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Abstract

Planning in partially observable environments remains a challenging problem, de-
spite significant recent advances in offline approximation techniques. A few on-
line methods have also been proposed recently, and proven tobe remarkably scal-
able, but without the theoretical guarantees of their offline counterparts. Thus it
seems natural to try to unify offline and online techniques, preserving the theo-
retical properties of the former, and exploiting the scalability of the latter. In this
paper, we provide theoretical guarantees on an anytime algorithm for POMDPs
which aims to reduce the error made by approximate offline value iteration algo-
rithms through the use of an efficient online searching procedure. The algorithm
uses search heuristics based on an error analysis of lookahead search, to guide the
online search towards reachable beliefs with the most potential to reduce error. We
provide a general theorem showing that these search heuristics are admissible, and
lead to complete andǫ-optimal algorithms. This is, to the best of our knowledge,
the strongest theoretical result available for online POMDP solution methods. We
also provide empirical evidence showing that our approach is also practical, and
can find (provably) near-optimal solutions in reasonable time.

1 Introduction

Partially Observable Markov Decision Processes (POMDPs) provide a powerful model for sequen-
tial decision making under state uncertainty. However exact solutions are intractable in most do-
mains featuring more than a few dozen actions and observations. Significant efforts have been
devoted to developing approximate offline algorithms for larger POMDPs [1, 2, 3, 4]. Most of these
methods compute a policy over the entire belief space. This is both an advantage and a liability.
On the one hand, it allows good generalization to unseen beliefs, and this has been key to solving
relatively large domains. Yet it makes these methods impractical for problems where the state space
is too large to enumerate. A number of compression techniques have been proposed, which han-
dle large state spaces by projecting into a sub-dimensionalrepresentation [5, 6]. Alternately online
methods are also available [7, 8, 9, 10, 11, 12]. These achieve scalability by planning only at execu-
tion time, thus allowing the agent to only consider belief states that can be reached over some (small)
finite planning horizon. However despite good empirical performance, both classes of approaches
lack theoretical guarantees on the approximation. So it would seem we are constrained to either
solving small to mid-size problems (near-)optimally, or solving large problems possibly badly.

This paper suggests otherwise, arguing that by combining offline and online techniques, we can
preserve the theoretical properties of the former, while exploiting the scalability of the latter. In
previous work [12], we introduced an anytime algorithm for POMDPs which aims to reduce the
error made by approximate offline value iteration algorithms through the use of an efficient online
searching procedure. The algorithm uses search heuristicsbased on an error analysis of lookahead
search, to guide the online search towards reachable beliefs with the most potential to reduce error. In

1



this paper, we derive formally the heuristics from our errorminimization point of view and provide
theoretical results showing that these search heuristics are admissible, and lead to complete andǫ-
optimal algorithms. This is, to the best of our knowledge, the strongest theoretical result available
for online POMDP solution methods. Furthermore the approach works well with factored state
representations, thus further enhancing scalability, as suggested by earlier work [2]. We also provide
empirical evidence showing that our approach is computationally practical, and can find (provably)
near-optimal solutions within a smaller overall time than previous online methods.

2 Background: POMDP

A POMDP is defined by a tuple(S, A, Ω, T, R, O, γ) whereS is the state space,A is the action
set, Ω is the observation set,T : S × A × S → [0, 1] is the state-to-state transition function,
R : S × A → R is the reward function,O : Ω × A × S → [0, 1] is the observation function,
andγ is the discount factor. In a POMDP, the agent often does not know the current state with full
certainty, since observations provide only a partial indicator of state. To deal with this uncertainty,
the agent maintains a belief stateb(s), which expresses the probability that the agent is in each state
at a given time step. After each step, the belief stateb is updated using Bayes rule. We denote the
belief update functionb′ = τ(b, a, o), defined asb′(s′) = ηO(o, a, s′)

∑
s∈S T (s, a, s′)b(s), where

η is a normalization constant ensuring
∑

s∈S b′(s) = 1.

Solving a POMDP consists in finding an optimal policy,π∗ : ∆S → A, which specifies the best
actiona to do in every belief stateb, that maximizes the expectedreturn (i.e., expected sum of
discounted rewards over the planning horizon) of the agent.We can find the optimal policy by
computing the optimal value of a belief state over the planning horizon. For the infinite horizon, the
optimal value function is defined asV ∗(b) = maxa∈A[R(b, a) + γ

∑
o∈Ω P (o|b, a)V ∗(τ(b, a, o))],

whereR(b, a) represents the expected immediate reward of doing actiona in belief stateb and
P (o|b, a) is the probability of observingo after doing actiona in belief stateb. This probability can
be computed according toP (o|b, a) =

∑
s′∈S O(o, a, s′)

∑
s∈S T (s, a, s′)b(s). We also denote the

valueQ∗(b, a) of a particular actiona in belief stateb, as the return we will obtain if we performa in
b and then follow the optimal policyQ∗(b, a) = R(b, a) + γ

∑
o∈Ω P (o|b, a)V ∗(τ(b, a, o)). Using

this, we can define the optimal policyπ∗(b) = argmaxa∈A Q∗(b, a).

While any POMDP problem has infinitely many belief states, ithas been shown that the optimal
value function of a finite-horizon POMDP is piecewise linearand convex. Thus we can define the
optimal value function and policy of a finite-horizon POMDP using a finite set of|S|-dimensional
hyper plans, calledα-vectors, over the belief state space. As a result, exact offline value iteration
algorithms are able to computeV ∗ in a finite amount of time, but the complexity can be very high.
Most approximateofflinevalue iteration algorithms achieve computational tractability by selecting
a small subset of belief states, and keeping only thoseα-vectors which are maximal at the selected
belief states [1, 3, 4]. The precision of these algorithms depend on the number of belief points and
their location in the space of beliefs.

3 Online Search in POMDPs

Contrary to offline approaches, which compute a complete policy determining an action for every
belief state, an online algorithm takes as input the currentbelief state and returns the single action
which is the best for thisparticular belief state. The advantage of such an approach is that it only
needs to consider belief states that are reachable from the current belief state. This naturally provides
a small set of beliefs, which could be exploited as in offline methods. But in addition, since online
planning is done at every step (and thus generalization between beliefs is not required), it is sufficient
to calculate only themaximal valuefor the current belief state, not the full optimalα-vector. A
lookahead search algorithm can compute this value in two simple steps.

First we build a tree of reachable belief states from the current belief state. The current belief is the
top node in the tree. Subsequent belief states (as calculated by theτ(b, a, o) function) are represented
using OR-nodes (at which we must choose an action) and actions are included in between each layer
of belief nodes using AND-nodes (at which we must consider all possible observations). Note that
in general the belief MDP could have a graph structure with cycles. Our algorithm simply handle
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such structure by unrolling the graph into a tree. Hence, if we reach a belief that is already elsewhere
in the tree, it will be duplicated.1

Second, we estimate the value of the current belief state by propagating value estimates up from the
fringe nodes, to their ancestors, all the way to the root. An approximate value function is generally
used at the fringe of the tree to approximate the infinite-horizon value. We are particularly interested
in the case where a lower bound and an upper bound on the value of the fringe belief states is
available. We pay special attention to this case because it allows the use of branch & bound pruning
in the tree, thus potentially significantly cutting down on the number of nodes that must be expanded
during the search. The lower and upper bounds can be propagated to parent nodes according to:

UT (b) =

{
U(b) if b is a leaf inT ,
maxa∈A UT (b, a) otherwise; (1)

UT (b, a) = RB(b, a) + γ
∑

o∈Ω

P (o|b, a)UT (τ(b, a, o)); (2)

LT (b) =

{
L(b) if b is a leaf inT ,
maxa∈A LT (b, a) otherwise; (3)

LT (b, a) = RB(b, a) + γ
∑

o∈Ω

P (o|b, a)LT (τ(b, a, o)); (4)

whereUT (b) andLT (b) represent the upper and lower bounds onV ∗(b) associated to belief state
b in the treeT , UT (b, a) andLT (b, a) represent corresponding bounds onQ∗(b, a), andL(b) and
U(b) are the bounds on fringe nodes, typically computed offline.

An important motivation for doing an online search is that itallows us to have a value estimate at the
current belief which has lower error than the estimate at thefringe nodes. This follows directly from
the result by Puterman [14] showing that a completek-step lookahead multiplies the error bound on
the approximate value function used at the fringe byγk, and therefore reduces the error bound.

Of course ak-step lookahead search has complexity exponential ink, and may explore belief states
that have very small probabilities of occurring (and an equally small impact on the value function)
as well as exploring suboptimal actions (which have no impact on the value function). We would
evidently prefer to have a more efficient online algorithm, which can guarantee equivalent or better
error bounds. In particular, we believe that the best way to achieve this is to have a search algorithm
which uses estimates of error reduction as a criteria to guide the search over the reachable beliefs.

4 Anytime Error Minimization Search

In this section, we review the Anytime Error Minimization Search (AEMS) algorithm we had first
introduced in [12] and present a novel mathematical derivation of the heuristics that we had sug-
gested. We also provide new theoretical results describingsufficient conditions under which the
heuristics are guaranteed to yieldǫ-optimal solutions.

Our approach uses a best-first search of the belief reachability tree, where error minimization (at the
root node) is used as the search criteria to select which fringe nodes to expand next. Thus we need a
way to express the error on the current belief (i.e. root node) as a function of the error at the fringe
nodes. This is provided in Theorem 1. Let us denote:

• (i) F(T ), the set of fringe nodes of a treeT ; (ii) eT (b) = V ∗(b)−LT (b), the error function
for nodeb in the treeT ; (iii) e(b) = V ∗(b) − L(b), the error at a fringe nodeb ∈ F(T );
(iv) h

b0,b
T , the unique action/observation sequence that leads from the rootb0 to beliefb in

treeT ; (v) d(h), the depth of an action/observation sequenceh (number of actions); and

• (vi) P (h|b0, π
∗) =

∏d(h)
i=1 P (hi

o|b
hi−1

0 , hi
a)π∗(bhi−1 , hi

a), the probability of executing the
action/observation sequenceh if we follow the optimal policyπ∗ from the root nodeb0

(wherehi
a andhi

o refers to theith action and observation in the sequenceh, andbhi is the
belief obtained after taking thei first actions and observations from beliefb. π∗(b, a) is the
probability that the optimal policy chooses actiona in belief b).

1We are considering using a technique proposed in the LAO* algorithm [13] to handle cycle, but we have
not investigated this fully, especially in terms of how it affects the heuristic value presented below.
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By abuse of notation, we will useb to represent both a belief node in the tree and its associated
belief2.

Theorem 1. In any treeT , eT (b0) ≤
∑

b∈F(T ) γd(h
b0,b

T
)P (hb0,b

T |b0, π
∗)e(b).

Proof. Consider an arbitrary parent nodeb in tree T and let’s denotêaT
b = argmaxa∈A LT (b, a). We

haveeT (b) = V ∗(b) − LT (b). If âT
b = π∗(b), then eT (b) = γ

P
o∈Ω P (o|b, π∗(b))e(τ (b, π∗(b), o)).

On the other hand, when̂aT
b 6= π∗(b), then we know thatLT (b, π∗(b)) ≤ LT (b, âT

b ) and therefore
eT (b) ≤ γ

P
o∈Ω P (o|b, π∗(b))e(τ (b, π∗(b), o)). Consequently, we have the following:

eT (b) ≤

(
e(b) if b ∈ F(T )
γ

P
o∈Ω

P (o|b, π∗(b))eT (τ (b, π∗(b), o)) otherwise

TheneT (b0) ≤
P

b∈F(T ) γd(h
b0,b

T
)P (hb0,b

T |b0, π
∗)e(b) can be easily shown by induction.

4.1 Search Heuristics

From Theorem 1, we see that the contribution of each fringe node to the error inb0 is simply

the termγd(h
b0,b

T
)P (hb0,b

T |b0, π
∗)e(b). Consequently, if we want to minimizeeT (b0) as quickly as

possible, we should expand fringe nodes reached by the optimal policy π∗ that maximize the term

γd(h
b0,b

T
)P (hb0,b

T |b0, π
∗)e(b) as they offer the greatest potential to reduceeT (b0). This suggests us

a sound heuristic to explore the tree in a best-first-search way. Unfortunately we do not knowV ∗

nor π∗, which are required to compute the termse(b) andP (hb0,b
T |b0, π

∗); nevertheless, we can
approximate them. First, the terme(b) can be estimated by the difference between the lower and
upper bound. We definêe(b) = U(b)−L(b) as an estimate of the error introduced by our bounds at
fringe nodeb. Clearly,ê(b) ≥ e(b) sinceU(b) ≥ V ∗(b).

To approximateP (hb0,b
T |b0, π

∗), we can view the termπ∗(b, a) as the probability that actiona is
optimal in beliefb. Thus, we consider an approximate policyπ̂T that represents the probability
that actiona is optimal in belief stateb given the boundsLT (b, a) andUT (b, a) that we have on
Q∗(b, a) in treeT . More precisely, to computêπT (b, a), we considerQ∗(b, a) as a random vari-
able and make some assumptions about its underlying probability distribution. Once cumulative
distribution functionsF b,a

T , s.t. F
b,a
T (x) = P (Q∗(b, a) ≤ x), and their associated density func-

tions f
b,a
T are determined for each(b, a) in treeT , we can compute the probabilitŷπT (b, a) as

π̂T (b, a) =
∫ ∞

−∞ f
b,a
T (x)

∏
a′ 6=a F

b,a′

T (x)dx. Computing this integral3 may not be computationally

efficient depending on how we define the functionsf
b,a
T . We consider two approximations.

One possible approximation is to simply compute the probability that the Q-value of a given action
is higher than its parent belief state value (instead of all actions’ Q-value). In this case, we get
π̂T (b, a) =

∫ ∞

−∞ f
b,a
T (x)F b

T (x)dx, whereF b
T is the cumulative distribution function forV ∗(b),

given boundsLT (b) andUT (b) in treeT . Hence by considering bothQ∗(b, a) andV ∗(b) as random
variables with uniform distributions between their respective lower and upper bounds, we get:

π̂T (b, a) =

{
η

(UT (b,a)−LT (b))2

UT (b,a)−LT (b,a) if UT (b, a) > LT (b),

0 otherwise.
(5)

whereη is a normalization constant such that
∑

a∈A π̂T (b, a) = 1. Notice that if the density function
is 0 outside the interval between the lower and upper bound, then π̂T (b, a) = 0 for dominated
actions, thus they are implicitly pruned from the search tree by this method.

A second practical approximation is:

π̂T (b, a) =

{
1 if a = argmaxa′∈A UT (b, a′),
0 otherwise. (6)

2e.g.
P

b∈F(T ) should be interpreted as a sum over all fringe nodes in the tree, whilee(b) to be the error
associated to the belief in fringe nodeb.

3This integral comes from the fact that, if we would considerQ∗(b, a) discrete, thenP (∀a′ 6=
a, Q∗(b, a′) ≤ Q∗(b, a)) =

P
x

P (Q∗(b, a) = x)
Q

a′ 6=a
P (Q∗(b, a′) ≤ x). The integral is just a gen-

eralization of this term for continuous random variables
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which simply selects the action that maximizes the upper bound. This restricts exploration of the
search tree to those fringe nodes that are reached by sequence of actions that maximize the upper
bound of their parent belief state, as done in theAO∗ algorithm [15]. The nice property of this
approximation is that these fringe nodes are the only nodes that can potentially reduce the upper
bound inb0.

Using either of these two approximations forπ̂T , we can estimate the error contributionêT (b0, b) of

a fringe nodeb on the value of root beliefb0 in treeT , as:êT (b0, b) = γd(h
b0,b

T
)P (hb0,b

T |b0, π̂T )ê(b).
Using this as a heuristic, the next fringe nodeb̃(T ) to expand in treeT is defined as̃b(T ) =

argmaxb∈F(T ) γd(h
b0,b

T
)P (hb0,b

T |b0, π̂T )ê(b). We useAEMS14 to denote the heuristic that usesπ̂T

as defined in Equation 5, andAEMS25 to denote the heuristic that usesπ̂T as defined in Equation 6.

4.2 Algorithm

Algorithm 1 presents the anytime error minimization search. Since the objective is to provide a
near-optimal action within a finite allowed online planningtime, the algorithm accepts two input
parameters:t, the online search time allowed per action, andǫ, the desired precision on the value
function.

Algorithm 1 AEMS: Anytime Error Minimization Search
Function SEARCH(t, ǫ)
Static : T : an AND-OR tree representing the current search tree.
t0 ← TIME()
while TIME()− t0 ≤ t and not SOLVED(ROOT(T ), ǫ) do

b∗ ← eb(T )
EXPAND(b∗)
UPDATEANCESTORS(b∗)

end while
return argmaxa∈A LT (ROOT(T ), a)

The EXPAND function simply does a one-step lookahead under the nodeb∗ by adding the next action
and belief nodes to the treeT and computing their lower and upper bounds according to Equations
1-4. After a node is expanded, the UPDATEANCESTORSfunction simply recomputes the bounds of
its ancestors according to Equations determiningb′(s′), V ∗(b), P (o|b, a) andQ∗(b, a), as outlined
in Section 2. It also recomputes the probabilitiesπ̂T (b, a) and the best actions for each ancestor
node. To find quickly the node that maximizes the heuristic inthe whole tree, each node in the tree
contains a reference to the best node to expand in their subtree. These references are updated by
the UPDATEANCESTORSfunction without adding more complexity, such that when this function
terminates, we always know immediatly which node to expand next, as its reference is stored in the
root node. The search terminates whenever there is no more time available, or we have found anǫ-
optimal solution (verified by the SOLVED function). After an action is executed in the environment,
the treeT is updated such that our new current belief state becomes theroot of T ; all nodes under
this new root can be reused at the next time step.

Since this is an anytime algorithm, overall complexity willbe constrained by the time available.
Nonetheless we can examine the complexity of a single iteration of the search procedure. The first
step is to pick a node to expand. This is inO(1) since it is stored in memory. The EXPAND function
has complexityO(|S|2|A||Ω|) since it requires computingτ(b, a, o) for |A||Ω| children nodes (the
evaluation of the upper and lower bound is more efficient). The update of the ancestor nodes is in
O(D(|Ω|+ |A|CH)), whereD is the maximal depth of the tree, since it requires backing upthrough
at mostD levels of the tree, and at each level summing over observations (|Ω|) and evaluating the
heuristic (CH ) for each action (|A|).

4This heuristic is slightly different from the AEMS1 heuristic we had introduced in [12].
5This is the same as the AEMS2 heuristic we had introduced in [12].
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4.3 Completeness and Optimality

We now provide some sufficient conditions under which our heuristic search is guaranteed to con-
verge to anǫ-optimal policy after a finite number of expansions. We show that the heuristics pro-
posed in Section 4.1 satisfy those conditions, and therefore areadmissible. Before we present the
main theorems, we provide some useful preliminary lemmas.

Lemma 1. In any treeT , the approximate error contribution̂eT (b0, bd) of a belief nodebd at depth
d is bounded bŷeT (b0, bd) ≤ γd supb ê(b).

Proof. SinceP (hb0,b

T |b0, π̂T ) ≤ 1 and ê(b) ≤ supb′ ê(b′) for all belief b, thenêT (b0, bd) ≤ γd supb ê(b).

For the following lemma and theorem, we will denoteP (ho|b0, ha) =
∏d(h)

i=1 P (hi
o|b

hi−1

0 , hi
a) the

probability of observing the sequence of observationsho in some action/observation sequenceh,
given that the sequence of actionsha in h is performed from current beliefb0, andF̂(T ) ⊆ F(T )

the set of all fringe nodes inT such thatP (hb0,b
T |b0, π̂T ) > 0, for π̂T defined as in Equation 6 (i.e.

the set of fringe nodes reached by a sequence of actions in which each action maximizesUT (b, a)
in its respective belief state.)

Lemma 2. For any treeT , ǫ > 0, andD such thatγD supb ê(b) ≤ ǫ, if for all b ∈ F̂(T ), either
d(hb0,b

T ) ≥ D or there exists an ancestorb′ of b such that̂eT (b′) ≤ ǫ, thenêT (b0) ≤ ǫ.

Proof. Let’s denoteâT
b = argmaxa∈A UT (b, a). Notice that for any treeT , and parent beliefb ∈ T ,

êT (b) = UT (b) − LT (b) ≤ UT (b, âT
b ) − LT (b, âT

b ) = γ
P

o∈Ω P (o|b, âT
b )êT (τ (b, âT

b , o)). Consequently,
the following recurrence is an upper bound onêT (b):

êT (b) ≤

8
><
>:

ê(b) if b ∈ F(T )
ǫ if êT (b) ≤ ǫ
γ

P
o∈Ω

P (o|b, âT
b )êT (τ (b, âT

b , o)) otherwise

By unfolding the recurrence forb0, we get êT (b0) ≤
P

b∈A(T ) γd(h
b0,b

T
)P (hb0,b

T,o |b0, h
b0,b

T,a )ê(b) +

ǫ
P

b∈B(T ) γd(h
b0,b

T
)P (hb0,b

T,o |b0, h
b0,b
T,a ), whereB(T ) is the set of parent nodesb′ having a descendant inbF(T )

such that̂eT (b′) ≤ ǫ andA(T ) is the set of fringe nodesb′′ in bF(T ) not having an ancestor inB(T ). Hence
if for all b ∈ bF(T ), d(hb0,b

T ) ≥ D or there exists an ancestorb′ of b such that̂eT (b′) ≤ ǫ, then this means

that for allb in A(T ), d(hb0,b
T ) ≥ D, and therefore,̂eT (b0) ≤ γD supb ê(b)

P
b′∈A(T ) P (hb0,b′

T,o |b0, h
b0,b′

T,a ) +

ǫ
P

b′∈B(T ) P (hb0,b′

T,o |b0, h
b0,b′

T,a ) ≤ ǫ
P

b′∈A(T )∪B(T ) P (hb0,b′

T,o |b0, h
b0,b′

T,a ) = ǫ.

Theorem 2. For any treeT andǫ > 0, if π̂T is defined such thatinfb,T |êT (b)>ǫ π̂T (b, âT
b ) > 0 for

âT
b = argmaxa∈A UT (b, a), then Algorithm 1 using̃b(T ) is complete andǫ-optimal.

Proof. If γ = 0, then the proof is immediate. Consider now the case whereγ ∈ (0, 1). Clearly, sinceU
is bounded above andL is bounded below, then̂e is bounded above. Now usingγ ∈ (0, 1), we can find a
positive integerD such thatγD supb ê(b) ≤ ǫ. Let’s denoteAT

b the set of ancestor belief states ofb in the
treeT , and given a finite setA of belief nodes, let’s definêemin

T (A) = minb∈A êT (b). Now let’s defineTb =

{T |Tfinite, b ∈ bF(T ), êmin
T (AT

b ) > ǫ} andB = {b|ê(b) infT∈Tb
P (hb0,b

T |b0, π̂T ) > 0, d(hb0,b
T ) ≤ D}.

Clearly, by the assumption thatinfb,T |êT (b)>ǫ π̂T (b, âT
b ) > 0, thenB contains all belief statesb within depth

D such that̂e(b) > 0, P (hb0,b
T,o |b0, h

b0,b
T,a ) > 0 and there exists a finite treeT whereb ∈ bF(T ) and all ancestors

b′ of b haveêT (b′) > ǫ. Furthermore,B is finite since there are only finitely many belief states within depth

D. Hence there exist aEmin = minb∈B γd(h
b0,b

T
)ê(b) infT∈Tb

P (hb0,b
T |b0, π̂T ). Clearly,Emin > 0 and we

know that for any treeT , all beliefsb in B ∩ bF(T ) have an approximate error contributionêT (b0, b) ≥ Emin.
SinceEmin > 0 andγ ∈ (0, 1), there exist a positive integerD′ such thatγD′

supb ê(b) < Emin. Hence
by Lemma 1, this means that Algorithm 1 cannot expand any nodeat depthD′ or beyond before expanding
a treeT whereB ∩ bF(T ) = ∅. Because there are only finitely many nodes within depthD′, then it is clear
that Algorithm 1 will reach such treeT after a finite number of expansions. Furthermore, for this treeT , since
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B ∩ bF(T ) = ∅, we have that for all beliefsb ∈ bF(T ), eitherd(hb0,b
T ) ≥ D or êmin

T (AT
b ) ≤ ǫ. Hence by

Lemma 2, this implies that̂eT (b0) ≤ ǫ, and consequently Algorithm 1 will terminate after a finite number of
expansions (SOLVED(b0, ǫ) will evaluate to true) with anǫ-optimal solution (sinceeT (b0) ≤ êT (b0)).

From this last theorem, we notice that we can potentially develop many different admissible
heuristics for Algorithm 1; the main sufficient condition being that π̂T (b, a) > 0 for a =
argmaxa′∈A UT (b, a′). It also follows from this theorem that the two heuristics described above,
AEMS1 and AEMS2, are admissible. The following corollariesprove this:

Corollary 1. Algorithm 1, using̃b(T ), with π̂T as defined in Equation 6 is complete andǫ-optimal.

Proof. By definition of π̂T , π̂T (b, âT
b ) = 1 for all b,T . Hence,infb,T |êT (b)>ǫ π̂T (b, âT

b ) = 1 and therefore it
immediately follows from Theorem 2 that Algorithm 1 is complete andǫ-optimal.

Corollary 2. Algorithm 1, using̃b(T ), with π̂T as defined in Equation 5 is complete andǫ-optimal.

Proof. We first notice that(UT (b, a)−LT (b))2/(UT (b, a)−LT (b, a)) ≤ êT (b, a), sinceLT (b) ≥ LT (b, a)
for all a. Furthermore,̂eT (b, a) ≤ supb′ ê(b′). Therefore the normalization constantη ≥ (|A| supb ê(b))−1.
For âT

b = argmaxa∈A UT (b, a), we haveUT (b, âT
b ) = UT (b), and thereforeUT (b, âT

b ) − LT (b) = êT (b).
Hence this means that̂πT (b, âT

b ) = η(êT (b))2/êT (b, âT
b ) ≥ (|A|(supb′ ê(b′))2)−1(êT (b))2 for all T , b.

Hence, for anyǫ > 0, infb,T |êT (b)>ǫ π̂T (b, âT
b ) ≥ (|A|(supb ê(b))2)−1ǫ2 > 0. Therefore it immediatly

follows from Theorem 2 that Algorithm 1 is complete andǫ-optimal.

5 Experiments

In this section we present a brief experimental evaluation of Algorithm 1, showing that in addition to
its useful theoretical properties, the empirical performance matches, and in some cases exceeds, that
of other online approaches. The algorithm is evaluated in three large POMDP environments: Tag
[1], RockSample [3] and FieldVisionRockSample (FVRS) [12]; all are implemented using a factored
state representation. In each environments we compute the Blind policy6 to get a lower bound
and the FIB algorithm [16] to get an upper bound. We then compare performance of Algorithm 1
with both heuristics (AEMS1 and AEMS2) to the performance achieved by other online approaches
(Satia [7], BI-POMDP [8], RTBSS [11]). For all approaches weimpose a real-time constraint of
1 sec/action, and measure the following metrics: average return, average error bound reduction7

(EBR), average lower bound improvement8 (LBI), number of belief nodes explored at each time
step, percentage of belief nodes reused in the next time step, and the average online time per action
(< 1s means the algorithm found anǫ-optimal action)9. Satia, BI-POMDP, AEMS1 and AEMS2
were all implemented using the same algorithm since they differ only in their choice of search
heuristic used to guide the search. RTBSS served as a base line for a completek-step lookahead
search using branch & bound pruning. All results were obtained on a Xeon 2.4 Ghz with 4Gb of
RAM; but the processes were limited to use a max of 1Gb of RAM.

Table 1 shows the average value (over 1000+ runs) of the different statistics. As we can see from
these results, AEMS2 provides the best average return, average error bound reduction and average
lower bound improvement in all considered environments. The higher error bound reduction and
lower bound improvement obtained by AEMS2 indicates that itcan guarantee performance closer
to the optimal. We can also observe that AEMS2 has the best average reuse percentage, which
indicates that AEMS2 is able to guide the search toward the most probable nodes and allows it to
generally maintain a higher number of belief nodes in the tree. Notice that AEMS1 did not perform
very well, except in FVRS[5,7]. This could be explained by the fact that our assumption that the
values of the actions are uniformly distributed between thelower and upper bounds is not valid in
the considered environments.

6The policy obtained by taking the combination of the|A| α-vectors that each represents the value of a
policy performing the same action in every belief state.

7The error bound reduction is defined as1− UT (b0)−LT (b0)
U(b0)−L(b0)

, when the search process terminates onb0

8The lower bound improvement is defined asLT (b0)− L(b0), when the search process terminates onb0
9For RTBSS, the maximum search depth under the 1sec time constraint is show in parenthesis.

7



Figure 1: Comparison of different online search algorithm
in different environments.

Heuristic / Belief Reuse Time
Algorithm Return EBR (%) LBI Nodes (%) (ms)

± 0.01 ± 0.1 ± 0.01 - ±0.1 ±1

Tag(|S| = 870, |A| = 5, |Ω| = 30)
RTBSS(5) -10.30 22.3 3.03 45067 0 580

Satia & Lave -8.35 22.9 2.47 36908 10.0 856
AEMS1 -6.73 49.0 3.92 43693 25.1 814

BI-POMDP -6.22 76.2 7.81 79508 54.6 622
AEMS2 -6.19 76.3 7.81 80250 54.8 623

RockSample[7,8](|S| = 12545, |A| = 13, |Ω| = 2)
Satia & Lave 7.35 3.6 0 509 8.9 900

AEMS1 10.30 9.5 0.90 579 5.3 916
RTBSS(2) 10.30 9.7 1.00 439 0 896

BI-POMDP 18.43 33.3 4.33 2152 29.9 953
AEMS2 20.75 52.4 5.30 3145 36.4 859

FVRS[5,7](|S| = 3201, |A| = 5, |Ω| = 128)
RTBSS(1) 20.57 7.7 2.07 516 0 254

BI-POMDP 22.75 11.1 2.08 4457 0.4 923
Satia & Lave 22.79 11.1 2.05 3683 0.4 947

AEMS1 23.31 12.4 2.24 3856 1.4 942
AEMS2 23.39 13.3 2.35 4070 1.6 944
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Figure 2:Evolution of the upper / lower bounds on the initial
belief state inRockSample[7,8].

We briefly compared AEMS2 to state of the art offline algorithms. In Tag, the best result in terms
of returns comes from the Perseus algorithm which has an average return of−6.17 but requires
1670 seconds of offline time [4], meanwhile AEMS2 obtained−6.19 but only required 1 second
of offline time to compute the lower and upper bounds. Again inRockSample[7,8], HSVI, the best
offline approach, obtains an average return of 20.6 and requires 1003 seconds of offline time [3],
while AEMS2 obtained 20.75 but only requires 25 seconds of offline time to compute the lower and
upper bounds.

Finally, we can also examine how fast the lower and upper bounds converge if we let the algorithm
run up to 1000 seconds on the initial belief state. This givesan indication of which heuristic would be
the best if we extended online planning time past 1sec. Results for RockSample[7,8] are presented
in Figure 2, showing that the bounds converge much more quickly for the AEMS2 heuristic.

6 Conclusion

In this paper we examined theoretical properties of online heuristic search algorithms for POMDPs.
To this end, we described a general online search framework,and examined two admissible heuris-
tics to guide the search. The first assumes thatQ∗(b, a) is distributed uniformly at random be-
tween the bounds (Heuristic AEMS1), the second favors an optimistic point of view, and assume
theQ∗(b, a) is equal to the upper bound (Heuristic AEMS2). We provided a general theorem that
shows that AEMS1 and AEMS2 are admissible and lead to complete andǫ-optimal algorithms. Our
experimental work supports the theoretical analysis, showing that AEMS2 is able to outperform on-
line approaches. Yet it is equally interesting to note that AEMS1 did not perform nearly as well.
This highlights the fact that not all admissible heuristicsare equally useful. Thus it will be interest-
ing in the future to develop further guidelines and theoretical results describing which subclasses of
heuristics are most appropriate.
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