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Abstract

Bayesian Reinforcement Learning has generated subdteméeest recently, as it provides an el-
egant solution to the exploration-exploitation tradeiaffeinforcement learning. However most
investigations of Bayesian reinforcement learning to dateis on the standard Markov Decision
Processes (MDPs). Our goal is to extend these ideas to theegeaeral Partially Observable MDP
(POMDP) framework, where the state is a hidden variable. ditvess this problem, we introduce
a new mathematical model, the Bayes-Adaptive POMDP. Thismedel allows us to (1) improve

knowledge of the POMDP domain through interaction with thei®nment, and (2) plan optimal

sequences of actions which can trade-off between impraviagnodel, identifying the state, and
gathering reward. We show how the model can be finitely apgprated while preserving the value
function. We describe approximations for belief trackimgl golanning in this model. Empirical

results on two domains show that the model estimate and’agehirn improve over time, as the
agent learns better model estimates.



1 Introduction

In many real world systems, uncertainty can arise in botptbdiction of the system’s behavior, and
the observability of the system’s state. Partially ObskledMarkov Decision Processes (POMDPS)
take both kinds of uncertainty into account and provide agrful model for sequential decision
making under these conditions. However most solving metfimdPOMDPs assume that the model
is known a priori, which is rarely the case in practice. Fatamce in robotics, the POMDP must
reflect exactly the uncertainty on the robot’s sensors amubéars. These parameters are rarely
known exactly and therefore must often be approximated byraam designer, such that even if
this approximate POMDP could be solved exactly, the resyftiolicy may not be optimal. Thus we
seek a decision-theoretic planner which can take into atdd¢be uncertainty over model parameters
during the planning process, as well as being able to leamm &xperience the values of these
unknown parameters.

Bayesian Reinforcement Learning has investigated thiblpno in the context of fully observ-
able MDPs [1, 2, 3]. An extension to POMDP has recently beepgsed [4], yet this method relies
on heuristics to select actions that will improve the mottals forgoing any theoretical guarantee
on the quality of the approximation, and on an oracle thateaqueried to provide the current state.

In this paper, we draw inspiration from the Bayes-AdaptivBRiframework [2], which is for-
mulated to provide an optimal solution to the exploratioiieitation trade-off. To extend these
ideas to POMDPs, we face two challenges: (1) how to updatetdet parameters when the state
is a hidden variable? (2) how to approximate the infinite disienal belief space to perform belief
monitoring and compute the optimal policy. This paper taskdoth problem jointly. The first prob-
lem is solved by including the Dirichlet parameters in theesspace and maintaining belief states
over these parameters. We address the second by boundiggabe of Dirichlet parameters to a
finite subspace necessary feoptimal solutions.

We provide theoretical results for bounding the state spdtke preserving the value function
and we use these results to derive approximate solving dref bnitoring algorithms. We com-
pare several belief approximations in two problem domalkrapirical results show that the agent
is able to learn good POMDP models and improve its returnlaaiihs better model estimate.

2 POMDP

A POMDP is defined by finite sets of statds actionsA and observationg. It has transition
probabilities {75}, s cs.aca WhereT** = Pr(s;;, = §'|s; = s,a; = a) and observation
probabilities{ O%** } sc 5 4c 4,z z WhereO** = Pr(z, = z|s; = s,a;—1 = a). The reward function
R : S x A — R specifies the immediate reward obtained by the agent. In aPRthe state is
never observed. Instead the agent perceives an observatiofd at each time step, which (along
with the action sequence) allows it to maintain a beliefestat AS. The belief state specifies
the probability of being in each state given the history dicacand observation experienced so far,
starting from an initial belieby. It can be updated at each time step using Baye'’s tyle:(s’) =

O w1 3 ey (s)
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A policy 7 : AS — A indicates how the agent should select actions as a funcfitreaur-

rent belief. Solving a POMDP involves finding the optimalipplr* that maximizes the expected
discounted return over the infinite horizon. The return migtd by followingz™* from a beliefb is de-




fined by Bellman's equatiori? * (b) = maxaea [>,cg b(s)R(s,a) + 7> ,c, Pr(z|b,a)V*(7(b,a, 2))],
wherer (b, a, z) is the new belief after performing actienand observation andy € [0,1) is the
discount factor.

Exact solving algorithms [5] are usually intractable, eptoen small domains with only a few
states, actions and observations. Various approximateitdgs, both offline [6, 7, 8] and online
[9], have been proposed to tackle increasingly large dosnditowever, all these methods requires
full knowledge of the POMDP model, which is a strong assuorpin practice. Some approaches
do not require knowledge of the model, as in [10], but thegg@aches generally require a lot of
data and do not address the exploration-exploitation tfide

3 Bayes-Adaptive POMDP

In this section, we introduce the Bayes-Adaptive POMDP (BAMDP) model, an optimal decision-
theoretic algorithm for learning and planning in POMDPsenghrameter uncertainty. Throughout
we assume that the state, action, and observation spacisitgrand known, but that the transition
and observation probabilities are unknown or partiallywno We also assume that the reward
function is known as it is generally specified by the userlierdpecific task he wants to accomplish,
but the model can easily be generalised to learn the rewardifun as well.

To model the uncertainty on the transitid?*s" and observatiorQ*e parameters, we use
Dirichlet distributions which are probability distributions over the parametdrsaltinomial dis-
tributions. Giveng;, the number of times evemt has occurred ove trials, the probabilitiep;
of each event follow a Dirichlet distribution, i.€p1,...,px) ~ Dir(é1,...,¢x). This distribu-
tion represents the probability that a discrete randomatégibehaves according to some probabil-
ity distribution (p1, ..., pk), given that the countéss, ..., ¢r) have been observed overtrials
(n = Zf’zl ¢;)- Its probability density function is defined by{p, ¢) = ﬁ Hlep?"’_l, where

B is the multinomial beta function. The expected value.0of E(p;) = Zk(bi e
j=1%J

3.1 The BAPOMDP Model

The BAPOMDRP is constructed from the model of the POMDP witlknown parameters. Let
(S,A,Z,T,0,R,~) be that model. The uncertainty on the distributidh¥" and 0% can be
represented by experience count$; Vs’ represents the number of times the transitiam, s’) oc-
curred, similarly))¢, V= is the number of times observatierwas made in stat€ after doing action
a. Let ¢ be the vector of all transition counts aficbe the vector of all observation counts. Given

the count vectors ands), the expected transition probability fores’ is: Tg“s' = quiw and
sles Pggrr
1 1 S/(LZ- S/(LZ — w:/z
similarly for O* “*: OF,** = ST

to maximize reward taking into account both state and patemmcertainty. To model this, we
follow the Bayes-Adaptive MDP framework, and include thend vectors in the state of the
BAPOMDP. Thus, the state spaéé of the BAPOMDP is defined a8’ = S x 7 x O, where
T = {¢ € NISPIAIY(s,a), 3, .5 ¢% > 0} represents the space in whigties andO = {¢ €
NISIANZ1(s,a), 3 ., 2 > 0} represents the space in whighies. The action and observation
sets of the BAPOMDP are the same as in the original POMDPsitran and observation functions



of the BAPOMDP must capture how the state and count vegtorsevolve after every time step.
Consider an agent in a given stateith count vectorg) andq, which performs action, causing it
to move to state’ and observe. Then the vectog’ after the transition is defined @ = ¢ + 0%,
whered?,, is a vector full of zeroes, with &for the couny?,,, and the vectoy’ after the observation
is defined as)’ = ¢ + 6%, whered?, , is a vector full of zeroes, with & for the count)?, .. Note
that the probabilities of such transitions and observatmrcurring must be defined by considering
all models and their probabilities as specified by the curarichlet distributions, which turn out

to be their expectations. Hence, we defifieandO’ to be:

T3 05%, if ¢f = ¢+ 0%, andy’ = v + 0%,
0, otherwise.

Tw@wwmawwwz{ 1)

, P 1, if ¢/ =¢+ 3%, andy)’ = + 0%,
05600 .60 = { 3 Citermiea @

Note here that the observation probabilities are folded the transition function, and that
the observation function becomes deterministic. This bapfhecause a state transition in the
BAPOMDP automatically specifies which observation is agegliafter transition, via the way the
counts are incremented. Since the counts do not affect iharde the reward function of the
BAPOMDP is defined as®’'((s, ¢,v),a) = R(s,a); the discount factor of the BAPOMDP re-
mains the same. Using these definitions, the BAPOMDP haswarknoodel specified by the tuple
(S A, Z, 7,0, R, 7).

The belief state of the BAPOMDP represents a distributioar doth states and count values.
The model is learned by simply maintaining this belief state the distribution will concentrate
over most likely models, given the prior and experience solfay is the initial belief state of the
unknown POMDP, and the count vectars € 7 andy, € O represent the prior knowledge on this
POMDP, then the initial belief of the BAPOMDP g (s, ¢o, 10) = {bo(s), if (¢,1) = (o, %0);

0, otherwisé. After actions are taken, the uncertainty on the POMDP madetpresented by
mixtures of Dirichlet distributions (i.e. mixtures of caurectors).

Note that the BAPOMDRP is in fact a POMDP with a countably irtérdétate space. Hence the
belief update function and optimal value function are stéfined as in Section 2. However these
functions now require summations ov&r= S x 7 x . Maintaining the belief state is practical
only if the number of states with non-zero probabilities i§té. We prove this in the following
theorem:

Theorem 3.1.Let(S’, A, Z,T',0’, R',v) be aBAPOMDP constructed fromthe POMDR, A, Z, T, O, R, ).
If S is finite, then at any timg the setS{); = {0 € §’'|b,(c) > 0} has size}S,’)£| < ||t

Proof. Proof available in the appendix. Proceeds by induction fshm O

The proof of this theorem suggests that it is sufficient toaike overS and S’L1 in order to

compute the belief statd when an action and observation are taken in the environntégnce,
Algorithm 3.1 can be used to update the belief state.

3.2 Exact Solution for BAPOMDP in Finite Horizons

The value function of a BAPOMDP for finite horizons can be esgnted by a finite sét of func-
tionsa : S’ — R, as in standard POMDP. For example, an exact solution caoi@uted using



function 7(b, a, 2)
Initialize b’ as a 0 vector.
forall (s,¢,v,s’) € S; x S do
b,(S/, ¢ + 625/5 1/] + 6:’z) — b,(‘S,? ¢ + 625/5 1/] + 6:’z) + 6(87 ¢v T/J)TdfaS,OZ}/M
end for
return normalizedh’

Algorithm 3.1: Exact Belief Update in BAPOMDP.

dynamic programming (see [5] for more details):

It = {ala’(s,¢,9) = R(s,a)}, .,

P = {ai"oi " (s,0,¢) =7 Xgeg T O P oi(s', ¢+ 05,0 +03.), 05 € Tea ),
ry = T{ely* ely®e---oly™”, (where @ is the cross sum operator)

I = UaeA Ig.

(3)
Note here that the definition of** (s, ¢, 1) is obtained from the fact that'((s, ¢, v), a, (s, ¢',¢’)) x
O'((s,¢,¢),a,(s,¢,¢), z) = 0 exceptwher' = ¢+0%, andy)’ = 1p+4¢ . The optimal policy
is extracted as usualr (b) = argmax,er ), cg @(0)b(o). In practice, it will be impossible to
computea;”* (s, ¢,9) for all (s, ¢,v) € S’. In order to compute these more efficiently, we show
in the next section that the infinite state space can be rediaca finite state space, while still
preserving the value function to arbitrary precision foy aorizont.

4 Approximating the BAPOMDP: Theory and Algorithms

Solving a BAPOMDP exactly for all belief states is impossilsl practice due to the dimensionnality
of the state space (in particular to the fact that the couctove can grow unbounded). We now show
how we can reduce this infinite state space to a finite statgespihis allows us to compute an
optimal value function over the resulting finite-dimensiahbelief space using standard POMDP
techniques. Various methods for belief tracking in the itdimodel are also presented.

4.1 Approximate Finite Model
We first present an upper bound on the value difference betwee states that differ only by
their model estimate and+. This bound uses the following definitions: given¢’ € 7, and
0,0’ € O, defineDy (6,¢) = ¥, cq | T3 = T3 | andDy (v,0') = Y., |03 = 0%
and./\/(;a = ZS/ES ¢ZS/ and./\/sa == ZzGZ wtslz'
Theorem 4.1. Given anyg, ¢’ € 7,,v¢’ € O, and~ € (0,1), then for all¢:

swp (s, 6, 0) — (s, ¢/, 0] < e sup [Dg(6,) + Dy*(6,v")

a €, s€ES s,8’€S,a€

+ 4 Zs”es dﬁs”_dji” + ZzEZ w.(:’z_w./jz
In(y=) \ WEFDWIHD T W) (W3 a+1)

Proof. Proof available in the appendix; finds a bound on a 1-stepuyaakd solves the recurrence.
O



We now use this bound on thevector values to approximate the space of Dirichlet patarae

within a finite subspace. We use the following definitionsiegi anye > 0, definec’ = th}"l’l)i,

1—4)%In(y~*¢ S|(1+€) 1 Zl(A+e) 1
¢ = - In(y 9 3277)“1%““(30 ),Ngzmax(i‘ ‘(6,6),7—1) andN%:max(‘ |(€, 6),7—1 .

Theorem 4.2. Given anye > 0 and (s, ¢,v) € S’ such thatda € A,s’ € S, N(;/“ > N§ or
N3'@ > Ng, thend(s,¢/,9') € S suchthatva € A,s' € S, N3 < Ng andN3,* < N where
lae(s, @, 1) — (s, ¢, ¢")| < e holds for allt andy, € T',.

Proof. Proof available in the appendix. O

Theorem 4.2 suggests that if we want a precisiom of the value function, we just need to
restrict the space of Dirichlet parameters to count veatorss 7, = {¢ € NISPIAl|vq € A,s €
8,0 < N3* < Ng}andy € O, = {¢ € N5IIZIya € A s € 5,0 < N3* < Ng}. SinceZ; and
O, are f|n|te we can define a finite approximate BAPOMDP as thtetm} A, Z.T..0., R., v)
whereS. = S x 7, x O, is the finite state space. To define the transition and obsemfainctions
over that finite state space, we need to make sure that wheotim vectors are incremented, they
stay within the finite space. To achieve, this we define a ptioje operatorP, : S’ — S. that
simply projects every state iff’ to their closest state if..

Definition 4.1. Letd : S’ x S’ — R be defined such that:
DRl sup D (6,0/) + Dy (0, 0)

s,8’€S,a€A

ifs=s
d Lo ) = s |Oen =il | Tz by~
(5,6,9, 5, ¢ 9) TG vt <N§/+1><N$f/+1> ’
87| Rl o 2[|R]oo .
=1 (1+ ]n(v_p)) + s otherwise.

Definition 4.2. LetP, : 8’ — S, be defined a®, (s) = argmin d(s, s')
s'eS.

The functiond uses the bound defined in Theorem 4.1 as a distance betwées tsat only
differs by their¢ and> vectors, and uses an uppe3.1r bound on that value when tes sttfer.
ThusP, always maps statds, ¢, ) € S’ to some statés, ¢’,v’) € S.. Note that ifc € S, then
P(0) = 0. UsingP,, the transition and observation function are defined aevisl!

T305' 059, i (s, ¢, ') = Pels', ¢ + 0%, 1 + 6%.)

Te((s,¢,%),a,(s', ¢, ¢')) = { 0 otherwise. @
~ ATy ) if /7 lv ") = € l’ 55> v
0o, 60,9 = { 41 capuise,) TRV

These definitions are the same as the one in the infinite BAPBMirept that now we add an extra
projection to make sure that the incremented count vectays in S.. Finally, the reward function
3.1R. : 5. x A — Ris defined ask. ((s, $,v), a) = R(s,a).

Theorem 4.3 bounds the value dlfference betweerctors computed with this finite model and
the a-vector computed with the original model.

Theorem 4.3. Given any > 0, (s, ¢,%) € " anda; € T'; computed from the infinite BAPOMDP.
Leta; be thea-vector representing the same conditionnal plamasut computed with the finite
BAPOMDP(Sea A7 Za Tey 067 R67 7)! then|&t(P€(S7 ¢7 1/))) - O[t(S, ¢7 w)




function W D(b, a, z, K)

b — 1(b,a,z)

Initialize b as a 0 vector.

(s,0,) «— Argmax . 4 ynes, b'(s', ¢ ).

V' (s,0,9) < b'(s,¢,1)

fori =2to K do
(8,0,9) — argmax (. ¢ y)esy, V(s o' 4") min (e g ynes;, d(s', ¢, ', s", ", 4")
V' (s,0,9) (s, 6,9)

end for

return normalizedb”

Algorithm 4.1: Weighted Distance Belief Update in BAPOMDP.

Proof. Proof available in the appendix. Solves a recurrence oeetibtep approximation in Thm.
4.2. o

Because the state space is now finite, solution methods tneriiterature on finite POMDPs
could theoretically be applied. This includes en partictifee equations for (b, a, z) andV*(b)
that were presented in Section 2. In practice however, évaungh the state space is finite, it will
generally be very large for smal] such that it may still be intractable, even for small dorsaie
therefore favor a faster online solution approach, as destbelow.

4.2 Approximate Belief Monitoring

As shown in Theorem 3.1, the number of states with non-zesbaiility grows exponentially in
the planning horizon, thus exact belief monitoring can klyibecome intractable. We now discuss
different particle-based approximations that allow polymal-time belief tracking.

Monte Carlo sampling: Monte Carlo sampling algorithms have been widely useddquential
state estimation [11]. Given a prior beligffollowed by actiorn and observation, the new belief
b’ is obtained by first sampling states from the distributioly then for each sampleda new state
s’ is sampled fron¥'(s, a, -). Finally, the probabilityO(s’, a, z) is added td’(s’) and the beliet’
is re-normalized. This will capture at mokt states with non-zero probabilities. In the context of
BAPOMDPSs, we use a slight variation of this method, whereb, v) are first sampled frorh, and
then a next state’ € S is sampled from the normalized distributi@ij* O,*. The probabilityl / K
is added directly td'(s', ¢ + 0%, 9 + 6%.).

Most Probable: Alternately, we can do the exact belief update at a giver titep, but then
only keep theK” most probable states in the new beliend renormalizé’.

Weighted Distance Minimization: The two previous methods only try to approximate the dis-
tribution 7(b, a, z). However, in practice, we only care most about the agenpeebed reward.
Hence, instead of keeping thi€ most likely states, we can kedp states which best approximate
the belief’s value. As in the Most Probable method, we do atekelief update, however in this
case we fit the posterior distribution using a greédyneans procedure, where distance is defined
as in Definition 4.1, weighted by the probability of the stedgemove. The detailed procedure is
described in Algorithm 4.1.



4.3 Online planning

While the finite model presented in Section 4.1 can be useadopiiovably near-optimal policies
offline, this will likely be intractable in practice due toglvery large state space required to ensure
good precision. Instead, we turn to online lookahead seagurithms, which have been proposed
for solving standard POMDPs [9]. Our approach simply penf@dynamic programming over all the
beliefs reachable within some fixed finite planning horizamf the current belief. The action with
highest return over that finite horizon is executed and tHenrpng is conducted again on the next
belief. To further limit the complexity of the online plamg algorithm, we used the approximate
belief monitoring methods detailed above. Its overall ctexity is in O((|A||Z|)P C,) where D

is the planning horizon and;, is the complexity of updating the belief. The detailed pchae is
provided in algorithm 4.2.

: function V (b, d, K)
. if d = 0 then
return V (b)
end if
maxQ) «— —oo
. forall a € Ado
4= 2 s,6)esy 0(8: & P)R(s, a)
forall z € Zdo
b/ — 7A—(b7a/7z7l()
¢ —q+7Pr(zlb,a)V(V,d - 1, K)
end for
if ¢ > maz@ then
maxQ < q
marA «— a
end if
. end for
:if d = D then
bestA «— mazA
: end if
: return maxQ

©oOo NGO ®NR
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Algorithm 4.2: Online Planning in the BAPOMDP.

This algorithm would be called with' (b, D, K') at each timestep, whetes the current belief
of the agentD the desired depth of the search, d&idhe number of particles to use to compute the
next belief states. At the end of this procedure, the agesttigrs actiobest A in the environment
and restarts this procedure with its next belief. Note hiea¢ an approximate value functidéhcan
be used to approximate the long term return obtained by tlimappolicy from the fringe beliefs.
Due to lack of procedures to compute such approximationserBAPOMDP, we simply defined

V(b) to be the maximum immediate reward in bebdh our experiments.

5 Empirical Results

We begin by evaluating the different belief approximatigrtsoduced above. To do so, we use a
simple onlinal-step lookahead search, and compare the overall expetted amd model accuracy
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in two different problems: the well-known Tiger [5] and a ndamain called Follow. Giveffses’

and O*'** the exact probabilities of the (unknown) POMDP, the modelaacy is measured in
terms of the weighted sum of L1-distance, dendtéfi1, between the exact model and the probable
models in a belief statk

WLL1(b) = Z(S,qa,w)esgb(57¢7¢)L1(¢77/))

‘3(19’ Q(I.g/ ‘3/(1.2 QI(IZ (6)
L1, Y) = Dpcadoves [ESES |T¢> M A R DI |O;/) - 07|

5.1 Tiger

Inthe Tiger problem [5], we consider the case where the itiangnd reward parameters are known,
but the observation probabilities are not. Hence, therd@mreunknown parametersd;, Oy,
Ogi, Opy (Oy, stands forPr(z = hear_right|s = tiger_Left,a = Listen)). We define the
observation count vectafr = (Y11, Y1, Yri, Yry ). We consider a prior ofy = (5,3, 3,5), which
specifies an expected sensor accurac§203% (instead of the corre@5%) in both states. Each
simulation consists of 100 episodes. Episodes terminaenwiie agent opens a door, at which
point the POMDP state (i.e. tiger's position) is reset, betdistribution over count vector is carried
over to the next episode.

Figures 1 and 2 show how the average return and model accewvabye over the 100 episodes
(results are averaged over 1000 simulations), using an®8listep lookahead search with varying
belief approximations and parameters. Returns obtaingiamnning directly with the prior and ex-
act model (without learning) are shown for comparison. M@deuracy is measured on the initial
belief of each episode. Figure 3 compares the average pigtinie per action taken by each ap-
proach. We observe from these figures that the results favidst Probable and Weighted Distance
approximations are very similar and perform well even wétv fparticles (lines are overlapping in
many places, making Weighted Distance results hard to €&eYthe other hand, the performance
of Monte Carlo is significantly affected by the number of e and had to use much more par-
ticles (64) to obtain an improvement over the prior. This rbaydue to the sampling error that is
introduced when using fewer samples.



5.2 Follow

We propose a new POMDP domain, called Follow, inspired byngaractive human-robot task. It
is often the case that such domains are particularly sutjgzarameter uncertainty (due to the dif-
ficulty in modelling human behavior), thus this environmmativates the utility of Bayes-Adaptive
POMDP in a very practical way. The goal of the Follow task isfoobot to continuously follow one
of two individuals in a 2D open area. The two subjects haveiht motion behavior, requiring the
robot to use a different policy for each. At every episode trget person is selected randomly with
Pr = 0.5 (and the other is not present). The person’s identity is heeovable (except through their
motion). The state space has two features: a binary variadiieating which person is being fol-
lowed, and a position variable indicating the person’stomsrelative to the robotyx 5 square grid
with the robot always at the center). Initially, the robotlgoerson are at the same position. Both the
robot and the person can perform five motion acti¢n& Action, North, East, South, West}.
The person follows a fixed stochastic policy (stationaryrepace and time), but the parameters of
this behavior are unknown. The robot perceives observatimicating the person’s position rela-
tive to the robot:{Same, North, East, South, West,Unseen}. The robot perceives the correct
observationPr = 0.8 andUnseen with Pr = 0.2. The rewardR = +1 if the robot and person
are at the same position (central grid ceRt)= 0 if the person is one cell away from the robot, and
R = —1if the person is two cells away. The task terminates if thes@ereaches a distance of 3
cells away from the robot, also causing a reward of -20. Weawdiscount factor of 0.9.

When formulating the BAPOMDP, the robot’s motion model @tatinistic), the observation
probabilities and the rewards are assumed to be known. Weanaa separate count vector for each
person, representing the number of times they move in eaettitin, i.e.¢' = (¢} 4, o, Ok, OL, diy),
B = (P2 a, D2s 0%, 0%, O%,). We assume a priopy = (2,3,1,2,2) for person 1 ands3 =
(2,1, 3,2,2) for person 2, while in reality person 1 moves with probaie$ifr = (0.3, 0.4,0.2,0.05,0.05)
and person 2 wittPr = (0.1,0.05,0.8,0.03,0.02). We run 200 simulations, each consisting of 100
episodes (of at most 10 time steps). The count vectorsiligtons are reset after every simulation,
and the target person is reset after every episode. We ustep Iookahead search for planning in
the BAPOMDP.

Figures 4 and 5 show how the average return and model accevabse over the 100 episodes
(averaged over the 200 simulations) with different beligb@ximations. Figure 6 compares the
planning time taken by each approach. We observe from thgaes§ that the results for the
Weighted Distance approximations are much better bothringeof return and model accuracy,
even with fewer particles (16). Monte Carlo fails at prowigliany improvement over the prior
model, which indicates it would require much more particRanning Weighted Distance with 16
particles require less time than both Monte Carlo and Maosib&le with 64 particles, showing that
it can be more time efficient for the performance it providesomplex environment.

6 Conclusion

The objective of this paper was to propose a preliminarysieaitheoretic framework for learning
and acting in POMDPs under parameter uncertainty. Thissasumber of interesting challenges,
including (1) defining the appropriate model for POMDP pagtanuncertainty, (2) approximating
this model while maintaining performance guarantees, €8opming tractable belief updating, and
(4) planning action sequences which optimally trade-offiesation and exploitation.
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We proposed a new model, the Bayes-Adaptive POMDP, and shilnvagit can be approximated
to e-precision by a finite POMDP. We provided practical appr@sctor belief tracking and online
planning in this model, and validated these using two expenital domains. Results in the Follow
problem, showed that our approach is able to learn the mptdterns of two (simulated) individu-
als. This suggests interesting applications in humantioberaction, where it is often essential that
we be able to reason and plan under parameter uncertainty.
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Appendix: Theorems and Proofs

This appendix presents the proofs of the theorems in therdifit previously presented theorems.
Theorem 3.1 is presented first, then some useful lemmas angrdlofs of Theorems 4.1, 4.2 and
4.3.

Theorem3.1.Let(S’, A, Z,T’,0’, R',v) be aBAPOMDP constructed from the POMD® A, Z, T, O, R, ).
If S'is finite, then at any timg, the setS;, = {0 € §'|bi(0) > 0} has sizg.S}, | < |S|tH.

Proof. Proof by induction. When = 0, by(s, ¢,1) > 0 only if ¢ = ¢y andy) = 1. Hence
|S’6| < |S]. For the general case, assume q@u < |S]*. From the definitions of the belief
update functiond;(s’, ¢', ') > 0iff 3(s, ¢, ) such that,_,(s,¢,¥) > 0, ¢' = ¢ + 6%, and
P =1+46%, . Hence, a particulgs, ¢, ¢) suchthab;_, (s, ¢, 1) > 0 yields non-zero probabilities
to at most|S| different states irb;. Since|S’;_1| < |S|* by assumption, then if we generatsl

different probable state ibf for each probable state i, , it follows that|S’;| < |S|tH. O
Lemma 6.1. For anyt > 2, anya-vectora; € I'; can be expressed @#’“l(s, ¢,9) = R(s,a) +

VY ez Soses T30 050 (2)(s', ¢ + 02, ,1p + 6%.) for somea € A, anda’ a mappingZ —
Ty,

10



Proof. Follows from the definition of'; (Equation 3). O

Lemma 6.2. Given anyu, b, ¢,d € R, ab — cd = {e=lbtdlHate)b_d)
Proof. Follows from direct computation. O
Lemma 6.3. Given any¢,¢’ € T, ¢¥,¢' € O, then for alls € S, a € A, we have that

V¥, _ Peudi, P . s
ZSIES Zzez’/\/s.aj\/:s’a - N{;‘aNj’a‘ S Dg’a(¢lv¢)+bups’€SD€Z(L(¢/a¢)
@ ! 4

Proof. Using lemma 6.2, we have that:

ra i ra a a
¢ss’ws’z _ ¢ss’ws’z

Dises ozes | NaNTE T NeNTS
s z N¢/ J\/’d” N¢ Nw

1 ¢/a/ ¢a, , w/r}. d)a,, ¢/a/ ¢a, , w/r}. d)a,,
= 3 / Nea — Nea e ivoumll B e + Rfca e T e
2 Zs €S ZzEZ (N¢, N ) <N;,,, - LN ) (N¢, N3 ) Nge NG ) ’

<1 o R I o v, vl
>~ 523/65 qu/a qua ZzEZ _/\/';}’,a Ni;/a 525'65 N(;;; N(;a Zzez j\/';‘}’,a Ni;/a
¢L{i/ W 1 d’”;z L) ¢L{i/ (W

S ES’ES N(Z;l - A;ga + 5 SUPg s ZzEZ N’fz'la - NJJ/'Z Es’es N;;l + /\/iga

_ b bh .
= Zsles Nj— e +5uPs’ESEzeZ

= D¥(¢, ) +supyes D5 (W, 1)

’
V. Y.
sTa s’a
N TNy

Lemma6.4.Givenanyp, ¢', A € 7, thenforalls € S,a € A, D¥(¢+A, ¢'+A) < D (¢, ¢' )+
LAPND RPNt
NG HNR VT +NR®)

Proof. We have that:

D6+ A+ A)
Z ¢Zs’+A:3’ _ ¢;t~’+A§5’
= 2wes |NiTFNis ~ NiaNae
) (b5 +AL NN AN ) = (90 +AL (NG +NR?)
= Les NNV TR

. Doy N +02 N +AL NG =8 NG =l NI = AT NG
- s'es (N;“-I—Ng“)(]\/’;f'-kj\/’g"')

< v SN ONG || NR R el )AL N
= s'€8 | NS F N NIF+NZ) s'es NZTFNZ NN

> Paur Nl —¢L NG® I NR [ ures| oty —dl ||+ NG —NG* | Tores AL
= s'€S NGENGT VTN NN

Nsa [Z y ¢a, ,7¢Ia,, ]+Ns‘a, NEa_p\sa
— sa / A s'es|¥Pss ss A & &
- DS (¢7¢)+ (N(zaJrNga)(N;;Uera)

2N Paet =Pt

< D¢, ¢')+ (N;aJr/\;gif(N;aJrNg“)

’
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Lemma 6.5. Given anyy, ¢, A € O, thenforalls € S,a € A, Df(¢ + A, + A) <
sa 2NX ez Ve —v

Proof. Same proof as for lemma 6.4, except that we sum ewerZ in this case.

Lemma 6.6. Given anyy € (0, 1), thensup,, y*/?x = ﬁ

Proof. We observe that when = 0, y*/2z = 0 andlim,_,., v*/?z = 0. Furthermorey®/? is
monotonically decreasing exponentially:aicrease whiler is monotonically increasing linearly

asx increase. Thus it is clear that/2z will have a unique global maximum i, oc). We will
find it by taking the derivative:

e (V%)
_ (111'7)27*/23?+7;n/2
(e )

Hence by solving when this is equal 0, we have:

T Invy)x

PR 4 1) =0

& By g

& z=p2=-2log,(e)

Hence we have that:
< =2y 5@ log (e)
= —25*110g,y(e)

In(y—¢)

O
Lemma 6.7. sup,, cr, ses lon (s, 6,9) — au(s,¢,4')| = 0 foranyg, ¢/, 9, .
Proof. Foranya € A, s € S, [a8(s, $,¢) — af(s,¢',¢")| = |R(s,a) — R(s,a)| = 0. O
Theorem 4.1.Givenanyp, ¢’ € T,¢,v’ € Oandy € (0,1),thenforallt, sup |as(s,d,v)—

ar€l’,s€S

/ / 2’Y||R||m sa / s'a 12 4 Zb’”ES|¢Zs”_¢ZZ” ZZEZ 1’f/’y:/z_l’b:’l.z|
O[t(sy ¢ 71/1 )| < (1—7)2 S.S,EUSBLEA DS (¢7 ¢ ) + DZ (l/% d} ) + n(y—¢) ( (N;aJrl)(Ns;erl) + (N$/"'+1)(N$I/“+1)

Proof. Using lemma 6.1, we have that:
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g (s, 6,9) — o (5,6, 1)
= |R5.0) 17 Syes Ser qiema’ ()56 40,0 405

/1/15/2 a a
~R(5:0) =1 Ces Tues Mbna! ()6 o + 80,0/ +53.)
/ / a a es"ws"z a a
= 7 ZSIES ZzEZ NZZJ\/’[ZIZG o ( )(S 7¢+ 555’7w + 55’2) - ;:WO& ( )(8/’¢/ + 555’7wl + 5s’z):| }
= 7 ZSIGS ZZGZ %(a%z)(slv ¢ + 523’7w + 6?’2) -« (Z)(S 7¢/ + 6?8/7w/ + 52’2))

Puwtd,  Peavi,
- (Ns‘aNs‘la - Nea,N$’a> al(z)(slv ¢/ + 5‘515,,¢’ + 5?’z):|

S V2yes ez Nii.’f/iz la’(2)(s", ¢+ 05y, b +05,) — &/ (2)(s, ¢ + 05,9 + 65
s‘e’d)s"z beuer, a a

+fy Es res ZZEZ Néa/\/a a N;a/\/i’a ‘ |O/(Z)(SI ¢/ + 553/aw/ + 5s’z)|

< v sup o/ (z)(s ¢+5ssu¢+5?fz) —a'(2)(s", ¢ + 05y, 0" + 65|
s'eS,zeZ
HRHoo SOCNE Doar¥er

+’)’ Zs res ZzeZ ’NeaNs a N(ga./\/”j)’a, ’

< Y Sup |0[ ( )( ¢+6ss”d}+5§:’z)_al(z)(8/7¢/+5gs”¢l+5g’z)|

s'eS,zeZ
+ 22 (D (', 0) + supyes DY (V1))

The last inequality follows from lemma 6.3. Hence by takihgdup we get:

Supatel“t,sES |at(85 ¢a w) — Oy (57 (blv ¢')|
< v sup lae—1(s", ¢ + 05y, +05,) — w1 (s', ¢ + 05,0 + 65
s,s'€S,a€A,z€Z, e —1€T11

U= sup Dy, 6) + Dy, v))
s,s’€S,acA

We notice that this inequality defines a reccurence. By uliriiglit up tot = 1 we get that:

SupatEFt,SES |0&t(5, (bv w) - Oét(S, ¢/a ¢/)|
< sup lar(s', ¢+ A, + A') —ay(s', ¢/ + Ay + A)|
a1€T,s'€S,A€T,A’€O|||A|1=||A||1=(t—1)
+ = 5y sup (D5 (&' + 2,6+ A) + DY/ + A + &)
5,8'€S,a€A,AET,A'€0| ||Al|1=]|A||1=1
+U=  sup (DE(o0) + Dy V)
s,8’€S,acA

Applying lemmas 6.7, 6.4 and 6.5 to the last term, we get that:
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SUDg,ery,se€8 |04t( ¢,) — as(s, @', ")
< ’Y||R||m El 2 74 sup (D;a((bl,(b) +D%’a(,¢/’,¢)
s,8'€8,a€ A, AT ,A’€O| ||A]|1=]||A||1=1

+2Ng"fzs,,es|¢:s,, ¢'%) | + zNA’, Socp V0. —¥ e
NZTHNR) (NN R ) N3N N5+ N

+ 20 sup  (Dg (e, 0) +D;“<w',w>)

s,s’€S,a€A
_ WIIRIIm 2 } i/2 1) ’ i/2 s’ /
= Sy sup V2D (¢, ¢) + 72 D5 (Y 1)
5,8'€5,a€A,AET,A'€0] ||A|[1=]|A||1=i
2 AN S e |00 =00 | 2V AN S g 90—,

(NS"’-FN&“)(N;?'-FN;"') (Nj}/aJrNs a)(_/\/j}’,aJrNZ//a)
+s  sup (Dol 0) + Dy )
s,8’€S,acA

Now we notice thaty’/? < ~Va"/2 since||Al|; = 4, and similarlyy"/2 < AVA7/2, Hence by
applying lemma 6.6, we get that:

SuPateFt,seS |at( ¢ 1/)) - at(sa ¢Ia djl)|
R|| E s’
< ’Y|| || E 7/2 Sup (nga(ﬁﬁ/,qﬁ) +D€Z(L(¢/a¢)
5,5/ €5,a€ A, AET, A €0 ||All1=]|A" || =i
+ 42 s/’ e s |¢<<” qb;‘l,,| + 4Zzgz W’;/z w@‘/’z\
ln(’y e)(Ns‘a Nqa)(N(;/a_i_N&a) ln(’y p)(Ns a+Ns a)('}vj,l/a""NZI/a

+2 = sup (D§“<¢',¢>+Dsza<w',w>)

s s’ES,aeA

R|| oo i 4 42511 |¢zsu—¢:lu|
< HEEYI suwp <D§a(¢l’ ¢)+ Dz (W', ¥) + s D D
s,s’€S,a€A ¢
45 e W, —v .| YRl (Dsa / Ds'a ’ )

+ln(w—e)(N'i'"'+1)(J\/,;',"'+1)> T, e \PEL ) DR )
< 1/2) ’YHRHoo . Dsa / Ds’a / 4 Z.s”gas |¢f53~;¢2‘2~\ z:z/eZ ‘w;l’z_,w;(’lz
— (21—0 1—vy s,s’Zg'l?aeA S (¢ a¢) + A (w ﬂﬁ) + In(y—¢) (N<Z +1)(N¢’ +1) + (le a+1)(N;;/a+1)
< o0 i/2\ Y Rllso ., Dsa(d Ds’a / 4 Z.;"gs [p2 1 f‘i’ls{i//‘ Zzlez |1l’:/z*/¢;7z
< (B A5E s |\ DEE9+ D2 + s | WD T e
— 1+v7 IRl < Dsa(d Ds’a / 4 ZSHES |¢:3//*¢Z,N| ZZEZ W:/z*d’?z

1=y 1= s,s/zg%eA[ §(¢,0) + D7 (V' ¥) + =y ( NP DV T W+ DNV +1)

29| R[|ss sa ( A/ s'a(,! 4 Zs”ES |¢Zs”7¢:%”‘ ZzEZ W?’zfd’:}z
< — 5 D D —e sa Sa o/ 7
= (- S’S,zgieA §'(¢'0) + D3 (¢, 9) + In(y~°) ( N+ NG +D) + W3 e+ W3 +1)

O
: Zs/ S |¢§S/—(¢§S/+Af;/)| 1
Lemma 6.8. Giveng € 7,s € S,a € A, thenforallA € 7T, (NEGH)(N;%NZQH) < N
Proof.
2es P00 —(d0 +AL)|
(N5a+1)(j\/aa+/\/aa+1)
Z ‘es Ass’
(Nea_,’_l)(Nsa_i_Nsa_i_l)

_ 1 Néa
NG+ /\/a+/\/w+1
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N3® . . . . .
The termW is monotonically increasing and converge to 1\d§" — oo. Thus the

lemma follows. O

Corollary 6.1. Givene > 0,9 € 7,s € S,a € A, if /\/(;"' > % — 1then forallA € 7 we have

2res |9 — (90, +AL I
that S R e+ 1)

<€

i aisres [P — (@0, AL
Proof. According to lemma 6.8, we know that for @l € 7 we have that (NES+1)(N;G+N30+1)
1

H sa 1 1
NI Hence if o> e~ 1thenW < €. O

i ez e —(We, +AL)I 1
Lemma 6.9. Giveny € O, s € S,a € A, thenforallA € O, N D (NN D) < NI

Proof. Same proof as lemma 6.8. O
Corollary 6.2. Givene > 0,9 € O,s € S,a € A, if J\/’{Z“ > % — 1 then for allA € O we have

ez |V~ (W5 +AL)|
that Gre v+ < €

Proof. Same proof as corollary 6.1 but using lemma 6.9 instead. O

Theorem 4.2. Given anye > 0 and (s, $,v) € S’ such thatda € A,s’ € S, N(;/“ > N§ or
N3'@ > Ng, thend(s,¢/,9') € S suchthatva € A,s' € S, N3¢ < Ng andN3® < Ni where
lat(s, &, 1) — ar(s, @', 4")| < e holds for allt anda; € T;.

Proof. Consider an arbitrary > 0. We will first find a bound on'\/;“ and/\/;“ such that any
vector with higher counts is withila distance of another vector with lower counts. Let's define

¢ = g‘s‘l‘;ﬁi ande” = %7;;‘(3;) According to corollary 6.1, we have that for aye 7

such thatVz* > = — 1, thenforall¢’ € T such that there existA € 7 where¢’ = ¢ + A, then

i‘” -] ¢{:.§//7¢;{le - . .
Z(Nfai‘l)'(j\,;/aﬂ) | < ¢”. Hence we want to find aiv such that givew € 7 with N3 > N, there

exist a¢’ € 7 such thatWz* < N, Dg'(¢,¢') < € and exists & € 7 such thatp = ¢' + A.
Let’s consider an arbitrary such thaﬂ\/g“ > N. We can contruct a new vectgt as follows, for all

ss’ s''s

s’ define¢’®, = {%J and for all other’ # a, s # s define¢’%,,, = ¢%,,, for all s'. Clearly
¢' € T and such thalV — |S| < N3 < N. Moreover, we have that'%,, < ¢%,, forall ', a’, s"
and thus there will exist A € 7 such thatp = ¢’ + A. Furthermore, from its construction we know

P2 (] 1 o i sa ’ [S] i
N~ W < N Hence it is clear from this thdD¥® (¢, ¢') < N—15]" Thus, if

that for all s/,

we wantD (¢, ¢/') < €', we just need to takey > 151U+

[S|(A+e) 1
6/

) el

. Since we also wanV > % — 1,
let's just defineNg = max —1). Ng = N§, as defined in Definition 4.2, will be our
bound on/\/’;“ such that, as we have just showed, for @y 7 such that/\/’;“ > Ng, we can find

a¢’ ¢ T suchthatVs® < Ng, D (¢, ¢') < € and Z-"‘”bislqb:‘*”;%i”l < €”. Similarly, since we
¢ ¢ = 1VSy Mg (¢ (b) w3 +1)(J\/¢,+1) Y

have a similar corollary (corollary 6.1) for the observatimuntsy, we can proceed in the same
way and defineV; = max (‘2“37“), } — 1), such that that for amy € O such that/\/;“ > Ny,
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we can find a)’ € O such th o <Nz, D,y < ¢ and(zisﬂlffifi‘) <€é.Ny=Njg
as we have defined in Definition 4.2.

Now letS = {(s,¢,¢) € S'|Vs' € S,a € A,N;* < Ns& N;;* < Nz} and consider an
arbitrary (s, ¢,v) € S’. Foranys’ € S, a € A such that/\/;'“ > Ng, there exist @’ € 7 such

s'a s'a / ’ Yares |08 =91 1] " .
thatN5* < Ng, D£%(¢,¢') < € and N D) < €' (as we have just showed above).

Thus let's definej,,, = ¢/¢,, forall s” € S. Foranys’ € S, a € A such that\;'® < N,

s’s!

just set¢? ., = ¢% ., forall s” € S. Similarly, for anys’ € S, a € A such that/\/j,'“ > Ny,

; / s'a s'a / / ez 10, =0 | "
there exist a)’ € O such that/\/w, < Ngz, D3,*(¢,9¢") < ¢ and —<N$,0+1)W$,/a+l) < €’ (as

we have just showed above). Thus let's defirfe,, = /¢, for all s € S. For anys’ € S,

a € Asuch that/\/j“ < Ny, justsetw)? , = 4%, forall s” € S. Now it is clear from this con-

struction thai(s, ¢, ) € S. By Theorem 4.1, for any, sup,, cr, ces |0t (s, ¢, %) — ax(s, ¢, ¥)| <

27| Rl]e s,a 7 s',a 7 4 Dies |¢:3//—¢~5:3//| >z W?/z—@z)?/zl
=17 esnca {Ds (¢,0) + D" (¥, ¥) + 7= ( N DN+ (N;’a+1)(/\f,3’"'+1))] <

{e’ +e+ ﬁ (¢ + €")| = e. This prooves the theorem. O

29[| Rl
(1-7)2

Theorem 4.3. Given any > 0, (s, ¢,v) € S’ anda; € T'; computed from the infinite BAPOMDP.
Let&; be thea-vector representing the same conditionnal plamasut computed with the finite
BAPOMDP(SH A7 Za T€7 067 R€7 7)1 then|dt(73€(sv ¢7 w)) - Oét(S, ¢7 ¢)| < <

1—~"
Proof. Let (s, @', 1) = Pc(s, b, ).

|5ét(7je(5a ¢,¢)) - Oét(Sa ¢,¢)|

< (s, @) — an(s, &N+ Jaw(s, ¢, Y") — aul(s, ¢, )]

< a(s, ' ') — au(s, ¢, ") + € (by Theorem 4.2)

= VY ees Dwes T3 0507 (@ (2)(Pe(s', ¢ + 02,0 +6%,)) — o/ (2)(5', ¢ + 02,0 +6%.)] | + €
< VY ez Ywes Tt 0507 |@ (2)(Pels, ¢ + 02,0 +62.)) — o/ (2)(s', ¢ + 68,9 + %) + €
< YSUPLezyes [ (2)(Pe(s', ¢ + 050, ¢ +65,)) — o/ (2)(s', ¢ + 655, 0" +65,,)| + €

< YSUPq, €Ty _1,(s,¢" 0"")ES’ |&t*1(lpe(8/’ ¢H7 d)”) - at*1(5/7 ¢/I’ w//)| +e

Thus, we have that:

SUPq, et west [0 (Pe(0)) — ai(0)]
< YSW,,_er, sy orest [@i-1(Pe(0”)) — i1 (o) + €

This defines a recurrence. By unfolding it uptte= 1, whereVo € S’, a1 (P:(0)) = a1(0o),

we get thaup, cr, sesr |6t (Pe(0) — ar(0)| < €3i_5 . Hence for allt, this is lower than
< O
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