3 mV
θn -33 mV
σn 10 mV
θtn -27 mV
σtn -15 mV
θz -39 mV
σz 5 mV
ḡNa 35 mS/cm2

ḡNaP 0.06 mS/cm2

ḡKdr 6 mS/cm2

ḡKslow 1.8 mS/cm2

gleak 0.05 mS/cm2

 A:  EK = −90 mV

 B:  EK = −75 mV

 50.0 mV

 50.0 ms

Figure 1: The pyramidal cell model proposed by Golomb and Ami-
tai undergoes a mode change as [K+]o increases and the potassium
reversal potential depolarizes. Parameters are ḡNaP = 0.06 mS/cm2,
Iapp = 1 nA/cm2. A: Regular spiking mode exhibited when the potas-
sium reversal potential EK = −90 mV, the resting value. B: The model
has transitioned to intrinsic bursting mode when EK = −75 mV.

Table 2: Constants for the model inhibitory cell (Wang & Buzsáki,
1996).

Symbol Value Units
θαM -35 mV
σαM 10 mV
θβM -60 mV
σβM 18 mV
θαH -58 mV
σαH 20 mV
θβH -28 mV
σβH 10 mV
θαN -34 mV
σαN 10 mV
θβN -44 mV
σβN 80 mV
ḡNa(i) 35 mS/cm2

ḡKdr(i) 9 mS/cm2

gleak(i) 0.1 mS/cm2

The inhibitory cell includes only three ion currents, the
fast sodium INa(i), the delayed-rectifier potassium IKdr(i),
and a leak current Ileak(i).

As in the excitatory cell model, the activation variable
M of the fast sodium current has instantaneous dynam-
ics:

INa(i) = ḡNa(i)M3
∞H(Vm − ENa), (22)

where

αM =
0.1(Vm − θαM)

1 − exp
(−(Vm−θαM )

σαM

) , (23)

βM = 4 exp
(−(Vm − θβM)

σβM

)
, (24)

αH = 0.07 exp
(−(Vm − θαH)

σαH

)
, (25)

βH =
1

1 + exp
(
−(Vm−θβH )
σβH

) , (26)

where all constants are given in Table 2.
The value of M∞ is derived from αM and βM using

Equation 3. The relationship among the variables H,
αH , and βH is given by Equation 5, with a temperature
correction factor φ = 5 at the simulation temperature of
37◦ C.

The delayed-rectifier potassium current is also similar
to that of the excitatory cell:

IKdr(i) = ḡKdr(i)N4(Vm − EK), (27)
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Figure 2: Spiking rates of the model neurons as a function of K+ re-
versal potential. Applied current is 1 nA.

where

αN =
0.01(Vm − θαN)
(
1 − exp

(−(Vm−θαN )
σαN

)) , (28)

βN = 0.125 exp
(−(Vm − θβN)

σβN

)
, (29)

where all constants are given in Table 2. The reversal
potentials EK and ENa are calculated from the ion con-
centrations as described in Section 2.2.5.

While the inhibitory model neuron does not exhibit a
fundamental change in behavior similar to the excitatory
cell’s transition from RS to IB behavior, increasing the
extracellular K+ concentration does increase the spiking
rate of the neuron (See Figure 2 A). This effect should
provide negative feedback against the greater excitabil-
ity of the pyramidal cells at high values of [K+]o.

2.2.3. Synaptic currents
All synaptic currents are calculated according to the

simplified scheme described by Destexhe et al. (1998).
Each current is controlled by a gating variable which
represents the fraction of open channels in the synapse.
As an example, the synaptic current IAMPA has the form:

IAMPA = ḡAMPAr(Vm − EAMPA), (30)

where ḡAMPA is the maximal conductance of the
synapse, EAMPA is the reversal potential of the synapse
(usually 0 mV), and r is the gating variable representing
the fraction of open channels. In some cases, the gating
variable may be further multiplied by additional factors
which influence synaptic transmission. These factors
may include, for example, either activity-dependent de-
pression effects or phenomena such as the magnesium
block of NMDA receptors (Jahr & Stevens, 1990).

Table 3: Rate constants for synaptic currents (Destexhe et al., 1998).
α (M−1sec−1) β (sec−1)

AMPA 1.1 × 106 190
NMDA 7.2 × 104 6.6
GABAA 5 × 106 180

The gating variable, r, of a synaptic current is con-
trolled by the differential equation:

dr
dt
= α[T ](1 − r) − βr, (31)

where [T ] is the concentration of neurotransmitter in
the synaptic cleft and α and β are rate constant pa-
rameters chosen to fit observed synaptic activation time
courses. For simplicity, the neurotransmitter concen-
tration is modeled as a single 1 millisecond pulse with
concentration 1 mM (Destexhe et al., 1998). The param-
eter values are given in Table 3. For computational ef-
ficiency, the synaptic state variables are associated with
the presynaptic neuron. This choice is possible because
the model neurons have a single compartment, therefore
all synapses are triggered simultaneously.

The AMPA and GABAA receptor models are straight-
forward implementations of the simplified first-order
model presented in Destexhe et al. (1998). There is
evidence that increasing [K+]o will decrease the driv-
ing force of the GABAA inhibitory effect by decreas-
ing the efficiency of combined K+/Cl− transport (Jensen
et al., 1993), and strong evidence that GABAA plays an
important role in seizure initiation (Avoli et al., 2002).
The details of these interactions remain an area of ongo-
ing research (Rivera et al., 2004). However, modeling
the complex interactions of this mechanism was not at-
tempted in the current study, as few sufficiently detailed
quantitative descriptions of these effects exist, and mod-
eling concentrations of Cl−and Ca2+would significantly
increase the computational requirements of the overall
model.

The model NMDA receptor is modified slightly from
prior work to account for the effects of [K+]o on the
synaptic efficacy. The NMDA receptor is a slow-acting
glutamatergic receptor, which has a well-known de-
pendence on voltage and extracellular Mg2+ concentra-
tion (Jahr & Stevens, 1990). More relevant to the 4-AP
model, there is evidence that elevated [K+]o increases
both glutamate release (Crowder et al., 1987; Fujikawa
et al., 1996) and NMDA receptor activation (Poolos &
Kocsis, 1990).

We use the following equation to calculate the synap-
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tic current due to NMDA:

gNMDA = ḡNMDAB(Vm, [Mg2+]o)G([K+]o)s (32)
INMDA = gNMDA(Vm − ENMDA), (33)

where ḡNMDA is the maximal conductance of the NMDA
receptor, s is the gating variable for NMDA, and
ENMDA = 0 mV. The function B accounts for the
voltage-dependent magnesium block associated with
the NMDA receptor (Jahr & Stevens, 1990; Dayan &
Abbott, 2001):

B(Vm, [Mg2+]o) =
1

1 + [Mg2+]o
3.57 exp

( −Vm
16.13

) . (34)

The enhancement of NMDA receptor activity by
[K+]o is given by the equation:

G([K+]o) =
100.0

1.0 + exp(− [K+]o−11.75
1.7974 )

. (35)

This equation and constants were chosen to approxi-
mate the behavior modeled by Kager et al. (2000).

In addition, the excitatory-excitatory synaptic cur-
rents (whether AMPA or NMDA) are moderated by two
different forms of synaptic depression, one fast (D) and
another slow (Q).

The fast depression variable is a phenomenological
reflection of the decrease in the availability of “synaptic
resources” after firing (Abbott et al., 1997; Bazhenov
et al., 2004). When a neuron i fires, the value of D is
instantaneously replaced according to the equation:

Di
t+1 = Di

t(1 − ∆D), (36)

and recovers according to the differential equation:

dDi

dt
=

(1 − Di)
τD

, (37)

where ∆D = 0.07 is the fraction of synaptic resources
used per firing, Di

t is the depression factor of the ith neu-
ron at time t, and τD = 0.7 sec is the recovery time.

The slow depression follows the same algorithm as
fast depression, but on a much longer time scale and
with a slower recovery rate. It is meant to model slower
phenomena that provide negative feedback and seizure
termination. It has an identical form as that for the fast
depression D:

Qi
t+1 = Qi

t(1 − ∆Q), (38)

and
dQi

dt
=

(1 − Qi)
τQ

, (39)

where ∆Q is the fractional decrease in Q per firing, and
τQ is the recovery time constant. This slower effect is
intended to be consistent with possible mechanisms of
seizure termination, such as activity-dependent acido-
sis (Xiong et al., 2000; Ziemann et al., 2008), for exam-
ple.

The factors D and Q act to reduce the synaptic
conductance in excitatory-excitatory synapses (either
AMPA or NMDA). For example, for an AMPA synapse
from presynaptic pyramidal cell i to postsynaptic pyra-
midal cell j, the full equation for the synaptic current
is:

I j
AMPA = ḡAMPAriDiQi(V j

m − EAMPA). (40)

2.2.4. Ion concentrations
We model the changes in the extracellular ion con-

centrations of both Na+ and K+ following the formalism
introduced by Kager et al. (2000).

Changes in intracellular and extracellular ion concen-
trations are modeled by integrating the appropriate cur-
rents over time and converting to concentration units.
Therefore the change in intracellular concentration for
an ion is given by:

d[Ion]i

dt
=

A
∑

Ion IIon

FVi
, (41)

where A is the surface area of the membrane, F is the
Faraday constant, and Vi is the intracellular volume.
The corresponding change in extracellular concentra-
tion is given by:

d[Ion]o

dt
= −A

∑
Ion IIon

FVo
, (42)

where Vo is the volume of the extracellular space around
the cell, here estimated to be 0.15Vi (Kager et al., 2000).

Ion concentrations are restored primarily through the
action of an active “ion pump” model which responds to
elevated extracellular K+ and intracellular Na+ (Läuger,
1991; Kager et al., 2000).

The pump activation is given by:

Apump =

(
1 +

[K+]o(eq)

[K+]o

)−2 (
1 +

[Na+]i(eq)

[Na+]i

)−3

, (43)

where [K+]o(eq) = 3.5 mM and [Na+]i(eq) = 10 mM are
the equilibrium values for extracellular potassium and
intracellular sodium (Kager et al., 2000).

Because the pump exchanges 2 K+ for 3 Na+, the cur-
rent from the pump is given by:

IK pump = −2ImaxApump (44)
INapump = 3ImaxApump, (45)
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where the value of Imax is chosen to balance the ion flux
at equilibrium.

The model of the extracellular space includes a model
of glial uptake (Kager et al., 2000) and diffusion be-
tween compartments (Bazhenov et al., 2004). The glial
buffering system assumes a fixed reverse rate constant
k1 = 0.0153 and a forward rate constant k2 that depends
on [K+]o (Kager et al., 2000):

k2 =
k1

1 + exp
(

[K+]o−15
−1.09

) . (46)

Diffusion is assumed to occur only between adjacent
extracellular compartments. The resulting differential
equation for [K+]o is:

d[K+]o

dt
=

kIΣK
Fd
+G +

D
∆x2 ([K+]o(+) + [K+]o(-) − 2[K+]o),

(47)
where F is the Faraday constant, k = 10 is a unit con-
version constant (needed to convert the result into units
of mM/sec), d = 0.15 µm is the ratio of the extracel-
lular volume to the surface area, and IΣK is the sum of
all K+ currents, including the inward pump. The con-
stant D = 2 × 10−6 cm2/s is the diffusion coefficient
and ∆x = 100 µm is the distance between adjacent neu-
rons. [K+]o(+) and [K+]o(-) are the extracellular K+ con-
centrations of adjacent cells in the one-dimensional ar-
ray (Bazhenov et al., 2004).

The variable G represents the kinetics of the glial
buffering model. It is described by the equations:

G = k1
([B]max − [B])

k1N
− k2[K+]o[B] (48)

d[B]
dt

= k1([B]max − [B]) − k2[K+]o[B], (49)

where [B] is the free buffer concentration, [B]max = 500
mM is the maximum buffering capacity of the glial
cells, and k1N = 1.1 (Bazhenov et al., 2004).

While there is debate about the importance of these
ion concentration effects, it seems reasonable to con-
clude that they may be a source of positive feedback that
either helps initiate or sustain ictal events (Kager et al.,
2000; Bazhenov et al., 2004; Fröhlich et al., 2008).

To account for other unknown mechanisms of home-
ostasis of the relevant ion concentrations, and to main-
tain stability over the long simulation periods used in
this study, we introduced an additional exponential de-
cay towards the equilibrium values for both intracellular

3This value gives substantially faster rates than used in Kager et al.
(2000).

and extracellular K+ and Na+ concentrations. This de-
cay is intentionally fairly slow, with a time constant of
two seconds.

2.2.5. Reversal potentials
In biological networks, the Na+ and K+ reversal po-

tentials, ENa and EK depend on the relative concentra-
tion of relevant ions in the intracellular and extracellular
space. This dependency is most simply expressed using
the Nernst equation:

E =
RT
zF

ln
[ion]o

[ion]i
, (50)

where R is the ideal gas constant, T is the temperature
in Kelvin, F is the Faraday constant, z charge of the ion,
and [ion]o and [ion]i are the extracellular and intracellu-
lar concentrations of the ion.

Many prior computational models assume a constant
value for the reversal potential. While a reasonable
approximation for models of normal activity, the as-
sumption of constant reversal potentials is not realis-
tic in the case of epileptiform activity, given the evi-
dence for large changes in concentration of, for exam-
ple, extracellular K+ ions observed during ictal events
in vitro (Heinemann et al., 1977; Avoli et al., 2002).

2.2.6. Electrical stimulation
Electrical stimulation Iapp is modeled as a direct in-

put to two of the excitatory cells in the simulation. The
current applied in most experiments was 0.4 nA, each
pulse having a duration of 40 msec.

2.2.7. Network structure
Evidence suggests that epileptiform activity in the in

vitro slice model may initiate within layer V of the en-
torhinal cortex (Avoli et al., 2002), therefore we attempt
to model a single layer of cortical cells without addi-
tional sources of complexity or feedback.

The network is arranged in a simple linear structure
of 32 units. Larger networks (on the order of 100 units)
were used in some simulations, with comparable results.
However, the computation time required for larger net-
works renders them impractical for long simulations.

Each neuron synapses onto its ten nearest neighbors.
Every fourth neuron is inhibitory, giving an overall 3:1
ratio between excitatory and inhibitory neurons.

2.2.8. Background activity
In order to simulate the intrinsic background level of

activity in the network, each model neuron is driven by
a Poisson-distributed sequence of random firing events.

8



That is, each model neuron has a small probability of
firing spontaneously during each time step. In most of
the simulations presented below, this firing rate was set
such that each neuron fires on average once every 50
seconds. This choice is somewhat arbitrary, but in early
experiments the model was found to give similar results
over a fairly wide range of values for the average firing
rate.

2.2.9. Implementation
The software is implemented in the C programming

language. Numeric integration is performed using a 4th-
order Runge-Kutta method with a time step of 0.01 mil-
liseconds, with the exception of the synaptic conduc-
tances, which are integrated using the method proposed
in Destexhe et al. (1998). On a 3.0 GHz Intel Xeon
processor, the code requires about ten hours of real
time to calculate the state of the model over 1200 sec-
onds of simulated time. Source code for the model can
be downloaded at the URL: http://www.cs.mcgill.
ca/~rvince3/ivmodel.tar.gz.

3. Results

We now describe the observations made using the
computational model, and compare these observations
with the results of experiments performed in vitro. It is
worth emphasizing that we use the data from the bio-
logical experiments only for comparison, not to directly
fit the parameters of the model.

3.1. Typical behavior of the computational model

We examined the behavior of the computational
model and visually compared it with typical behavior
of the in vitro slice model.

Figure 3, panel B shows the behavior of the compu-
tational model compared to epileptiform activity gener-
ated by a brain slice treated with 4-AP (panel A). Note
that the y axis for the biological model in Figure 3 repre-
sents the measured extracellular field potential, whereas
for the computational model, the y axis is the simu-
lated field potential, calculated as described in Tateno,
Hayashi & Ishizuka (1998).

The duration of seizure-like states and the inter-
seizure intervals are qualitatively similar in this exam-
ple. In addition, both models show some interictal ac-
tivity, although the interictal noise level in the compu-
tational model is lower. The computational model also
shows a fairly clear preictal phase, with increasing brief
bursts of activity which precede the sustained ictal-like

Table 4: Comparison of mean seizure duration (SD) and inter-seizure
interval (ISI) for the computational and in vitro models (∆Q = 0.00042
and τQ = 160).

Mean SD Mean ISI
In vitro model 81±18 sec 369±105 sec
Computational model 80±5 sec 357±38 sec

event. The distribution of interictal bursts in the biolog-
ical model is somewhat less orderly, but shows a similar
increase in frequency leading up to the ictal phase.

Figure 4 shows additional detail of the first ictal-like
event generated by the computational model (Figure 3
B). The raster plot (Figure 4 A) shows the detailed firing
pattern of all of the neurons in the network, including
the detailed firing pattern during five seconds of ictal-
like activity. The activity is characterized by hypersyn-
chronous firing at approximately 3 Hz.

3.2. Comparison of the distribution of state durations

To quantitatively validate the model, we compared
the distribution of simulated seizure durations and inter-
seizure intervals (ISI) to that observed in vitro. The
inter-seizure interval is defined as the time elapsed from
the onset of a particular seizure to the onset of the next
seizure.

Data obtained from in vitro recordings were manu-
ally labeled, whereas for the computational model, the
event durations were determined from a trace represent-
ing one hour of simulated time with ∆Q = 0.00042 and
τQ = 160 seconds. These parameter values were cho-
sen from a range of values observed to give event tim-
ings similar to those observed in vitro. Ictal phases were
automatically identified using an algorithmic criterion.
The onset of an ictal event is declared when more than
20 units have fired within 8 consecutive 10-msec win-
dows. The ictal event is deemed to have terminated
when fewer than 10 units fire for 40 consecutive 10-
msec windows.

As shown in Table 4, simulated seizure-like events
have a mean duration similar to those observed in vitro.
The computational model clearly exhibits less variance
than is present in the biological data, but the agreement
is nevertheless quite good. The estimates for the biolog-
ical data is derived from the mean seizure duration and
inter-seizure interval for six experiments using different
animals, so the difference in variance is unsurprising.

3.3. Extracellular potassium concentration

It has long been established that extracellular potas-
sium concentration increases substantially, by as much
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Figure 3: A: Example traces generated by the in vitro 4-AP biological model; B: The computational model (upward-pointing arrowheads indicate
automatically calculated points of seizure onset, downward-pointing arrows indicate seizure termination); C: The mean extracellular potassium
concentration of the computational model; D: The mean value of the slow depression variable Q over the same simulation period, with no stim-
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Figure 4: Detail of activity in the computational model during the first ictal-like event depicted in Figure 3 B. A: The raster plot shows the firing
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as 400%, during seizure-like events in vitro (Heinemann
et al., 1977; Avoli et al., 2002). This fact has contributed
to speculation that extracellular potassium plays an im-
portant role in either initiating or sustaining seizure-like
events.

The behavior of extracellular potassium in the com-
putational model is illustrated in Figure 3, panel C.
This trace corresponds to the mean [K+]o value of the
network during the same simulation period depicted in
panel B. During seizure-like events, the mean value of
[K+]o increases to slightly more than twice the baseline
(maximum value typically ∼7.6 mM).

The observed increase in [K+]o from 3.5 mM to 7.6
mM corresponds to a change in EK, the K+reversal po-
tential, from -89 mV to -68 mV. This change is more
than enough to cause the model pyramidal cells to tran-
sition from RS to IB modes, as illustrated in Figure 1.

The observed changes in extracellular potassium con-
centration in the computational model are consistent
with the timing and magnitude of those previously re-
ported in relevant biological models (Heinemann et al.,
1977; Avoli et al., 2002). These values are also consis-
tent with those reported in related computational mod-
els (Kager et al., 2000; Bazhenov et al., 2004). In all of
these cases, the value of [K+]o is observed to increase
rapidly during the beginning of the ictal event, then to
level off or even to decline before the network returns to
the interictal state.

3.4. Effect of persistent sodium current
While research suggests that some cortical cells tend

to transition from regular spiking to intrinsic bursting
in the presence of elevated [K+]o (Jensen et al., 1994),
this phenomenon has not been widely examined com-
putationally. It has been suggested (Su et al., 2001) that
the persistent sodium current INaP may play an impor-
tant role in the generation of intrinsic bursting. It is
also known that the maximal conductance of this cur-
rent mediates bursting behavior in the model pyramidal
neuron (Golomb et al., 2006). To verify the importance
of this mode change to the initiation and maintenance of
ictal-like events, we recorded the behavior of the com-
putational model with a reduced value for the maximal
conductance, ḡNaP.

Reducing the maximal conductance of the persistent
sodium current from 0.06 to 0.025 mS/cm2 inhibits the
transition from RS to IB. This completely eliminates the
generation of ictal-like events in the model. Instead, the
model exhibits only brief bursts of activity (Figure 3,
panel E).

In the model pyramidal neuron, the persistent sodium
current is an important enabler of the transition to burst-

ing behavior, as illustrated in Figure 1. When this burst-
ing behavior is blocked, the model is robbed of an im-
portant source of positive feedback, and epileptiform
events are no longer possible.

3.5. Effect of slow depression on seizure termination

To verify the contribution of the slow, activity-
dependent depression state variable Q to the termination
of seizure-like events, we run experiments in which the
decay parameter ∆Q is set to zero. As can be seen in
Figure 3, panel F, this causes the seizure-like events to
continue indefinitely. The slow depression mechanism
is clearly responsible for seizure termination in the com-
putational model. When the mechanism is disabled, the
model cannot transition from the seizure-like state to the
non-seizure state.

Figure 3, panel D, shows the average value of the
state variable Q throughout the same simulation de-
picted in panels B and C. The mean value of Q clearly
tracks the state changes of the network. As the value
increases towards a threshold (∼0.8), the network be-
comes susceptible to an ictal event. During the ictal
event, Q quickly decays. A minimum (∼0.4) is reached
as the event terminates, and the value begins to recover.
While this mechanism does not specifically model the
effects of acidification, this general pattern is quite con-
sistent with the time course of intracellular acidification
reported by Xiong et al. (2000)

The choice of the parameters ∆Q and τQ affect the
mean duration of seizure-like events and the inter-
seizure interval. For example, choosing ∆Q = 0.00024
and τQ = 240 produces a model with a mean seizure du-
ration of 165±7 seconds and a mean inter-seizure inter-
val of 500 ± 21 seconds. These values are large, but not
implausible, as the maximum seizure length recorded
in the control condition in our biological data was 182
seconds.

3.6. Response to stimulation

We further validated the computational model by
comparing the effects of electrical stimulation in the
computational model to the effects observed in the in
vitro data described in Section 2.1.

Electrical stimulation was applied to the computa-
tional model by setting Iapp to 0.4 nA for 40 millisec-
onds, simulating a square monopolar pulse applied di-
rectly to the cell membrane. The pulses are applied at
0.5 or 1.0 Hz, and the effect on the slice’s ability to
transition to the ictal state is quantified by calculating
the fraction of time spent in seizure for each stimulation
frequency.
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The seizure suppression observed in each model for
each stimulation frequency shows is very similar over
the reported frequencies. The results are summarized
in Figure 5, comparing the fraction of time spent in the
seizure state at a given stimulation frequency. The com-
putational model exhibits 58% reduction of seizure-like
events at 0.5 Hz, achieving complete suppression at 1.0
Hz. The biological model exhibits a mean 70% reduc-
tion in seizure-like events at 0.5 Hz, with a complete
elimination of seizure-like events at 1.0 Hz.

Figure 6 illustrates the effect of 1.0 Hz stimulation
on the model. While the stimulation leads to elevated
[K+]o(Figure 6 B), which would ordinarily lead to an in-
crease in excitability in the network. However, as seen
in Figure 6 C, the stimulation also forces the activity-
dependent slow depression variable into a near steady-
state value well below that which typically precedes ic-
tal events. The resulting reduction in synaptic efficiency
is apparently sufficient to counterbalance the effects of
slightly increased [K+]o.

4. Discussion

The computational model presented above shows
many similarities to the 4-AP in vitro animal model.
Most important is the model’s bistability, which is ex-
hibited as spontaneous transitions from the interictal to
ictal states, and subsequently returning to the interictal
state. As with the biological model, these transitions
occur with a fairly regular temporal pattern, and with
fairly consistent durations of ictal and interictal states.
We can control the timing of these phases by adjusting
the parameters ∆Q and τQ. The reduced variance in the
timing of these phases is likely due to the relative ho-
mogeneity of the computational model, with identical
parameters used for all model neurons and synapses.

Our model is able to mimic these statistics over realis-
tic periods of simulated time, on the order of several tens
of minutes, which allows us to measure the durations of
several ictal and interictal states. However, longer simu-
lation times impose severe restrictions on the complex-
ity of some aspects of the model. This limits our ability
to state with confidence that the computational model
will reflect the response of the 4-AP model to novel
stimulation patterns. Confirming this would require ex-
tensive electrophysiological work, as well as possibly
mandating a more complete model of seizure initiation
that includes the contributions of GABAergic receptors
and the KCC2 K+-Cl− cotransporter (Avoli et al., 2002;
Rivera et al., 2004).

Our computational model further demonstrates that
a simple mechanism consisting of a slow activity-

dependent decrease in synaptic transmission can ac-
count for the timing of seizure-like activity seen in the
4-AP model in vitro. This mechanism also provides an
account for the effects of periodic pacing, as the contin-
ual excitation of the network serves to depress the effi-
ciency of synaptic transmission. As a result, the synap-
tic efficiency cannot rise above the critical level required
for the onset of ictal events.

It is not clear how closely our proposed seizure ter-
mination mechanism reflects the underlying biology.
There is good agreement between the biological and
computational data observed. However, this remains an
understudied area. A reduction in synaptic efficiency is
just one of several possible mechanisms which could
reduce the runaway propagation of activity in a net-
work. It is likely that many alternative mechanisms
(e.g. hyperpolarization of the cell membrane, relative
changes in ion channel conductivity, recruitment of slow
inhibitory factors, etc.) would have similar effects in
terms of reduced efficiency in synaptic transmission.

Our model suggests a clear role for extracellular
K+ concentration as a mechanism for the initiation, but
not the termination, of ictal events. This is consistent
with observations in biological models which show that
[K+]o tends to increase rapidly at ictal onset, reaching a
steady-state value early in the ictal event, even tapering
off slightly well before the ictal event terminates (Heine-
mann et al., 1977; Avoli et al., 2002). This observa-
tion implies that it is unlikely that K+ accumulation
alone could account for both seizure onset and termi-
nation, e.g. from depolarization blocking of Na+ chan-
nels (Fröhlich et al., 2008).

Conversely, evidence from intracellular recordings
of pH have shown increasing acidification during ictal
events (Xiong et al., 2000), reaching a minimum pH as
the seizure terminates. This argues for the plausibility of
acidosis as a correlate, if not the direct cause, of seizure
termination. Our slow depression mechanism, while it
does not attempt to model the physiological effects of
acidosis, is consistent with the observed time course of
changes in pH during ictal events.

We are not aware of any work which measures ex-
tracellular K+ concentration during electrical stimula-
tion in vitro. However, as described in Section 3.6, our
model predicts that [K+]o should be somewhat elevated
during electrical stimulation.

A key problem in this area of research is fitting the
many parameters used in the model. In this work, the
data from the in vitro experiments was not directly used
to tune any parameters, but only to perform the empir-
ical comparisons. Alternatively, it may be possible to
perform automatic parameter fitting in computational
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models such as this. However, given that these mod-
els typically include a large number of free parameters,
there are a number of potential pitfalls. Most obvi-
ously, the amount of both data and computation time re-
quired to perform such a fit may be prohibitively large.
There is a tremendous risk of overfitting, which may
lead to poor generalization in novel experimental con-
ditions (e.g. predicting suppression in new stimulation
frequencies). There is also a real possibility of the exis-
tence of numerous local minima, which would make the
resulting optimization problem especially challenging.

Ultimately, the goal of this model is to provide an al-
ternative source of data for the evaluation of responsive
stimulation algorithms. Both the computational model
and the in vitro biological model it mimics exhibit much
greater regularity in seizure timing than is typically ob-
served in vivo. However, the computational model does
show substantial similarities in the timing of ictal events
and the response to periodic pacing. The somewhat
greater prevalence of preictal spiking in the computa-
tional model is of some concern, as this may provide an
artificially large signal warning of the onset of an ictal
event.
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