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Abstract

Bayesian Reinforcement Learning has generated substantial interest recently, as it provides an el-
egant solution to the exploration-exploitation trade-offin reinforcement learning. However most
investigations of Bayesian reinforcement learning to datefocus on the standard Markov Decision
Processes (MDPs). Our goal is to extend these ideas to the more general Partially Observable MDP
(POMDP) framework, where the state is a hidden variable. To address this problem, we introduce
a new mathematical model, the Bayes-Adaptive POMDP. This new model allows us to (1) improve
knowledge of the POMDP domain through interaction with the environment, and (2) plan optimal
sequences of actions which can trade-off between improvingthe model, identifying the state, and
gathering reward. We show how the model can be finitely approximated while preserving the value
function. We describe approximations for belief tracking and planning in this model. Empirical
results on two domains show that the model estimate and agent’s return improve over time, as the
agent learns better model estimates.



1 Introduction

In many real world systems, uncertainty can arise in both theprediction of the system’s behavior, and
the observability of the system’s state. Partially Observable Markov Decision Processes (POMDPs)
take both kinds of uncertainty into account and provide a powerful model for sequential decision
making under these conditions. However most solving methods for POMDPs assume that the model
is known a priori, which is rarely the case in practice. For instance in robotics, the POMDP must
reflect exactly the uncertainty on the robot’s sensors and actuators. These parameters are rarely
known exactly and therefore must often be approximated by a human designer, such that even if
this approximate POMDP could be solved exactly, the resulting policy may not be optimal. Thus we
seek a decision-theoretic planner which can take into account the uncertainty over model parameters
during the planning process, as well as being able to learn from experience the values of these
unknown parameters.

Bayesian Reinforcement Learning has investigated this problem in the context of fully observ-
able MDPs [1, 2, 3]. An extension to POMDP has recently been proposed [4], yet this method relies
on heuristics to select actions that will improve the model,thus forgoing any theoretical guarantee
on the quality of the approximation, and on an oracle that canbe queried to provide the current state.

In this paper, we draw inspiration from the Bayes-Adaptive MDP framework [2], which is for-
mulated to provide an optimal solution to the exploration-exploitation trade-off. To extend these
ideas to POMDPs, we face two challenges: (1) how to update Dirichlet parameters when the state
is a hidden variable? (2) how to approximate the infinite dimensional belief space to perform belief
monitoring and compute the optimal policy. This paper tackles both problem jointly. The first prob-
lem is solved by including the Dirichlet parameters in the state space and maintaining belief states
over these parameters. We address the second by bounding thespace of Dirichlet parameters to a
finite subspace necessary forǫ-optimal solutions.

We provide theoretical results for bounding the state spacewhile preserving the value function
and we use these results to derive approximate solving and belief monitoring algorithms. We com-
pare several belief approximations in two problem domains.Empirical results show that the agent
is able to learn good POMDP models and improve its return as itlearns better model estimate.

2 POMDP

A POMDP is defined by finite sets of statesS, actionsA and observationsZ. It has transition
probabilities{T sas

′

}s,s′∈S,a∈A whereT sas
′

= Pr(st+1 = s′|st = s, at = a) and observation
probabilities{Osaz}s∈S,a∈A,z∈Z whereOsaz = Pr(zt = z|st = s, at−1 = a). The reward function
R : S × A → R specifies the immediate reward obtained by the agent. In a POMDP, the state is
never observed. Instead the agent perceives an observationz ∈ Z at each time step, which (along
with the action sequence) allows it to maintain a belief state b ∈ ∆S. The belief state specifies
the probability of being in each state given the history of action and observation experienced so far,
starting from an initial beliefb0. It can be updated at each time step using Baye’s rule:bt+1(s

′) =
Os

′atzt+1
P

s∈S T
sats

′
bt(s)

P

s′′∈s O
s′′atzt+1

P

s∈S T
sats

′′bt(s)
.

A policy π : ∆S → A indicates how the agent should select actions as a function of the cur-
rent belief. Solving a POMDP involves finding the optimal policy π∗ that maximizes the expected
discounted return over the infinite horizon. The return obtained by followingπ∗ from a beliefb is de-
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fined by Bellman’s equation:V ∗(b) = maxa∈A
[
∑

s∈S b(s)R(s, a) + γ
∑

z∈Z Pr(z|b, a)V ∗(τ(b, a, z))
]

,
whereτ(b, a, z) is the new belief after performing actiona and observationz andγ ∈ [0, 1) is the
discount factor.

Exact solving algorithms [5] are usually intractable, except on small domains with only a few
states, actions and observations. Various approximate algorithms, both offline [6, 7, 8] and online
[9], have been proposed to tackle increasingly large domains. However, all these methods requires
full knowledge of the POMDP model, which is a strong assumption in practice. Some approaches
do not require knowledge of the model, as in [10], but these approaches generally require a lot of
data and do not address the exploration-exploitation tradeoff.

3 Bayes-Adaptive POMDP

In this section, we introduce the Bayes-Adaptive POMDP (BAPOMDP) model, an optimal decision-
theoretic algorithm for learning and planning in POMDPs under parameter uncertainty. Throughout
we assume that the state, action, and observation spaces arefinite and known, but that the transition
and observation probabilities are unknown or partially known. We also assume that the reward
function is known as it is generally specified by the user for the specific task he wants to accomplish,
but the model can easily be generalised to learn the reward function as well.

To model the uncertainty on the transitionT sas
′

and observationOsaz parameters, we use
Dirichlet distributions, which are probability distributions over the parameters of multinomial dis-
tributions. Givenφi, the number of times eventei has occurred overn trials, the probabilitiespi
of each event follow a Dirichlet distribution, i.e.(p1, . . . , pk) ∼ Dir(φ1, . . . , φk). This distribu-
tion represents the probability that a discrete random variable behaves according to some probabil-
ity distribution (p1, . . . , pk), given that the counts(φ1, . . . , φk) have been observed overn trials
(n =

∑k
i=1 φi). Its probability density function is defined by:f(p, φ) = 1

B(φ)

∏k
i=1 p

φi−1
i , where

B is the multinomial beta function. The expected value ofpi is E(pi) = φi
P

k
j=1

φj
.

3.1 The BAPOMDP Model

The BAPOMDP is constructed from the model of the POMDP with unknown parameters. Let
(S,A,Z, T,O,R, γ) be that model. The uncertainty on the distributionsT sa· andOs

′a· can be
represented by experience counts:φass′∀s

′ represents the number of times the transition(s, a, s′) oc-
curred, similarlyψas′z∀z is the number of times observationz was made in states′ after doing action
a. Let φ be the vector of all transition counts andψ be the vector of all observation counts. Given
the count vectorsφ andψ, the expected transition probability forT sas

′

is: T sas
′

φ =
φa
ss′

P

s′′∈S φ
a
ss′′

, and

similarly forOs
′az: Os

′az
ψ =

ψa
s′z

P

z′∈Z ψ
a
s′z′

.

The objective of the BAPOMDP is to learn an optimal policy, such that actions are chosen
to maximize reward taking into account both state and parameter uncertainty. To model this, we
follow the Bayes-Adaptive MDP framework, and include theφ andψ vectors in the state of the
BAPOMDP. Thus, the state spaceS′ of the BAPOMDP is defined asS′ = S × T × O, where
T = {φ ∈ N

|S|2|A||∀(s, a),
∑

s′∈S φ
a
ss′ > 0} represents the space in whichφ lies andO = {ψ ∈

N
|S||A||Z||∀(s, a),

∑

z∈Z ψ
a
sz > 0} represents the space in whichψ lies. The action and observation

sets of the BAPOMDP are the same as in the original POMDP. Transition and observation functions
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of the BAPOMDP must capture how the state and count vectorsφ, ψ evolve after every time step.
Consider an agent in a given states with count vectorsφ andψ, which performs actiona, causing it
to move to states′ and observez. Then the vectorφ′ after the transition is defined asφ′ = φ+ δass′ ,
whereδass′ is a vector full of zeroes, with a1 for the countφass′ , and the vectorψ′ after the observation
is defined asψ′ = ψ + δas′z, whereδas′z is a vector full of zeroes, with a1 for the countψas′z . Note
that the probabilities of such transitions and observations occurring must be defined by considering
all models and their probabilities as specified by the current Dirichlet distributions, which turn out
to be their expectations. Hence, we defineT ′ andO′ to be:

T ′((s, φ, ψ), a, (s′, φ′, ψ′)) =

{

T sas
′

φ Os
′az
ψ , if φ′ = φ+ δass′ andψ′ = ψ + δas′z

0, otherwise.
(1)

O′((s, φ, ψ), a, (s′, φ′, ψ′), z) =

{

1, if φ′ = φ+ δass′ andψ′ = ψ + δas′z
0, otherwise.

(2)

Note here that the observation probabilities are folded into the transition function, and that
the observation function becomes deterministic. This happens because a state transition in the
BAPOMDP automatically specifies which observation is acquired after transition, via the way the
counts are incremented. Since the counts do not affect the reward, the reward function of the
BAPOMDP is defined asR′((s, φ, ψ), a) = R(s, a); the discount factor of the BAPOMDP re-
mains the same. Using these definitions, the BAPOMDP has a known model specified by the tuple
(S′, A, Z, T ′, O′, R′, γ).

The belief state of the BAPOMDP represents a distribution over both states and count values.
The model is learned by simply maintaining this belief state, as the distribution will concentrate
over most likely models, given the prior and experience so far. If b0 is the initial belief state of the
unknown POMDP, and the count vectorsφ0 ∈ T andψ0 ∈ O represent the prior knowledge on this
POMDP, then the initial belief of the BAPOMDP is:b′0(s, φ0, ψ0) = {b0(s), if (φ, ψ) = (φ0, ψ0);
0, otherwise}. After actions are taken, the uncertainty on the POMDP modelis represented by
mixtures of Dirichlet distributions (i.e. mixtures of count vectors).

Note that the BAPOMDP is in fact a POMDP with a countably infinite state space. Hence the
belief update function and optimal value function are stilldefined as in Section 2. However these
functions now require summations overS′ = S × T × O. Maintaining the belief state is practical
only if the number of states with non-zero probabilities is finite. We prove this in the following
theorem:

Theorem 3.1.Let(S′, A, Z, T ′, O′, R′, γ) be a BAPOMDP constructed from the POMDP(S,A,Z, T,O,R, γ).
If S is finite, then at any timet, the setS′

b′t
= {σ ∈ S′|b′t(σ) > 0} has size|S′

b′t
| ≤ |S|t+1.

Proof. Proof available in the appendix. Proceeds by induction fromb′0.

The proof of this theorem suggests that it is sufficient to iterate overS andS′
b′t−1

in order to

compute the belief stateb′t when an action and observation are taken in the environment.Hence,
Algorithm 3.1 can be used to update the belief state.

3.2 Exact Solution for BAPOMDP in Finite Horizons

The value function of a BAPOMDP for finite horizons can be represented by a finite setΓ of func-
tionsα : S′ → R, as in standard POMDP. For example, an exact solution can be computed using
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function τ (b, a, z)
Initialize b′ as a 0 vector.
for all (s, φ, ψ, s′) ∈ S′

b × S do
b′(s′, φ+ δass′ , ψ + δas′z)← b′(s′, φ+ δass′ , ψ + δas′z) + b(s, φ, ψ)T sas

′

φ Os
′az
ψ

end for
return normalizedb′

Algorithm 3.1: Exact Belief Update in BAPOMDP.

dynamic programming (see [5] for more details):

Γa1 = {αa|αa(s, φ, ψ) = R(s, a)},

Γa,zt = {αa,zi |αa,zi (s, φ, ψ) = γ
∑

s′∈S T
sas′

φ Os
′az
ψ α′

i(s
′, φ+ δass′ , ψ + δas′z), α

′
i ∈ Γt−1},

Γat = Γa1 ⊕ Γa,z1t ⊕ Γa,z2t ⊕ · · · ⊕ Γ
a,z|Z|

t , (where⊕ is the cross sum operator),
Γt =

⋃

a∈A Γat .
(3)

Note here that the definition ofαa,zi (s, φ, ψ) is obtained from the fact thatT ′((s, φ, ψ), a, (s′, φ′, ψ′))×
O′((s, φ, ψ), a, (s′, φ′, ψ′), z) = 0 except whenφ′ = φ+δass′ andψ′ = ψ+δas′z. The optimal policy
is extracted as usual:πΓ(b) = argmaxα∈Γ

∑

σ∈S′
b
α(σ)b(σ). In practice, it will be impossible to

computeαa,zi (s, φ, ψ) for all (s, φ, ψ) ∈ S′. In order to compute these more efficiently, we show
in the next section that the infinite state space can be reduced to a finite state space, while still
preserving the value function to arbitrary precision for any horizont.

4 Approximating the BAPOMDP: Theory and Algorithms

Solving a BAPOMDP exactly for all belief states is impossible in practice due to the dimensionnality
of the state space (in particular to the fact that the count vectors can grow unbounded). We now show
how we can reduce this infinite state space to a finite state space. This allows us to compute anǫ-
optimal value function over the resulting finite-dimensionnal belief space using standard POMDP
techniques. Various methods for belief tracking in the infinite model are also presented.

4.1 Approximate Finite Model

We first present an upper bound on the value difference between two states that differ only by
their model estimateφ andψ. This bound uses the following definitions: givenφ, φ′ ∈ T , and

ψ, ψ′ ∈ O, defineDsa
S (φ, φ′) =

∑

s′∈S

∣

∣

∣
T sas

′

φ − T sas
′

φ′

∣

∣

∣
andDsa

Z (ψ, ψ′) =
∑

z∈Z

∣

∣

∣
Osazψ −Osazψ′

∣

∣

∣
,

andN sa
φ =

∑

s′∈S φ
a
ss′ andN sa

ψ =
∑

z∈Z ψ
a
sz.

Theorem 4.1. Given anyφ, φ′ ∈ T , ψ, ψ′ ∈ O, andγ ∈ (0, 1), then for allt:

sup
αt∈Γt,s∈S

|αt(s, φ, ψ) − αt(s, φ
′, ψ′)| ≤ 2γ||R||∞

(1−γ)2 sup
s,s′∈S,a∈A

[

Dsa
S (φ, φ′) +Ds′a

Z (ψ, ψ′)

+ 4
ln(γ−e)

(

P

s′′∈S|φ
a
ss′′

−φ′a
ss′′ |

(N sa
φ

+1)(N sa
φ′

+1) +
P

z∈Z|ψ
a
s′z

−ψ′a
s′z|

(N s′a
ψ +1)(N s′a

ψ′ +1)

)]

Proof. Proof available in the appendix; finds a bound on a 1-step backup and solves the recurrence.
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We now use this bound on theα-vector values to approximate the space of Dirichlet parameters

within a finite subspace. We use the following definitions: given anyǫ > 0, defineǫ′ = ǫ(1−γ)2

8γ||R||∞ ,

ǫ′′ = ǫ(1−γ)2 ln(γ−e)
32γ||R||∞ ,N ǫ

S = max
(

|S|(1+ǫ′)
ǫ′ , 1

ǫ′′ − 1
)

andN ǫ
Z = max

(

|Z|(1+ǫ′)
ǫ′ , 1

ǫ′′ − 1
)

.

Theorem 4.2. Given anyǫ > 0 and (s, φ, ψ) ∈ S′ such that∃a ∈ A, s′ ∈ S, N s′a
φ > N ǫ

S or

N s′a
ψ > N ǫ

Z , then∃(s, φ′, ψ′) ∈ S′ such that∀a ∈ A, s′ ∈ S, N s′a
φ′ ≤ N ǫ

S andN s′a
ψ′ ≤ N ǫ

Z where
|αt(s, φ, ψ) − αt(s, φ

′, ψ′)| < ǫ holds for allt andαt ∈ Γt.

Proof. Proof available in the appendix.

Theorem 4.2 suggests that if we want a precision ofǫ on the value function, we just need to
restrict the space of Dirichlet parameters to count vectorsφ ∈ T̃ǫ = {φ ∈ N

|S|2|A||∀a ∈ A, s ∈
S, 0 < N sa

φ ≤ N ǫ
S} andψ ∈ Õǫ = {ψ ∈ N

|S||A||Z||∀a ∈ A, s ∈ S, 0 < N sa
ψ ≤ N ǫ

Z}. SinceT̃ǫ and

Õǫ are finite, we can define a finite approximate BAPOMDP as the tuple (S̃ǫ, A, Z, T̃ǫ, Õǫ, R̃ǫ, γ)
whereS̃ǫ = S × T̃ǫ × Õǫ is the finite state space. To define the transition and observation functions
over that finite state space, we need to make sure that when thecount vectors are incremented, they
stay within the finite space. To achieve, this we define a projection operatorPǫ : S′ → S̃ǫ that
simply projects every state inS′ to their closest state iñSǫ.

Definition 4.1. Letd : S′ × S′ → R be defined such that:

d(s, φ, ψ, s′, φ′, ψ′) =























2γ||R||∞
(1−γ)2 sup

s,s′∈S,a∈A

[

Dsa
S (φ, φ′) +Ds′a

Z (ψ, ψ′)

+ 4
ln(γ−e)

(

P

s′′∈S |φa
ss′′

−φ′a
ss′′

|
(Nas

φ
+1)(Nas

φ′
+1) +

P

z∈Z |ψa
s′z

−ψ′a
s′z

|
(Nas′

ψ +1)(Nas′

ψ′ +1)

)]

,
if s = s′

8γ||R||∞
(1−γ)2

(

1 + 4
ln(γ−e)

)

+ 2||R||∞
(1−γ) , otherwise.

Definition 4.2. LetPǫ : S′ → S̃ǫ be defined asPǫ(s) = argmin
s′∈S̃ǫ

d(s, s′)

The functiond uses the bound defined in Theorem 4.1 as a distance between states that only
differs by theirφ andψ vectors, and uses an uppe3.1r bound on that value when the states differ.
ThusPǫ always maps states(s, φ, ψ) ∈ S′ to some state(s, φ′, ψ′) ∈ S̃ǫ. Note that ifσ ∈ S̃ǫ, then
Pǫ(σ) = σ. UsingPǫ, the transition and observation function are defined as follows:

T̃ǫ((s, φ, ψ), a, (s′, φ′, ψ′)) =

{

T sas
′

φ Os
′az
ψ , if (s′, φ′, ψ′) = Pǫ(s′, φ+ δass′ , ψ + δas′z)

0, otherwise.
(4)

Õǫ((s, φ, ψ), a, (s′, φ′, ψ′), z) =

{

1, if (s′, φ′, ψ′) = Pǫ(s′, φ+ δass′ , ψ + δas′z)
0, otherwise.

(5)

These definitions are the same as the one in the infinite BAPOMDP, except that now we add an extra
projection to make sure that the incremented count vectors stays inS̃ǫ. Finally, the reward function
3̃.1Rǫ : S̃ǫ ×A→ R is defined as̃Rǫ((s, φ, ψ), a) = R(s, a).

Theorem 4.3 bounds the value difference betweenα-vectors computed with this finite model and
theα-vector computed with the original model.

Theorem 4.3. Given anyǫ > 0, (s, φ, ψ) ∈ S′ andαt ∈ Γt computed from the infinite BAPOMDP.
Let α̃t be theα-vector representing the same conditionnal plan asαt but computed with the finite
BAPOMDP(S̃ǫ, A, Z, T̃ǫ, Õǫ, R̃ǫ, γ), then|α̃t(Pǫ(s, φ, ψ)) − αt(s, φ, ψ)| < ǫ

1−γ .
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function WD(b, a, z,K)
b′ ← τ (b, a, z)
Initialize b′′ as a 0 vector.
(s, φ, ψ)← argmax(s′,φ′,ψ′)∈S′

b′
b′(s′, φ′, ψ′).

b′′(s, φ, ψ)← b′(s, φ, ψ)
for i = 2 toK do

(s, φ, ψ)← argmax(s′,φ′,ψ′)∈S′
b′
b′(s′, φ′, ψ′)min(s′′,φ′′,ψ′′)∈S′

b′′
d(s′, φ′, ψ′, s′′, φ′′, ψ′′)

b′′(s, φ, ψ)← b′(s, φ, ψ)
end for
return normalizedb′′

Algorithm 4.1: Weighted Distance Belief Update in BAPOMDP.

Proof. Proof available in the appendix. Solves a recurrence over the 1-step approximation in Thm.
4.2.

Because the state space is now finite, solution methods from the literature on finite POMDPs
could theoretically be applied. This includes en particular the equations forτ(b, a, z) andV ∗(b)
that were presented in Section 2. In practice however, even though the state space is finite, it will
generally be very large for smallǫ, such that it may still be intractable, even for small domains. We
therefore favor a faster online solution approach, as described below.

4.2 Approximate Belief Monitoring

As shown in Theorem 3.1, the number of states with non-zero probability grows exponentially in
the planning horizon, thus exact belief monitoring can quickly become intractable. We now discuss
different particle-based approximations that allow polynomial-time belief tracking.

Monte Carlo sampling: Monte Carlo sampling algorithms have been widely used for sequential
state estimation [11]. Given a prior beliefb, followed by actiona and observationz, the new belief
b′ is obtained by first samplingK states from the distributionb, then for each sampleds a new state
s′ is sampled fromT (s, a, ·). Finally, the probabilityO(s′, a, z) is added tob′(s′) and the beliefb′

is re-normalized. This will capture at mostK states with non-zero probabilities. In the context of
BAPOMDPs, we use a slight variation of this method, where(s, φ, ψ) are first sampled fromb, and
then a next states′ ∈ S is sampled from the normalized distributionT sa·φ O·az

ψ . The probability1/K
is added directly tob′(s′, φ+ δass′ , ψ + δas′z).

Most Probable: Alternately, we can do the exact belief update at a given time step, but then
only keep theK most probable states in the new beliefb′ and renormalizeb′.

Weighted Distance Minimization: The two previous methods only try to approximate the dis-
tribution τ(b, a, z). However, in practice, we only care most about the agent’s expected reward.
Hence, instead of keeping theK most likely states, we can keepK states which best approximate
the belief’s value. As in the Most Probable method, we do an exact belief update, however in this
case we fit the posterior distribution using a greedyK-means procedure, where distance is defined
as in Definition 4.1, weighted by the probability of the stateto remove. The detailed procedure is
described in Algorithm 4.1.
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4.3 Online planning

While the finite model presented in Section 4.1 can be used to find provably near-optimal policies
offline, this will likely be intractable in practice due to the very large state space required to ensure
good precision. Instead, we turn to online lookahead searchalgorithms, which have been proposed
for solving standard POMDPs [9]. Our approach simply performs dynamic programming over all the
beliefs reachable within some fixed finite planning horizon from the current belief. The action with
highest return over that finite horizon is executed and then planning is conducted again on the next
belief. To further limit the complexity of the online planning algorithm, we used the approximate
belief monitoring methods detailed above. Its overall complexity is in O((|A||Z|)DCb) whereD
is the planning horizon andCb is the complexity of updating the belief. The detailed procedure is
provided in algorithm 4.2.

1: function V(b, d,K)
2: if d = 0 then
3: return V̂ (b)
4: end if
5: maxQ← −∞
6: for all a ∈ A do
7: q ←

P

(s,φ,ψ)∈S′
b
b(s, φ, ψ)R(s, a)

8: for all z ∈ Z do
9: b′ ← τ̂ (b, a, z,K)

10: q ← q + γ Pr(z|b, a)V(b′, d− 1, K)
11: end for
12: if q > maxQ then
13: maxQ← q

14: maxA← a

15: end if
16: end for
17: if d = D then
18: bestA← maxA

19: end if
20: return maxQ

Algorithm 4.2: Online Planning in the BAPOMDP.

This algorithm would be called withV (b,D,K) at each timestep, whereb is the current belief
of the agent,D the desired depth of the search, andK the number of particles to use to compute the
next belief states. At the end of this procedure, the agent executes actionbestA in the environment
and restarts this procedure with its next belief. Note here that an approximate value function̂V can
be used to approximate the long term return obtained by the optimal policy from the fringe beliefs.
Due to lack of procedures to compute such approximations in the BAPOMDP, we simply defined
V̂ (b) to be the maximum immediate reward in beliefb in our experiments.

5 Empirical Results

We begin by evaluating the different belief approximationsintroduced above. To do so, we use a
simple onlined-step lookahead search, and compare the overall expected return and model accuracy
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in two different problems: the well-known Tiger [5] and a newdomain called Follow. GivenT sas
′

andOs
′az the exact probabilities of the (unknown) POMDP, the model accuracy is measured in

terms of the weighted sum of L1-distance, denotedWL1, between the exact model and the probable
models in a belief stateb:

WL1(b) =
∑

(s,φ,ψ)∈S′
b
b(s, φ, ψ)L1(φ, ψ)

L1(φ, ψ) =
∑

a∈A
∑

s′∈S

[

∑

s∈S |T
sas′

φ − T sas
′

| +
∑

z∈Z |Os
′az
ψ −Os

′az |
] (6)

5.1 Tiger

In the Tiger problem [5], we consider the case where the transition and reward parameters are known,
but the observation probabilities are not. Hence, there arefour unknown parameters:OLl, OLr,
ORl, ORr (OLr stands forPr(z = hear right|s = tiger Left, a = Listen)). We define the
observation count vectorψ = (ψLl, ψLr, ψRl, ψRr). We consider a prior ofψ0 = (5, 3, 3, 5), which
specifies an expected sensor accuracy of62.5% (instead of the correct85%) in both states. Each
simulation consists of 100 episodes. Episodes terminate when the agent opens a door, at which
point the POMDP state (i.e. tiger’s position) is reset, but the distribution over count vector is carried
over to the next episode.

Figures 1 and 2 show how the average return and model accuracyevolve over the 100 episodes
(results are averaged over 1000 simulations), using an online 3-step lookahead search with varying
belief approximations and parameters. Returns obtained byplanning directly with the prior and ex-
act model (without learning) are shown for comparison. Model accuracy is measured on the initial
belief of each episode. Figure 3 compares the average planning time per action taken by each ap-
proach. We observe from these figures that the results for theMost Probable and Weighted Distance
approximations are very similar and perform well even with few particles (lines are overlapping in
many places, making Weighted Distance results hard to see).On the other hand, the performance
of Monte Carlo is significantly affected by the number of particles and had to use much more par-
ticles (64) to obtain an improvement over the prior. This maybe due to the sampling error that is
introduced when using fewer samples.

8



5.2 Follow

We propose a new POMDP domain, called Follow, inspired by an interactive human-robot task. It
is often the case that such domains are particularly subjectto parameter uncertainty (due to the dif-
ficulty in modelling human behavior), thus this environmentmotivates the utility of Bayes-Adaptive
POMDP in a very practical way. The goal of the Follow task is for a robot to continuously follow one
of two individuals in a 2D open area. The two subjects have different motion behavior, requiring the
robot to use a different policy for each. At every episode, the target person is selected randomly with
Pr = 0.5 (and the other is not present). The person’s identity is not observable (except through their
motion). The state space has two features: a binary variableindicating which person is being fol-
lowed, and a position variable indicating the person’s position relative to the robot (5×5 square grid
with the robot always at the center). Initially, the robot and person are at the same position. Both the
robot and the person can perform five motion actions{NoAction,North,East, South,West}.
The person follows a fixed stochastic policy (stationary over space and time), but the parameters of
this behavior are unknown. The robot perceives observations indicating the person’s position rela-
tive to the robot:{Same,North,East, South,West, Unseen}. The robot perceives the correct
observationPr = 0.8 andUnseen with Pr = 0.2. The rewardR = +1 if the robot and person
are at the same position (central grid cell),R = 0 if the person is one cell away from the robot, and
R = −1 if the person is two cells away. The task terminates if the person reaches a distance of 3
cells away from the robot, also causing a reward of -20. We usea discount factor of 0.9.

When formulating the BAPOMDP, the robot’s motion model (deterministic), the observation
probabilities and the rewards are assumed to be known. We maintain a separate count vector for each
person, representing the number of times they move in each direction, i.e.φ1 = (φ1

NA, φ
1
N , φ

1
E , φ

1
S , φ

1
W ),

φ2 = (φ2
NA, φ

2
N , φ

2
E , φ

2
S , φ

2
W ). We assume a priorφ1

0 = (2, 3, 1, 2, 2) for person 1 andφ2
0 =

(2, 1, 3, 2, 2) for person 2, while in reality person 1 moves with probabilitiesPr = (0.3, 0.4, 0.2, 0.05, 0.05)
and person 2 withPr = (0.1, 0.05, 0.8, 0.03, 0.02). We run 200 simulations, each consisting of 100
episodes (of at most 10 time steps). The count vectors’ distributions are reset after every simulation,
and the target person is reset after every episode. We use a 2-step lookahead search for planning in
the BAPOMDP.

Figures 4 and 5 show how the average return and model accuracyevolve over the 100 episodes
(averaged over the 200 simulations) with different belief approximations. Figure 6 compares the
planning time taken by each approach. We observe from these figures that the results for the
Weighted Distance approximations are much better both in terms of return and model accuracy,
even with fewer particles (16). Monte Carlo fails at providing any improvement over the prior
model, which indicates it would require much more particles. Running Weighted Distance with 16
particles require less time than both Monte Carlo and Most Probable with 64 particles, showing that
it can be more time efficient for the performance it provides in complex environment.

6 Conclusion

The objective of this paper was to propose a preliminary decision-theoretic framework for learning
and acting in POMDPs under parameter uncertainty. This raises a number of interesting challenges,
including (1) defining the appropriate model for POMDP parameter uncertainty, (2) approximating
this model while maintaining performance guarantees, (3) performing tractable belief updating, and
(4) planning action sequences which optimally trade-off exploration and exploitation.
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different belief approximations.

We proposed a new model, the Bayes-Adaptive POMDP, and showed that it can be approximated
to ǫ-precision by a finite POMDP. We provided practical approaches for belief tracking and online
planning in this model, and validated these using two experimental domains. Results in the Follow
problem, showed that our approach is able to learn the motionpatterns of two (simulated) individu-
als. This suggests interesting applications in human-robot interaction, where it is often essential that
we be able to reason and plan under parameter uncertainty.
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Appendix: Theorems and Proofs

This appendix presents the proofs of the theorems in the different previously presented theorems.
Theorem 3.1 is presented first, then some useful lemmas and the proofs of Theorems 4.1, 4.2 and
4.3.

Theorem 3.1.Let(S′, A, Z, T ′, O′, R′, γ) be a BAPOMDP constructed from the POMDP(S,A,Z, T,O,R, γ).
If S is finite, then at any timet, the setS′

b′t
= {σ ∈ S′|b′t(σ) > 0} has size|S′

b′t
| ≤ |S|t+1.

Proof. Proof by induction. Whent = 0, b′0(s, φ, ψ) > 0 only if φ = φ0 andψ = ψ0. Hence
|S′
b′0
| ≤ |S|. For the general case, assume that|S′

b′t−1
| ≤ |S|t. From the definitions of the belief

update function,b′t(s
′, φ′, ψ′) > 0 iff ∃(s, φ, ψ) such thatb′t−1(s, φ, ψ) > 0, φ′ = φ + δass′ and

ψ′ = ψ+δas′z. Hence, a particular(s, φ, ψ) such thatb′t−1(s, φ, ψ) > 0 yields non-zero probabilities
to at most|S| different states inb′t. Since|S′

b′t−1
| ≤ |S|t by assumption, then if we generate|S|

different probable state inb′t for each probable state inS′
bt−1

, it follows that|S′
b′t
| ≤ |S|t+1.

Lemma 6.1. For anyt ≥ 2, anyα-vectorαt ∈ Γt can be expressed asαa,α
′

t (s, φ, ψ) = R(s, a) +
γ

∑

z∈Z
∑

s∈S′ T sas
′

φ Os
′az
ψ α′(z)(s′, φ + δass′ , ψ + δas′z) for somea ∈ A, andα′ a mappingZ →

Γt−1.
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Proof. Follows from the definition ofΓt (Equation 3).

Lemma 6.2. Given anya, b, c, d ∈ R, ab− cd = (a−c)(b+d)+(a+c)(b−d)
2

Proof. Follows from direct computation.

Lemma 6.3. Given anyφ, φ′ ∈ T , ψ, ψ′ ∈ O, then for all s ∈ S, a ∈ A, we have that
∑

s′∈S
∑

z∈Z

∣

∣

∣

∣

φ′a
ss′
ψ′a
s′z

N sa
φ′

N s′a
ψ′

−
φa
ss′
ψa
s′z

N sa
φ

N s′a
ψ

∣

∣

∣

∣

≤ Dsa
S (φ′, φ) + sups′∈SD

s′a
Z (ψ′, ψ)

Proof. Using lemma 6.2, we have that:

∑

s′∈S
∑

z∈Z

∣

∣

∣

∣

φ′a
ss′
ψ′a
s′z

N sa
φ′

N s′a
ψ′

−
φa
ss′
ψa
s′z

N sa
φ N s′a

ψ

∣

∣

∣

∣

= 1
2

∑

s′∈S
∑

z∈Z

∣

∣

∣

∣

(

φ′a
ss′

N sa
φ′

−
φa
ss′

N sa
φ

) (

ψ′a
s′z

N s′a
ψ′

+
ψa
s′z

N s′a
ψ

)

+

(

φ′a
ss′

N sa
φ′

+
φa
ss′

N sa
φ

) (

ψ′a
s′z

N s′a
ψ′

−
ψa
s′z

N s′a
ψ

)∣

∣

∣

∣

≤ 1
2

∑

s′∈S

∣

∣

∣

∣

φ′a
ss′

N sa
φ′

−
φa
ss′

N sa
φ

∣

∣

∣

∣

∑

z∈Z

∣

∣

∣

∣

ψ′a
s′z

N s′a
ψ′

+
ψa
s′z

N s′a
ψ

∣

∣

∣

∣

+ 1
2

∑

s′∈S

∣

∣

∣

∣

φ′a
ss′

N sa
φ′

+
φa
ss′

N sa
φ

∣

∣

∣

∣

∑

z∈Z

∣

∣

∣

∣

ψ′a
s′z

N s′a
ψ′

−
ψa
s′z

N s′a
ψ

∣

∣

∣

∣

≤
∑

s′∈S

∣

∣

∣

∣

φ′a
ss′

N sa
φ′

−
φa
ss′

N sa
φ

∣

∣

∣

∣

+ 1
2

[

sups′∈S
∑

z∈Z

∣

∣

∣

∣

ψ′a
s′z

N s′a
ψ′

−
ψa
s′z

N s′a
ψ

∣

∣

∣

∣

] [

∑

s′∈S

∣

∣

∣

∣

φ′a
ss′

N sa
φ′

+
φa
ss′

N sa
φ

∣

∣

∣

∣

]

=
∑

s′∈S

∣

∣

∣

∣

φ′a
ss′

N sa
φ′

−
φa
ss′

N sa
φ

∣

∣

∣

∣

+ sups′∈S
∑

z∈Z

∣

∣

∣

∣

ψ′a
s′z

N s′a
ψ′

−
ψa
s′z

N s′a
ψ

∣

∣

∣

∣

= Dsa
S (φ′, φ) + sups′∈SD

s′a
Z (ψ′, ψ)

Lemma 6.4. Given anyφ, φ′,∆ ∈ T , then for alls ∈ S, a ∈ A,Dsa
S (φ+∆, φ′+∆) ≤ Dsa

S (φ, φ′)+
2N sa

∆

P

s′∈S |φa
ss′

−φ′a
ss′

|
(N sa

φ +N sa
∆

)(N sa
φ′

+N sa
∆

)

Proof. We have that:

Dsa
S (φ+ ∆, φ′ + ∆)

=
∑

s′∈S

∣

∣

∣

∣

φa
ss′

+∆a
ss′

N sa
φ

+N sa
∆

−
φ′a
ss′

+∆a
ss′

N sa
φ′

+N sa
∆

∣

∣

∣

∣

=
∑

s′∈S

∣

∣

∣

∣

(φa
ss′

+∆a
ss′

)(N sa
φ′

+N sa
∆ )−(φ′a

ss′
+∆a

ss′
)(N sa

φ +N sa
∆ )

(N sa
φ +N sa

∆
)(N sa

φ′
+N sa

∆
)

∣

∣

∣

∣

=
∑

s′∈S

∣

∣

∣

∣

φa
ss′

N sa
φ′

+φa
ss′

N sa
∆ +∆a

ss′
N sa
φ′

−φ′a
ss′

N sa
φ −φ′a

ss′
N sa

∆ −∆a
ss′

N sa
φ

(N sa
φ +N sa

∆
)(N sa

φ′
+N sa

∆
)

∣

∣

∣

∣

≤
∑

s′∈S

∣

∣

∣

∣

φa
ss′

N sa
φ′

−φ′a
ss′

N sa
φ

(N sa
φ +N sa

∆
)(N sa

φ′
+N sa

∆
)

∣

∣

∣

∣

+
∑

s′∈S

∣

∣

∣

∣

N sa
∆ (φa

ss′
−φ′a

ss′
)+∆a

ss′
(N sa

φ′
−N sa

φ )

(N sa
φ +N sa

∆
)(N sa

φ′
+N sa

∆
)

∣

∣

∣

∣

≤
∑

s′∈S

∣

∣

∣

∣

φa
ss′

N sa
φ′

−φ′a
ss′

N sa
φ

N sa
φ

N sa
φ′

∣

∣

∣

∣

+
N sa

∆ [
P

s′∈S|φ
a
ss′

−φ′a
ss′ |]+|N

sa
φ′

−N sa
φ |

P

s′∈S ∆a
ss′

(N sa
φ

+N sa
∆

)(N sa
φ′

+N sa
∆

)

= Dsa
S (φ, φ′) +

N sa
∆ [

P

s′∈S|φ
a
ss′

−φ′a
ss′ |]+N sa

∆ |N sa
φ′

−N sa
φ |

(N sa
φ +N sa

∆
)(N sa

φ′
+N sa

∆
)

≤ Dsa
S (φ, φ′) +

2N sa
∆

P

s′∈S|φ
a
ss′

−φ′a
ss′ |

(N sa
φ +N sa

∆
)(N sa

φ′
+N sa

∆
)
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Lemma 6.5. Given anyψ, ψ′,∆ ∈ O, then for all s ∈ S, a ∈ A, Dsa
Z (ψ + ∆, ψ′ + ∆) ≤

Dsa
Z (ψ, ψ′) +

2N sa
∆

P

z∈Z |ψasz−ψ′a
sz|

(N sa
ψ +N sa

∆
)(N sa

ψ′ +N sa
∆

) .

Proof. Same proof as for lemma 6.4, except that we sum overz ∈ Z in this case.

Lemma 6.6. Given anyγ ∈ (0, 1), thensupx γ
x/2x = 2

ln(γ−e)

Proof. We observe that whenx = 0, γx/2x = 0 and limx→∞ γx/2x = 0. Furthermore,γx/2 is
monotonically decreasing exponentially asx increase whilex is monotonically increasing linearly
asx increase. Thus it is clear thatγx/2x will have a unique global maximum in(0,∞). We will
find it by taking the derivative:

∂
∂x(γx/2x)

= (ln γ)γx/2x
2 + γx/2

= γx/2( (ln γ)x
2 + 1)

Hence by solving when this is equal 0, we have:

γx/2( (ln γ)x
2 + 1) = 0

⇔ (ln γ)x
2 + 1 = 0

⇔ x = −2
lnγ = −2 logγ(e)

Hence we have that:
γx/2x

≤ −2γ− logγ(e) logγ(e)
= −2e−1 logγ(e)
= 2

ln(γ−e)

Lemma 6.7. supα1∈Γ1,s∈S |α1(s, φ, ψ) − α1(s, φ
′, ψ′)| = 0 for anyφ, φ′, ψ, ψ′.

Proof. For anya ∈ A, s ∈ S, |αa1(s, φ, ψ) − αa1(s, φ
′, ψ′)| = |R(s, a) −R(s, a)| = 0.

Theorem 4.1.Given anyφ, φ′ ∈ T ,ψ, ψ′ ∈ O andγ ∈ (0, 1), then for allt, sup
αt∈Γt,s∈S

|αt(s, φ, ψ)−

αt(s, φ
′, ψ′)| ≤ 2γ||R||∞

(1−γ)2 sup
s,s′∈S,a∈A

[

Dsa
S (φ, φ′) +Ds′a

Z (ψ, ψ′) + 4
ln(γ−e)

(

P

s′′∈S|φ
a
ss′′

−φ′a
ss′′ |

(N sa
φ +1)(N sa

φ′
+1) +

P

z∈Z|ψ
a
s′z

−ψ′a
s′z|

(N s′a
ψ +1)(N s′a

ψ′ +1)

)]

Proof. Using lemma 6.1, we have that:
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|αa,α
′

t (s, φ, ψ) − αa,α
′

t (s, φ′, ψ′)|

=

∣

∣

∣

∣

R(s, a) + γ
∑

s′∈S
∑

z∈Z
φa
ss′
ψa
s′z

N sa
φ N s′a

ψ

α′(z)(s′, φ+ δass′ , ψ + δas′z)

−R(s, a) − γ
∑

s′∈S
∑

z∈Z
φ′a
ss′
ψ′a
s′z

N sa
φ′

N s′a
ψ′

α′(z)(s′, φ′ + δass′ , ψ
′ + δas′z)

∣

∣

∣

∣

= γ

∣

∣

∣

∣

∑

s′∈S
∑

z∈Z

[

φa
ss′
ψa
s′z

N sa
φ N s′a

ψ

α′(z)(s′, φ+ δass′ , ψ + δas′z) −
φ′a
ss′
ψ′a
s′z

N sa
φ′

N s′a
ψ′

α′(z)(s′, φ′ + δass′ , ψ
′ + δas′z)

]∣

∣

∣

∣

= γ

∣

∣

∣

∣

∑

s′∈S
∑

z∈Z

[

φa
ss′
ψa
s′z

N sa
φ N s′a

ψ

(α′(z)(s′, φ+ δass′ , ψ + δas′z) − α′(z)(s′, φ′ + δass′ , ψ
′ + δas′z))

−

(

φ′a
ss′
ψ′a
s′z

N sa
φ′

N s′a
ψ′

−
φa
ss′
ψa
s′z

N sa
φ N s′a

ψ

)

α′(z)(s′, φ′ + δass′ , ψ
′ + δas′z)

]
∣

∣

∣

∣

≤ γ
∑

s′∈S
∑

z∈Z
φa
ss′
ψa
s′z

N sa
φ N s′a

ψ

|α′(z)(s′, φ+ δass′ , ψ + δas′z) − α′(z)(s′, φ′ + δass′ , ψ
′ + δas′z)|

+γ
∑

s′∈S
∑

z∈Z

∣

∣

∣

∣

φ′a
ss′
ψ′a
s′z

N sa
φ′

N s′a
ψ′

−
φa
ss′
ψa
s′z

N sa
φ N s′a

ψ

∣

∣

∣

∣

|α′(z)(s′, φ′ + δass′ , ψ
′ + δas′z)|

≤ γ sup
s′∈S,z∈Z

|α′(z)(s′, φ+ δass′ , ψ + δas′z) − α′(z)(s′, φ′ + δass′ , ψ
′ + δas′z)|

+γ||R||∞
1−γ

∑

s′∈S
∑

z∈Z

∣

∣

∣

∣

φ′a
ss′
ψ′a
s′z

N sa
φ′

N s′a
ψ′

−
φa
ss′
ψa
s′z

N sa
φ N s′a

ψ

∣

∣

∣

∣

≤ γ sup
s′∈S,z∈Z

|α′(z)(s′, φ+ δass′ , ψ + δas′z) − α′(z)(s′, φ′ + δass′ , ψ
′ + δas′z)|

+γ||R||∞
1−γ

(

Dsa
S (φ′, φ) + sups′∈SD

s′a
Z (ψ′, ψ)

)

The last inequality follows from lemma 6.3. Hence by taking thesup we get:

supαt∈Γt,s∈S |αt(s, φ, ψ) − αt(s, φ
′, ψ′)|

≤ γ sup
s,s′∈S,a∈A,z∈Z,αt−1∈Γt−1

|αt−1(s
′, φ+ δass′ , ψ + δas′z) − αt−1(s

′, φ′ + δass′ , ψ
′ + δas′z)|

+γ||R||∞
1−γ sup

s,s′∈S,a∈A

(

Dsa
S (φ′, φ) +Ds′a

Z (ψ′, ψ)
)

We notice that this inequality defines a reccurence. By unfolding it up tot = 1 we get that:

supαt∈Γt,s∈S |αt(s, φ, ψ) − αt(s, φ
′, ψ′)|

≤ γt−1 sup
α1∈Γ1,s′∈S,∆∈T ,∆′∈O| ||∆||1=||∆′||1=(t−1)

|α1(s
′, φ+ ∆, ψ + ∆′) − α1(s

′, φ′ + ∆, ψ′ + ∆′)|

+γ||R||∞
1−γ

∑t−2
i=1 γ

i sup
s,s′∈S,a∈A,∆∈T ,∆′∈O| ||∆||1=||∆′||1=i

(

Dsa
S (φ′ + ∆, φ+ ∆) +Ds′a

Z (ψ′ + ∆′, ψ + ∆′)
)

+γ||R||∞
1−γ sup

s,s′∈S,a∈A

(

Dsa
S (φ′, φ) +Ds′a

Z (ψ′, ψ)
)

Applying lemmas 6.7, 6.4 and 6.5 to the last term, we get that:
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supαt∈Γt,s∈S |αt(s, φ, ψ) − αt(s, φ
′, ψ′)|

≤ γ||R||∞
1−γ

∑t−2
i=1 γ

i sup
s,s′∈S,a∈A,∆∈T ,∆′∈O| ||∆||1=||∆′||1=i

(

Dsa
S (φ′, φ) +Ds′a

Z (ψ′, ψ)

+
2N sa

∆

P

s′′∈S |φa
ss′′

−φ′a
ss′′

|
(N sa

φ +N sa
∆

)(N sa
φ′

+N sa
∆

) +
2N s′a

∆′

P

z∈Z |ψa
s′z

−ψ′a
s′z

|
(N s′a

ψ +N s′a
∆′ )(N s′a

ψ′ +N s′a
∆′ )

)

+γ||R||∞
1−γ sup

s,s′∈S,a∈A

(

Dsa
S (φ′, φ) +Ds′a

Z (ψ′, ψ)
)

= γ||R||∞
1−γ

∑t−2
i=1 γ

i/2 sup
s,s′∈S,a∈A,∆∈T ,∆′∈O| ||∆||1=||∆′||1=i

(

γi/2Dsa
S (φ′, φ) + γi/2Ds′a

Z (ψ′, ψ)

+
2γi/2N sa

∆

P

s′′∈S |φa
ss′′

−φ′a
ss′′

|
(N sa

φ +N sa
∆

)(N sa
φ′

+N sa
∆

) +
2γi/2N s′a

∆′

P

z∈Z |ψa
s′z

−ψ′a
s′z

|
(N s′a

ψ +N s′a
∆′ )(N s′a

ψ′ +N s′a
∆′ )

)

+γ||R||∞
1−γ sup

s,s′∈S,a∈A

(

Dsa
S (φ′, φ) +Ds′a

Z (ψ′, ψ)
)

Now we notice thatγi/2 ≤ γN
sa
∆ /2 since||∆||1 = i, and similarlyγi/2 ≤ γN

sa
∆′/2. Hence by

applying lemma 6.6, we get that:

supαt∈Γt,s∈S |αt(s, φ, ψ) − αt(s, φ
′, ψ′)|

≤ γ||R||∞
1−γ

∑t−2
i=1 γ

i/2 sup
s,s′∈S,a∈A,∆∈T ,∆′∈O| ||∆||1=||∆′||1=i

(

Dsa
S (φ′, φ) +Ds′a

Z (ψ′, ψ)

+
4

P

s′′∈S |φa
ss′′

−φ′a
ss′′

|
ln(γ−e)(N sa

φ +N sa
∆

)(N sa
φ′

+N sa
∆

) +
4

P

z∈Z |ψa
s′z

−ψ′a
s′z

|
ln(γ−e)(N s′a

ψ
+N s′a

∆′ )(N s′a
ψ′ +N s′a

∆′ )

)

+γ||R||∞
1−γ sup

s,s′∈S,a∈A

(

Dsa
S (φ′, φ) +Ds′a

Z (ψ′, ψ)
)

≤ γ||R||∞
1−γ

∑t−2
i=1 γ

i/2 sup
s,s′∈S,a∈A

(

Dsa
S (φ′, φ) +Ds′a

Z (ψ′, ψ) +
4

P

s′′∈S |φa
ss′′

−φ′a
ss′′

|
ln(γ−e)(N sa

φ +1)(N sa
φ′

+1)

+
4

P

z∈Z |ψa
s′z

−ψ′a
s′z

|
ln(γ−e)(N s′a

ψ +1)(N s′a
ψ′ +1)

)

+ γ||R||∞
1−γ sup

s,s′∈S,a∈A

(

Dsa
S (φ′, φ) +Ds′a

Z (ψ′, ψ)
)

≤
(

∑t−2
i=0 γ

i/2
)

γ||R||∞
1−γ sup

s,s′∈S,a∈A

[

Dsa
S (φ′, φ) +Ds′a

Z (ψ′, ψ) + 4
ln(γ−e)

(

P

s′′∈S |φa
ss′′

−φ′a
ss′′

|
(N sa

φ +1)(N sa
φ′

+1) +
P

z∈Z |ψa
s′z

−ψ′a
s′z

|
(N s′a

ψ +1)(N s′a
ψ′ +1)

)]

≤
(
∑∞

i=0 γ
i/2

) γ||R||∞
1−γ sup

s,s′∈S,a∈A

[

Dsa
S (φ′, φ) +Ds′a

Z (ψ′, ψ) + 4
ln(γ−e)

(

P

s′′∈S |φa
ss′′

−φ′a
ss′′

|
(N sa

φ +1)(N sa
φ′

+1) +
P

z∈Z |ψa
s′z

−ψ′a
s′z

|
(N s′a

ψ +1)(N s′a
ψ′ +1)

)]

=
1+

√
γ

1−γ
γ||R||∞

1−γ sup
s,s′∈S,a∈A

[

Dsa
S (φ′, φ) +Ds′a

Z (ψ′, ψ) + 4
ln(γ−e)

(

P

s′′∈S |φa
ss′′

−φ′a
ss′′

|
(N sa

φ +1)(N sa
φ′

+1) +
P

z∈Z |ψa
s′z

−ψ′a
s′z

|
(N s′a

ψ +1)(N s′a
ψ′ +1)

)]

≤ 2γ||R||∞
(1−γ)2 sup

s,s′∈S,a∈A

[

Dsa
S (φ′, φ) +Ds′a

Z (ψ′, ψ) + 4
ln(γ−e)

(

P

s′′∈S |φa
ss′′

−φ′a
ss′′

|
(N sa

φ +1)(N sa
φ′

+1) +
P

z∈Z |ψa
s′z

−ψ′a
s′z

|
(N s′a

ψ +1)(N s′a
ψ′ +1)

)]

Lemma 6.8. Givenφ ∈ T , s ∈ S, a ∈ A, then for all∆ ∈ T ,
P

s′∈S |φa
ss′

−(φa
ss′

+∆a
ss′

)|
(N sa

φ
+1)(N sa

φ
+N sa

∆
+1) ≤ 1

N sa
φ

+1

Proof.
P

s′∈S |φa
ss′

−(φa
ss′

+∆a
ss′

)|
(N sa

φ +1)(N sa
φ +N sa

∆
+1)

=
P

s′∈S ∆a
ss′

(N sa
φ +1)(N sa

φ +N sa
∆

+1)

= 1
N sa
φ +1

(

N sa
∆

N sa
∆

+N sa
φ +1

)
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The term N sa
∆

N sa
∆

+N sa
φ +1 is monotonically increasing and converge to 1 asN sa

∆ → ∞. Thus the

lemma follows.

Corollary 6.1. Givenǫ > 0, φ ∈ T , s ∈ S, a ∈ A, if N sa
φ > 1

ǫ − 1 then for all∆ ∈ T we have

that
P

s′∈S |φa
ss′

−(φa
ss′

+∆a
ss′

)|
(N sa

φ +1)(N sa
φ +N sa

∆
+1) < ǫ

Proof. According to lemma 6.8, we know that for all∆ ∈ T we have that
P

s′∈S |φa
ss′

−(φa
ss′

+∆a
ss′

)|
(N sa

φ +1)(N sa
φ +N sa

∆
+1) ≤

1
N sa
φ +1 . Hence ifN sa

φ > 1
ǫ − 1 then 1

N sa
φ +1 < ǫ.

Lemma 6.9. Givenψ ∈ O, s ∈ S, a ∈ A, then for all∆ ∈ O,
P

z∈Z |ψasz−(ψasz+∆a
sz)|

(N sa
ψ +1)(N sa

ψ +N sa
∆

+1) ≤ 1
N sa
ψ +1

Proof. Same proof as lemma 6.8.

Corollary 6.2. Givenǫ > 0, ψ ∈ O, s ∈ S, a ∈ A, if N sa
ψ > 1

ǫ − 1 then for all∆ ∈ O we have

that
P

z∈Z |ψasz−(ψasz+∆a
sz)|

(N sa
ψ +1)(N sa

ψ +N sa
∆

+1) < ǫ

Proof. Same proof as corollary 6.1 but using lemma 6.9 instead.

Theorem 4.2. Given anyǫ > 0 and (s, φ, ψ) ∈ S′ such that∃a ∈ A, s′ ∈ S, N s′a
φ > N ǫ

S or

N s′a
ψ > N ǫ

Z , then∃(s, φ′, ψ′) ∈ S′ such that∀a ∈ A, s′ ∈ S, N s′a
φ′ ≤ N ǫ

S andN s′a
ψ′ ≤ N ǫ

Z where
|αt(s, φ, ψ) − αt(s, φ

′, ψ′)| < ǫ holds for allt andαt ∈ Γt.

Proof. Consider an arbitraryǫ > 0. We will first find a bound onN sa
φ andN sa

ψ such that any
vector with higher counts is withinǫ distance of another vector with lower counts. Let’s define

ǫ′ = ǫ(1−γ)2

8γ||R||∞ andǫ′′ = ǫ(1−γ)2 ln(γ−e)
32γ||R||∞ . According to corollary 6.1, we have that for anyφ ∈ T

such thatN sa
φ > 1

ǫ′′ − 1, then for allφ′ ∈ T such that there exist a∆ ∈ T whereφ′ = φ+ ∆, then
P

s′′∈S |φa
ss′′

−φ′a
ss′′

|
(N sa

φ +1)(N sa
φ′

+1) < ǫ′′. Hence we want to find anN such that givenφ ∈ T with N sa
φ > N , there

exist aφ′ ∈ T such thatN sa
φ′ ≤ N , Dsa

S (φ, φ′) < ǫ′ and exists a∆ ∈ T such thatφ = φ′ + ∆.
Let’s consider an arbitraryφ such thatN sa

φ > N . We can contruct a new vectorφ′ as follows, for all

s′ defineφ′ass′ =

⌊

Nφa
ss′

N sa
φ′

⌋

and for all othera′ 6= a, s′′ 6= s defineφ′a
′

s′′s′ = φa
′

s′′s′ for all s′. Clearly

φ′ ∈ T and such thatN − |S| ≤ N sa
φ′ ≤ N . Moreover, we have thatφ′a

′

s′s′′ ≤ φa
′

s′s′′ for all s′, a′, s′′

and thus there will exist a∆ ∈ T such thatφ = φ′+∆. Furthermore, from its construction we know

that for alls′,

∣

∣

∣

∣

φ′a
ss′

N sa
φ′

−
φa
ss′

N sa
φ

∣

∣

∣

∣

≤ 1
N sa
φ′

. Hence it is clear from this thatDsa
S (φ, φ′) ≤ |S|

N−|S| . Thus, if

we wantDsa
S (φ, φ′) < ǫ′, we just need to takeN > |S|(1+ǫ′)

ǫ′ . Since we also wantN > 1
ǫ′′ − 1,

let’s just defineNS = max
(

|S|(1+ǫ′)
ǫ′ , 1

ǫ′′ − 1
)

. NS = N ǫ
S, as defined in Definition 4.2, will be our

bound onN sa
φ such that, as we have just showed, for anyφ ∈ T such thatN sa

φ > NS , we can find

aφ′ ∈ T such thatN sa
φ′ ≤ NS , Dsa

S (φ, φ′) < ǫ′ and
P

s′′∈S |φa
ss′′

−φ′a
ss′′

|
(N sa

φ +1)(N sa
φ′

+1) < ǫ′′. Similarly, since we

have a similar corollary (corollary 6.1) for the observation countsψ, we can proceed in the same

way and defineNZ = max
(

|Z|(1+ǫ′)
ǫ′ , 1

ǫ′′ − 1
)

, such that that for anyψ ∈ O such thatN sa
ψ > NZ ,
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we can find aψ′ ∈ O such thatN sa
ψ′ ≤ NZ ,Dsa

Z (ψ, ψ′) < ǫ′ and
P

z∈Z |ψasz−ψ′a
sz|

(N sa
ψ +1)(N sa

ψ′ +1) < ǫ′′. NZ = N ǫ
Z

as we have defined in Definition 4.2.
Now let S̃ = {(s, φ, ψ) ∈ S′|∀s′ ∈ S, a ∈ A,Ns′a

φ ≤ NS & Ns′a
ψ ≤ NZ} and consider an

arbitrary(s, φ, ψ) ∈ S′. For anys′ ∈ S, a ∈ A such thatN s′a
φ > NS, there exist aφ′ ∈ T such

thatN s′a
φ′ ≤ NS , Ds′a

S (φ, φ′) < ǫ′ and
P

s′′∈S |φa
s′s′′

−φ′a
s′s′′

|
(N s′a

φ +1)(N s′a
φ′

+1)
< ǫ′′ (as we have just showed above).

Thus let’s definẽφas′s′′ = φ′as′s′′ for all s′′ ∈ S. For anys′ ∈ S, a ∈ A such thatN s′a
φ ≤ NS ,

just setφ̃as′s′′ = φas′s′′ for all s′′ ∈ S. Similarly, for anys′ ∈ S, a ∈ A such thatN s′a
ψ > NZ ,

there exist aψ′ ∈ O such thatN s′a
ψ′ ≤ NZ , Ds′a

Z (ψ, ψ′) < ǫ′ and
P

z∈Z |ψa
s′z

−ψ′a
s′z

|
(N s′a

ψ +1)(N s′a
ψ′ +1)

< ǫ′′ (as

we have just showed above). Thus let’s defineψ̃as′s′′ = ψ′a
s′s′′ for all s′′ ∈ S. For anys′ ∈ S,

a ∈ A such thatN s′a
ψ ≤ NZ , just setψ̃as′s′′ = ψas′s′′ for all s′′ ∈ S. Now it is clear from this con-

struction that(s, φ̃, ψ̃) ∈ S̃. By Theorem 4.1, for anyt, supαt∈Γt,s∈S |αt(s, φ, ψ) − αt(s, φ̃, ψ̃)| ≤

2γ||R||∞
(1−γ)2 sup

s,s′∈S,a∈A

[

Ds,a
S (φ, φ̃) +Ds′,a

Z (ψ, ψ̃) + 4
ln(γ−e)

(

P

s′′∈S |φa
ss′′

−φ̃a
ss′′

|
(N sa

φ +1)(N sa
φ̃

+1) +
P

z∈Z |ψa
s′z

−ψ̃a
s′z

|
(N s′a

ψ +1)(N s′a
ψ̃

+1)

)]

<

2γ||R||∞
(1−γ)2

[

ǫ′ + ǫ′ + 4
ln(γ−e) (ǫ′′ + ǫ′′)

]

= ǫ. This prooves the theorem.

Theorem 4.3. Given anyǫ > 0, (s, φ, ψ) ∈ S′ andαt ∈ Γt computed from the infinite BAPOMDP.
Let α̃t be theα-vector representing the same conditionnal plan asαt but computed with the finite
BAPOMDP(S̃ǫ, A, Z, T̃ǫ, Õǫ, R̃ǫ, γ), then|α̃t(Pǫ(s, φ, ψ)) − αt(s, φ, ψ)| < ǫ

1−γ .

Proof. Let (s, φ′, ψ′) = Pǫ(s, φ, ψ).

|α̃t(Pǫ(s, φ, ψ)) − αt(s, φ, ψ)|
≤ |α̃t(s, φ′, ψ′) − αt(s, φ

′, ψ′)| + |αt(s, φ′, ψ′) − αt(s, φ, ψ)|
< |α̃t(s, φ′, ψ′) − αt(s, φ

′, ψ′)| + ǫ (by Theorem 4.2)
= |γ

∑

z∈Z
∑

s′∈S T
sas′

φ′ Os
′az
ψ′ [α̃′(z)(Pǫ(s′, φ′ + δass′ , ψ

′ + δas′z)) − α′(z)(s′, φ′ + δass′ , ψ
′ + δas′z)] | + ǫ

≤ γ
∑

z∈Z
∑

s′∈S T
sas′

φ′ Os
′az
ψ′ |α̃′(z)(Pǫ(s′, φ′ + δass′ , ψ

′ + δas′z)) − α′(z)(s′, φ′ + δass′ , ψ
′ + δas′z)| + ǫ

≤ γ supz∈Z,s′∈S |α̃
′(z)(Pǫ(s′, φ′ + δass′ , ψ

′ + δas′z)) − α′(z)(s′, φ′ + δass′ , ψ
′ + δas′z)| + ǫ

≤ γ supαt−1∈Γt−1,(s′,φ′′,ψ′′)∈S′ |α̃t−1(Pǫ(s′, φ′′, ψ′′) − αt−1(s
′, φ′′, ψ′′)| + ǫ

Thus, we have that:

supαt∈Γt,σ∈S′ |α̃t(Pǫ(σ)) − αt(σ)|
< γ supαt−1∈Γt−1,σ′∈S′ |α̃t−1(Pǫ(σ′)) − αt−1(σ

′)| + ǫ

This defines a recurrence. By unfolding it up tot = 1, where∀σ ∈ S′, α̃1(Pǫ(σ)) = α1(σ),
we get thatsupαt∈Γt,σ∈S′ |α̃t(Pǫ(σ)) − αt(σ)| < ǫ

∑t−2
i=0 γ

i. Hence for allt, this is lower than
ǫ

1−γ .
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