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Abstract

Bayesian Reinforcement Learning has generated subdtatdist recently, as it
provides an elegant solution to the exploration-explmitetrade-off in reinforce-
ment learning. However most investigations of Bayesianfoecement learning
to date focus on the standard Markov Decision Processes §YiDBur goal is
to extend these ideas to the more general Partially Obderi4bP (POMDP)
framework, where the state is a hidden variable. To addhésgtoblem, we in-
troduce a new mathematical model, the Bayes-Adaptive PQNIBIB new model
allows us to (1) improve knowledge of the POMDP domain thioirgeraction
with the environment, and (2) plan optimal sequences obastwhich can trade-
off between improving the model, identifying the state, gathering reward. We
show how the model can be finitely approximated while praagrhe value func-
tion. We describe approximations for belief tracking anrahpling in this model.
Empirical results on two domains show that the model eséraatl agent’s return
improve over time, as the agent learns better model estimate

1 Introduction

In many real world systems, uncertainty can arise in botpthdiction of the system’s behavior, and
the observability of the system’s state. Partially Obseledarkov Decision Processes (POMDPS)
take both kinds of uncertainty into account and provide agrful model for sequential decision
making under these conditions. However most solving metfimdPOMDPs assume that the model
is known a priori, which is rarely the case in practice. Fatamce in robotics, the POMDP must
reflect exactly the uncertainty on the robot's sensors amgbtars. These parameters are rarely
known exactly and therefore must often be approximated byraam designer, such that even if
this approximate POMDP could be solved exactly, the resyjtiolicy may not be optimal. Thus we
seek a decision-theoretic planner which can take into atdd¢be uncertainty over model parameters
during the planning process, as well as being able to leanm &xperience the values of these
unknown parameters.

Bayesian Reinforcement Learning has investigated thibleno in the context of fully observable
MDPs [1, 2, 3]. An extension to POMDP has recently been preg§4], yet this method relies on
heuristics to select actions that will improve the modealstforgoing any theoretical guarantee on
the quality of the approximation, and on an oracle that caguagied to provide the current state.

In this paper, we draw inspiration from the Bayes-AdaptivBRiframework [2], which is formu-
lated to provide an optimal solution to the explorationdexgtion trade-off. To extend these ideas
to POMDPs, we face two challenges: (1) how to update Dirichégameters when the state is a
hidden variable? (2) how to approximate the infinite dimenal belief space to perform belief
monitoring and compute the optimal policy. This paper taskioth problem jointly. The first prob-
lem is solved by including the Dirichlet parameters in thetesspace and maintaining belief states
over these parameters. We address the second by boundiggabe of Dirichlet parameters to a
finite subspace necessary feoptimal solutions.



We provide theoretical results for bounding the state spdtdke preserving the value function and
we use these results to derive approximate solving andflmbaitoring algorithms. We compare

several belief approximations in two problem domains. Eiogi results show that the agent is able
to learn good POMDP models and improve its return as it Iebetter model estimate.

2 POMDP

A POMDRP is defined by finite sets of stat8s actionsA and observationg. It has transition
probabilities {75}, v cs.aca WhereT** = Pr(s;;, = §'|s; = s,a; = a) and observation
probabilities{ O%** } sc 5 4c 4,z z WhereOs** = Pr(z, = z|s; = s,a;—1 = a). The reward function
R : S x A — R specifies the immediate reward obtained by the agent. In aP®Nhe state is
never observed. Instead the agent perceives an obseryatiofi at each time step, which (along
with the action sequence) allows it to maintain a beliefestat AS. The belief state specifies
the probability of being in each state given the history dfcacand observation experienced so far,
starting from an initial belieby. It can be updated at each time step using Baye'’s tyle:(s’) =
Ozttt 3 o T bi(s)
Zs”es Os”atzt+1 Zses Tmts”bt(s) .

A policy # : AS — A indicates how the agent should select actions as a func-
tion of the current belief. Solving a POMDP involves findinget optimal policy 7*

that maximizes the expected discounted return over theitmfinorizon. The return ob-
tained by following 7* from a belief b is defined by Bellman’'s equation:V*(b) =
maxaea [Yses b($)R(s,a) + 7Y, o, Pr(z|b,a)V*(7(b,a,2))|, wherer(b,a, z) is the new be-

lief after performing actiom and observation and~y € [0, 1) is the discount factor.

Exact solving algorithms [5] are usually intractable, gptaen small domains with only a few states,
actions and observations. Various approximate algoritiroth offline [6, 7, 8] and online [9],
have been proposed to tackle increasingly large domainaetkter, all these methods requires full
knowledge of the POMDP model, which is a strong assumptiquractice. Some approaches do
not require knowledge of the model, as in [10], but these @ggires generally require a lot of data
and do not address the exploration-exploitation tradeoff.

3 Bayes-Adaptive POMDP

In this section, we introduce the Bayes-Adaptive POMDP (BAMDP) model, an optimal decision-
theoretic algorithm for learning and planning in POMDPsengharameter uncertainty. Throughout
we assume that the state, action, and observation spacisitgrand known, but that the transition
and observation probabilities are unknown or partiallywno We also assume that the reward
function is known as it is generally specified by the userliergpecific task he wants to accomplish,
but the model can easily be generalised to learn the rewadlifun as well.

To model the uncertainty on the transitidt*s" and observatio®s** parameters, we uggirichlet
distributions which are probability distributions over the parametdraaltinomial distributions.
Giveng;, the number of times event has occurred over trials, the probabilitiep; of each event
follow a Dirichlet distribution, i.e.(p1,...,px) ~ Dir(¢1,..., o). This distribution represents
the probability that a discrete random variable behavesrdaty to some probability distribution

(p1,---,pk), given that the countss, . . ., ¢ ) have been observed ovetrials (n = Zf’zl @;). Its
probability density function is defined by(p, ¢) = ﬁ Hle pf”"’l, whereB is the multinomial
beta function. The expected valuemfis E(p;) = Z,j’i T

3.1 The BAPOMDP Model

The BAPOMDP is constructed from the model of the POMDP witlkknown parameters. Let
(S,A,Z,T,0,R,~) be that model. The uncertainty on the distributidh¥" and 0% can be
represented by experience court$; Vs’ represents the number of times the transitiam, s’) oc-
curred, similarly))¢, V= is the number of times observatierwas made in stat€ after doing action
a. Let ¢ be the vector of all transition counts aricbe the vector of all observation counts. Given



a
¢SS,

the count vectorg andy), the expected transition probability far** is: Tg“s' =3, =g »and
s'es Pyt
imi s'az- s'az _ w?’z
similarly for O **: Oy, ** = S

The objective of the BAPOMDP is to learn an optimal policyclsuhat actions are chosen to
maximize reward taking into account both state and parameteertainty. To model this, we
follow the Bayes-Adaptive MDP framework, and include theand ¢ vectors in the state of
the BAPOMDP. Thus, the state spa6é of the BAPOMDP is defined as’ = S x 7 x O,

whereT = {¢ € NISPIAIY(s,a), Y, .s 6% > 0} represents the space in whighlies and

0 = {y e NSIIIZl|(s,a), > __, 2, > 0} represents the space in whi¢Hies. The action and
observation sets of the BAPOMDP are the same as in the ofiBi@MDP. Transition and obser-
vation functions of the BAPOMDP must capture how the staté @unt vectors, 1) evolve after
every time step. Consider an agent in a given statéth count vectors) andq, which performs
actiona, causing it to move to staté and observe. Then the vectop’ after the transition is defined
as¢’ = ¢ + 0%, whered?,, is a vector full of zeroes, with & for the countp?,,, and the vector
4’ after the observation is defined a5 = v + ¢¢,,, whered?, , is a vector full of zeroes, with &
for the county)?, .. Note that the probabilities of such transitions and obs#sms occurring must
be defined by considering all models and their probabiliégspecified by the current Dirichlet
distributions, which turn out to be their expectations. eferwe defind” andO’ to be:

T3/ 05%, if ¢/ = ¢+ 0%, andy’ = v + 0%,

T/((S7¢7w)7a‘a (8/7¢/5¢/)) - { 0 otherwiSe_ (1)

Note here that the observation probabilities are foldeal fhé transition function, and that the ob-
servation function becomes deterministic. This happenause a state transition in the BAPOMDP
automatically specifies which observation is acquiredrdfnsition, via the way the counts are
incremented. Since the counts do not affect the rewardetiard function of the BAPOMDP is de-
fined asRk'((s, ¢, %), a) = R(s, a); the discount factor of the BAPOMDP remains the same. Using
these definitions, the BAPOMDP has a known model specifietdéyuple(S’, A, Z, T, O', R’ , 7).

The belief state of the BAPOMDP represents a distributiogr dwoth states and count values. The
model is learned by simply maintaining this belief statethasdistribution will concentrate over
most likely models, given the prior and experience so farbglfs the initial belief state of the
unknown POMDP, and the count vectars € 7 andiy, € O represent the prior knowledge on this
POMDP, then the initial belief of the BAPOMDP i (s, ¢o, 0) = {bo(s), if (¢,%) = (o, %0);

0, otherwisé. After actions are taken, the uncertainty on the POMDP m&letpresented by
mixtures of Dirichlet distributions (i.e. mixtures of caurectors).

Note that the BAPOMDP is in fact a POMDP with a countably irtéirstate space. Hence the belief
update function and optimal value function are still definsdh Section 2. However these functions
now require summations ovéf = S x 7 x . Maintaining the belief state is practical only if the
number of states with non-zero probabilities is finite. Wewverthis in the following theorem:

Theorem 3.1. Let (5',A,Z,T',0',R',v) be a BAPOMDP constructed from the POMDP
(S,A,Z,T,0,R,~). If Sis finite, then at any time, the setS’; = {o € S'|b,(c) > 0} has

size[Sy, | < |S[.
Proof. Proof available in [11]. Proceeds by induction fréfpn O

The proof of this theorem suggests that it is sufficient taatee overs andS’,L1 in order to compute

the belief staté, when an action and observation are taken in the environnktmice, Algorithm
3.1 can be used to update the belief state.

3.2 Exact Solution for BAPOMDP in Finite Horizons

The value function of a BAPOMDP for finite horizons can be es@nted by a finite sét of func-
tionsa : S’ — R, as in standard POMDP. For example, an exact solution caoi@uted using



function 7(b, a, 2)
Initialize b’ as a 0 vector.
forall (s,¢,v,s") € S, x S do
V(' ¢+ 02,1 +8%.) — b(s', ¢+ 0%, + 00.) + bs, b, ) T3 O3 **
end for
return normalized’

Algorithm 3.1: Exact Belief Update in BAPOMDP.

dynamic programming (see [5] for more details):

It = {O‘alaa(sa(ﬁaw) :R(S’a)}v .,

P = a7 oi " (s,0,9) =7 Xges T Oy oi(s’, ¢+ 05,0 +05.), 05 € Tea ),
ry = Ifaery? ol o...oly”, (whered is the cross sum operator)

Iy = UaEA F?

®)
Note here that the definition ofa;*(s,¢,v) is obtained from the fact that
T'((s;¢,0),a, (s, ¢, 0"))O'((s,8,%),a,(s',¢',4'), 2) = 0 except wheng’ = ¢ + 47, and

¥’ =1+ §%,. The optimal policy is extracted as usuak(b) = argmax,, Zaesg a(o)b(o). In

practice, it will be impossible to comput€”* (s, ¢, ) for all (s, ¢,1) € S’. In order to compute
these more efficiently, we show in the next section that tfiaita state space can be reduced to a
finite state space, while still preserving the value furrctmarbitrary precision for any horizan

4 Approximating the BAPOMDP: Theory and Algorithms

Solving a BAPOMDP exactly for all belief states is impossilsl practice due to the dimensionnality
of the state space (in particular to the fact that the coustove can grow unbounded). We now show
how we can reduce this infinite state space to a finite statgespihis allows us to compute an
optimal value function over the resulting finite-dimensiahbelief space using standard POMDP
techniques. Various methods for belief tracking in the itdimodel are also presented.

4.1 Approximate Finite Model
We first present an upper bound on the value difference betwee states that differ only by
their model estimate® and+. This bound uses the following definitions: giveén¢’ € 7, and
0,0’ € O, defineDy (6,¢) = ¥, cq | T3 — T | andDg (v,0') = Y., |03 = 0%
and./\/(;a = ZS/ES ¢ZS/ and./\/sa == ZzGZ wtslz'
Theorem 4.1. Given anyg, ¢' € T,,¢" € O, andy € (0,1), then for all¢:
sup_Jan(s,0,1) = auls, ') < Pl sup | Dg(0,¢') + Dy (0,0

1= s,8’€S,acA

ai€ly,se

SR S ( OV (/7] WD SR U e
m(y=9) \ OV DWVGF+D) W3 e+ (V5 +1)

Proof. Proof available in [11] finds a bound on a 1-step backup angesdhe recurrence. O

We now use this bound on thevector values to approximate the space of Dirichlet patarae

within a finite subspace. We use the following definitionsiegi anye > 0, definec’ = %,

1—4)%In(y~*¢ S|(1+€) 1 Zl(A+e) 1
¢ = - In(y 9 3277)“1%““(30 ),Ngzmax(i‘ ‘(6,6),7—1) andN%:max(‘ |(€, 6),7—1 .

Theorem 4.2. Given anye > 0 and (s, $,v) € S’ such thatda € A,s" € S, Ng/“ > N§ or
N3'@ > Ng, then3(s,¢',9)') € S suchthatva € A,s' € S, N3¢ < Ng andN3® < Ng where
lat(s, &, 1) — ar(s, @', ¢")| < e holds for allt anda; € T;.

Proof. Proof available in [11]. O



Theorem 4.2 suggests that if we want a precision@f the value function, we just need to restrict
the space of Dirichlet parameters to count vectors 7. = {¢ € NISI4llvg € A, s € 5,0 <
N3e < Ng}andy € O = {p € NISIAIZl\vg € A s € 5,0 < N3* < Ng}. SinceZ. andO, are
f|n|te we can define a finite approximate BAPOMDP as the tl(lSLeA Z,T.,O., Rﬁ,v) where

S. = S x T, x O, is the finite state space. To define the transition and obsem&nctions over
that finite state space, we need to make sure that when thé \eeetors are incremented, they stay

within the finite space. To achieve, this we define a projeatiperatorP. : S" — S, that simply
projects every state ifi’ to their closest state if..

Definition 4.1. Letd : S’ x S’ — R be defined such that:
DRl sup D (6,0/) + Dy (0, 0)

s,8’€S,a€A

ifs=s
d(s, 9,0, 8, ¢',9Y") = Tares |92 —0nl | Toeg WS, —vl5.]
( ¢ ¢ ¢ ¢ ) +ln('y p) Na<+1)(Nas+1) + (NSS/JFl)(N;jf/Jrl) 5
8| Rl]s 2||R|| oo .
=7 (1 + ]n(v_p)) + = otherwise.

Definition 4.2. LetP, : 8’ — S. be defined a®,(s) = argmin d(s, s')
s'eS.

The functiond uses the bound defined in Theorem 4.1 as a distance betwésnthia only differs
by their ¢ andvy vectors, and uses an upper bound on that value when the diffees Thus
P. always maps states, ¢,¢) € S’ to some statés, ¢’,¢’') € S.. Note that ifc € S, then
P(0) = 0. UsingP,, the transition and observation function are defined aevisl!

Te((sa ¢a¢)aa7 (Sl7¢l7wl)) = { Tgas Ofpaz, i (S/, ¢I,¢1) - ,PE(S/, ¢ + 5gsl,¢ + 52,2) (4)

0, otherwise.

OE((S7¢,w)7CL, (8/,¢/,¢/)72) — { é: gtlgi;.v(\élég) = 736(8 7¢+5?s'7¢ + 5:'/2;) (5)

These definitions are the same as the one in the infinite BAPBMKrept that now we add an extra
projection to make sure that the incremented count vectays én S.. Finally, the reward function
R.: 5. x A — Ris defined ask.((s, $,v),a) = R(s,a).

Theorem 4.3 bounds the value difference betwearectors computed with this finite model and
the a-vector computed with the original model.

Theorem 4.3. Given any > 0, (s, ¢,v) € S’ anda; € T'; computed from the infinite BAPOMDP.
Leta; be thea-vector representing the same conditionnal plamasut computed with the finite
BAPOMDP(S,, A, Z,T., Oc, R.,~), then|a, (P (s, ¢, 1)) — as(s, ¢, 1)

Proof. Proof available in [11]. Solves a recurrence over the 1-gmgoximationin Thm. 4.2. O

Because the state space is now finite, solution methods frerditérature on finite POMDPs could
theoretically be applied. This includes en particular theagions forr (b, a, z) andV*(b) that were
presented in Section 2. In practice however, even thoughkttite space is finite, it will generally
be very large for smal, such that it may still be intractable, even for small doreaWe therefore
favor a faster online solution approach, as described below

4.2 Approximate Belief Monitoring

As shown in Theorem 3.1, the number of states with non-zesbaiility grows exponentially in
the planning horizon, thus exact belief monitoring can klyibecome intractable. We now discuss
different particle-based approximations that allow polymal-time belief tracking.

Monte Carlo sampling: Monte Carlo sampling algorithms have been widely used égugential
state estimation [12]. Given a prior beligffollowed by actionz and observation, the new belief

b’ is obtained by first samplingl states from the distributioby then for each sampleda new state

s’ is sampled fronT'(s, a, -). Finally, the probabilityO(s’, a, z) is added td’(s’) and the beliet’

is re-normalized. This will capture at mokt states with non-zero probabilities. In the context of



BAPOMDPs, we use a slight variation of this method, whereb, ¢) are first sampled frorh, and
then a next state’ € S is sampled from the normalized distributi@fj* O,*. The probabilityl / K

is added directly td'(s', ¢ + §%,,, ¢ + §% ).

Most Probable: Alternately, we can do the exact belief update at a giver titep, but then only
keep theK most probable states in the new belieind renormalizé’.

Weighted Distance Minimization: The two previous methods only try to approximate the distri
tion 7(b, a, z). However, in practice, we only care most about the agengieeted reward. Hence,
instead of keeping th& most likely states, we can kedp states which best approximate the be-
lief's value. As in the Most Probable method, we do an exatiebepdate, however in this case
we fit the posterior distribution using a greelymeans procedure, where distance is defined as in
Definition 4.1, weighted by the probability of the state tomve.

4.3 Online planning

While the finite model presented in Section 4.1 can be useadopiiovably near-optimal policies
offline, this will likely be intractable in practice due toetlvery large state space required to ensure
good precision. Instead, we turn to online lookahead seagurithms, which have been proposed
for solving standard POMDPs [9]. Our approach simply penf@dynamic programming over all the
beliefs reachable within some fixed finite planning horizamf the current belief. The action with
highest return over that finite horizon is executed and thenrpng is conducted again on the next
belief. To further limit the complexity of the online plamg algorithm, we used the approximate
belief monitoring methods detailed above. Its overall ctemipy is in O((|A||Z|)P C;,) whereD is

the planning horizon and}, is the complexity of updating the belief.

5 Empirical Results

We begin by evaluating the different belief approximatigrtsoduced above. To do so, we use a
simple onlinal-step lookahead search, and compare the overall expetted amd model accuracy
in two different problems: the well-known Tiger [5] and a ndamain called Follow. Giveff’s®s’

and O*'%* the exact probabilities of the (unknown) POMDP, the modelaacy is measured in
terms of the weighted sum of L1-distance, dendtéfi1, between the exact model and the probable
models in a belief statk

WLL(b) = X ppes; b(s: ¢ ¥)L1(¢,7)

’ , , , 6
LU ¥) = YieaZwes [ZSES [T =T [+ 32,e, 103, — O | (6)

5.1 Tiger

Inthe Tiger problem [5], we consider the case where the itiangnd reward parameters are known,
but the observation probabilities are not. Hence, therd@areunknown parametersd;, Oy,
Ogi, Opy (O, stands forPr(z = hear_right|s = tiger_Left,a = Listen)). We define the
observation count vectar = (Y1, Y1, Yri, YRy ). We consider a prior ofy = (5,3, 3,5), which
specifies an expected sensor accurac§203% (instead of the corre@5%) in both states. Each
simulation consists of 100 episodes. Episodes terminanwihe agent opens a door, at which
point the POMDP state (i.e. tiger's position) is reset, betdistribution over count vector is carried
over to the next episode.

Figures 1 and 2 show how the average return and model accavatye over the 100 episodes
(results are averaged over 1000 simulations), using an@8listep lookahead search with varying
belief approximations and parameters. Returns obtaingddmning directly with the prior and ex-

act model (without learning) are shown for comparison. M@geuracy is measured on the initial
belief of each episode. Figure 3 compares the average pigtinie per action taken by each ap-
proach. We observe from these figures that the results favidst Probable and Weighted Distance
approximations are very similar and perform well even wétv fparticles (lines are overlapping in

many places, making Weighted Distance results hard to €&ethe other hand, the performance
of Monte Carlo is significantly affected by the number of gdets and had to use much more par-
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ticles (64) to obtain an improvement over the prior. This rbaydue to the sampling error that is
introduced when using fewer samples.

5.2 Follow

We propose a new POMDP domain, called Follow, inspired byngractive human-robot task. It
is often the case that such domains are particularly sutjgzarameter uncertainty (due to the dif-
ficulty in modelling human behavior), thus this environmmativates the utility of Bayes-Adaptive
POMDP in a very practical way. The goal of the Follow task isfoobot to continuously follow one
of two individuals in a 2D open area. The two subjects haveiht motion behavior, requiring the
robot to use a different policy for each. At every episode ttrget person is selected randomly with
Pr = 0.5 (and the other is not present). The person’s identity is heeovable (except through their
motion). The state space has two features: a binary variattieating which person is being fol-
lowed, and a position variable indicating the person’stomsrelative to the robotyx 5 square grid
with the robot always at the center). Initially, the robotlggerson are at the same position. Both the
robot and the person can perform five motion acti¢n& Action, North, East, South, West}.
The person follows a fixed stochastic policy (stationaryregace and time), but the parameters of
this behavior are unknown. The robot perceives obsenatimdicating the person’s position rela-
tive to the robot:{ Same, North, East, South, West, Unseen}. The robot perceives the correct
observationPr = 0.8 andUnseen with Pr = 0.2. The rewardR = +1 if the robot and person
are at the same position (central grid cet)= 0 if the person is one cell away from the robot, and
R = —1if the person is two cells away. The task terminates if thes@ereaches a distance of 3
cells away from the robot, also causing a reward of -20. Weawdiscount factor of 0.9.

When formulating the BAPOMDP, the robot's motion model @tatinistic), the observation
probabilities and the rewards are assumed to be known. Watamaia separate count vec-
tor for each person, representing the number of times theyenm each direction, i.e.p! =
(¢}VA7 ¢}Va ¢1Ea ¢}Sv ¢11/V)1 ¢2 = ( ?VA7 ¢?Va ¢2E7 ¢QS7 ¢12/V) We assume a p”Qﬁ(l) = (25 37 17 27 2)

for person 1 and3 = (2,1, 3,2, 2) for person 2, while in reality person 1 moves with probaieiit
Pr = (0.3,0.4,0.2,0.05,0.05) and person 2 wittPr = (0.1,0.05,0.8,0.03,0.02). We run 200
simulations, each consisting of 100 episodes (of at mosiM® steps). The count vectors’ distri-
butions are reset after every simulation, and the targsiopes reset after every episode. We use a
2-step lookahead search for planning in the BAPOMDP.

Figures 4 and 5 show how the average return and model accewalve over the 100 episodes (aver-
aged over the 200 simulations) with different belief apjpmeions. Figure 6 compares the planning
time taken by each approach. We observe from these figureththeesults for the Weighted Dis-
tance approximations are much better both in terms of retndhmodel accuracy, even with fewer
particles (16). Monte Carlo fails at providing any improvemhover the prior model, which indi-
cates it would require much more particles. Running Weigidestance with 16 particles require
less time than both Monte Carlo and Most Probable with 6Ziglast showing that it can be more
time efficient for the performance it provides in complexiemwment.
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6 Conclusion

The objective of this paper was to propose a preliminarygiecitheoretic framework for learning
and acting in POMDPs under parameter uncertainty. Thissasumber of interesting challenges,
including (1) defining the appropriate model for POMDP pagggnuncertainty, (2) approximating
this model while maintaining performance guarantees, €8opming tractable belief updating, and
(4) planning action sequences which optimally trade-offlesation and exploitation.

We proposed a new model, the Bayes-Adaptive POMDP, and shtivat it can be approximated

to e-precision by a finite POMDP. We provided practical appr@sctor belief tracking and online

planning in this model, and validated these using two expenial domains. Results in the Follow
problem, showed that our approach is able to learn the mpatterns of two (simulated) individu-

als. This suggests interesting applications in humantrioberaction, where it is often essential that
we be able to reason and plan under parameter uncertainty.
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