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Stéphane Ross1, Brahim Chaib-draa2 and Joelle Pineau1

1School of Computer Science
McGill University
Montreal, Canada

{sross12,jpineau}@cs.mcgill.ca

2Department of Computer Science
Laval University

Quebec City, Canada
chaib@ift.ulaval.ca

Abstract— We consider the problem of optimal control in
continuous and partially observable environments when the
parameters of the model are not known exactly. Partially
Observable Markov Decision Processes (POMDPs) provide a
rich mathematical model to handle such environments but
require a known model to be solved by most approaches. This
is a limitation in practice as the exact model parameters are
often difficult to specify exactly. We adopt a Bayesian approach
where a posterior distribution over the model parameters is
maintained and updated through experience with the environ-
ment. We propose a particle filter algorithm to maintain the
posterior distribution and an online planning algorithm, based
on trajectory sampling, to plan the best action to perform
under the current posterior. The resulting approach selects
control actions which optimally trade-off between 1) exploring
the environment to learn the model, 2) identifying the system’s
state, and 3) exploiting its knowledge in order to maximize
long-term rewards. Our preliminary results on a simulated
robot navigation problem show that our approach is able to
learn good models of the sensors and actuators, and performs
as well as if it had the true model.

I. INTRODUCTION

Many robot planning and control problems are charac-
terized by uncertainty inherent in the robot’s sensors and
actuators. Partially Observable Markov Decision Processes
(POMDPs) allow to take these uncertainties into account
during the action selection process, such that optimal actions
(or controls) are selected. Many researchers have proposed
efficient algorithms for planning in large scale domains,
provided an exact model of the robot’s sensors and actuators
[1], [2], [3], [4], [5]. These approaches are unfortunately
of limited use when models of the robot’s sensors and
dynamics are poor or unavailable. A few approaches have
been proposed to cope with domains lacking such a model
[6], [7], [8], [9] but these approaches usually require very
large amounts of data, and do not address the problem of
how to gather this data efficiently, or how to compose with
partially specified models during the planning phase.

Bayesian reinforcement learning approaches [10], [11],
[12] have successfully address the joint problem of optimal
action selection under parameter uncertainty. In Bayesian
reinforcement learning, the robot starts with a prior distri-
bution over model parameters, the posterior distribution is
updated as the robot interacts with its environment, and ac-

tion selection is optimized with respect to the posterior over
model parameters. This framework is particularly interesting
as it provides a theoretically optimal solution to the well-
known exploration-exploitation problem in reinforcement
learning, i.e. finding a policy which, given a prior distribution
over model parameters, will maximize expected return over
a finite (or infinite) planning horizon. Recent work has
extended these techniques to domains where the state can
only be partially inferred through an observation function
[13], as well as applying these ideas to simple robot tasks
[14]. However these methods have thus far been limited to
domains with finite state and action spaces.

The main contribution of this paper is to extend the
bayes-optimal reinforcement learning framework to the case
of multi-dimensional continuous POMDPs. Our approach
assumes that the dimensionnality of the state, action and
observation spaces are known, and that the robot can be mod-
eled as a general Gaussian system (not necessarily linear).
Normal-Wishart priors are used to model the prior knowledge
of the unknown means and covariance matrices. The poste-
rior distribution is approximated by a finite mixture using a
particle filter algorithm. Planning is conducted online, using
the current posterior distribution, by sampling sequences
of actions and observations, and selecting actions which
maximize rewards over a fixed planning horizon. While we
assume the reward function is known, and dynamics are
Gaussian, the approach can be easily extended to cases
where these assumptions are removed, as long as a family of
distributions specifying these functions can be defined. We
validate our approach on a simple robot navigation problem.
Results indicate that our approach is able to learn a good
model of the system, and achieves near-optimal performance
after a short learning time.

II. BACKGROUND

A. Partially Observable Markov Decision Processes

A POMDP is defined by a set of states S, a set of
actions A and a set of observations Z. The dynamics of
the system is specified by a discrete-time transition function
T : S × A × S → [0,∞], where T (s, a, s′) = f(s′|s, a)
defines the conditional probability density over the next state
s′ of the system, given the current state is s and action



a was executed. The perception of the system’s state is
specified by the observation function O : S × A × Z →
[0,∞], where O(s′, a, z) = f(z|s′, a) defines the conditional
probability density over the observation z obtained when
entering next state s′ after doing action a. For convenience
of notation, we can define a joint transition-observation
function: P (s, a, s′, z) = T (s, a, s′)O(s′, a, z). Finally, the
reward function R : S×A→ R specifies the reward obtained
by the agent at each time step. The system is assumed to be
time-invariant.

While the state is only partially observable, it can be
tracked using Baye’s rule. Starting from a prior probability
density function (p.d.f.) b0 over the initial state of the
environment, the conditional p.d.f. over the current state
of the environment given the entire history of actions and
observations, called the belief state, is computed as follows:

bt(s′) =
1

f(zt|bt−1, at−1)

∫
S

P (s, at−1, s
′, zt)bt−1(s)ds,

(1)
where f(z|b, a) =

∫
S

∫
S
P (s, a, s′, z)b(s)dsds′ is the condi-

tional probability density of observing z after doing action a
in belief b. f(zt|bt−1, at−1) acts as a normalization constant
such that

∫
S
bt(s)ds = 1.

The goal of the robot, when modeled as a POMDP, is
to choose an action selection strategy which maximizes its
expected sum of discounted rewards over the infinite horizon.
A policy that achieves this (for any given belief b) can be
computed by solving Bellman’s equation (Eqn 2):

V ∗(b) = max
a∈A

[∫
S

R(s, a)b(s)ds+ γ

∫
Z

f(z|b, a)V ∗(ba,z)dz
]

(2)
where ba,z is the next belief state obtained after performing
action a in belief b and then observing z.

The best action for a given belief b follows directly from
Eqn 2 (simply replacing the max by an argmax).

In the continuous case, we consider S ⊆ R
m, A ⊆ R

n

and Z ⊆ R
p, where m, n and p represent respectively the

dimensionality of the state, action and observation spaces.
We assume, as in [15], that m, n and p are finite and that
the action space A is bounded. For the transition function,
we assume a Gaussian model (not necessarily linear), such
that st = gT (st−1, at−1, Vt−1) where Vt ∼ Nk(µv,Σv),
a k-variate Normal distribution with mean vector µv and
covariance matrix Σv , and gT is a function yielding st
given the previous state st−1, the previous action at−1

and vector random variable Vt−1. Here we assume that
given a state s and action a, the function gT |s,a(v) =
gT (s, a, v) is a 1-1 mapping from R

k to S, such that its
inverse g−1

T |s,a(s
′) exists. Similarly, we also assume that the

observation function is specified by a Gaussian model of
the form zt = gO(st, at−1,Wt), where Wt ∼ Nl(µw,Σw)
and gO is a function yielding the observation zt given the
current state st, previous action at−1 and vector random
variable Wt such that gO|s′,a(w) = gO(s′, a, w) is invertible.
The framework we propose can be easily extended to other
families of distributions, assuming the posterior distribution

can be computed. Note that any linear model (e.g. additive
Gaussian noise) satisfies the assumptions we make on gT
and gO.

B. Bayesian Reinforcement Learning

The standard Bayesian reinforcement learning framework
uses Dirichlet distributions to represent the prior and pos-
terior distributions over the unknown transition probabilities
defining the model [10], [11], [12]. Dirichlet distributions are
convenient because they represent the probability that some
random variable follows a particular discrete distribution,
given the number of times each event has been observed thus
far. Dirichlet parameters can be estimated exactly by simply
counting the number of times each state transition occurred.
Planning is achieved by specifying an extended MDP model,
called Bayes-Adaptive MDP (BAMDP), where the Dirichlet
distribution parameters are included in the state space. The
transition function models how these parameters are updated
given a particular state transition.

When modeling a robot domain as a finite POMDP,
Dirichlet distributions can also be used to represent the prior
distribution over the unknown transition and observation
probabilities. However, an added complication arises due to
the fact that the state is not observable, therefore it is not
possible to know the exact values of the Dirichlet parameters.
To overcome this problem, some approaches assume access
to an oracle which can be queried to reveal the exact state
of the environment, and thus know exactly which Dirich-
let parameters should be udpated [14]. This assumption is
difficult to meet in many domains. Fortunately, an oracle is
not necessary since Baye’s rule can be applied to compute
the distribution over both the current state and the current
values of the Dirichlet parameters, yielding a posterior over
POMDP models that is represented by a mixture of Dirichlet
distributions [13]. Such methods have been shown to learn
good models of simple POMDP problems, without an oracle.

However, these approaches cannot be directly applied in
continuous spaces since Dirichlet distributions are limited
to discrete state spaces. In the continuous case, we need to
turn to other families of distributions to define the transition
and observation functions. In this paper, we focus on the
case where these functions depend on multivariate normal
random variables, with unknown mean vector and covariance
matrices. In such cases, the prior and posterior distribution
can be represented using a Normal-Wishart distribution.

C. Normal-Wishart Distribution

In multivariate statistics, the Wishart distribution defines
the distribution of the unbiased estimator of the covari-
ance matrix of a multivariate normal distribution. It is
parametrised by a degree of freedom n and a covariance
matrix Σ. However, it is often more convenient to express
its density function in terms of a precision matrix τ = Σ−1:

f(V |τ, n) ∝ |τ |n/2|V |(n−k−1)/2 exp(
−1
2
Tr(τV )). (3)



The concept of precision matrix τ = Σ−1 (the inverse of
the covariance matrix) can also be used to define the p.d.f
of a multivariate normal distribution with mean vector µ:

f(x|µ, τ) ∝ |τ |1/2 exp(
−1
2

(x− µ)T τ(x− µ)). (4)

A normal-Wishart distribution is the product of a mul-
tivariate normal and Wishart distributions. It is used in
bayesian statistics to represent the joint prior/posterior dis-
tribution over the unknown mean vector µ and unknown
precision matrix τ of a normally distributed vector random
variable X ∼ Nk(µ, τ−1). It is parametrised by four param-
eters (µ̂, ν, α, Ŝ) such that the density over the mean vector
µ = m and precision matrix τ = t is defined as:

f(m, t|µ̂, ν, α, Ŝ) = f(m|µ̂, νt)f(t|Ŝ, α) ∝
|t|(α−k)/2 exp(−1

2 Tr([Ŝ + ν(m− µ̂)(m− µ̂)T ]t)).
(5)

where f(m|µ̂, νt) represents the normal density (Eqn 4) on
µ = m|τ = t and f(t|Ŝ, α) the Wishart density (Eqn 3) on
τ = t.

An important result [16], states that if X follows a
multivariate normal distribution with unknown mean vector
µ and unknown precision matrix τ , and that the prior joint
distribution on (µ, τ) is a normal-Wishart distribution with
parameters (µ̂, ν, α, Ŝ), then the posterior joint distribution
on (µ, τ) after observing X = x is also a normal-Wishart
distribution with parameters (µ̂′, ν′, α′, Ŝ′) defined as fol-
lows:

µ̂′ = νµ̂+x
ν+1 ,

ν′ = ν + 1,
α′ = α+ 1,
Ŝ′ = Ŝ + ν

ν+1 (µ̂− x)(µ̂− x)T .

(6)

As we can see, the posterior distribution can be updated
quite easily online as new observations are made. The way
to interpret these parameters is that µ̂ is the sample mean,
ν is the number of samples taken to compute the sample
mean, while Ŝ and α relates to the sample covariance in
that Ŝ is the scatter matrix of the samples and α is such
that Ŝ

α is the sample covariance. Hence specifying a prior
for a multivariate normal distribution with unknown mean
and unknown precision matrix can be seen as creating an
artificial set of samples and taking the sample mean and
sample covariance from this set to define the normal-Wishart
prior parameters.

III. BAYES-ADAPTIVE CONTINUOUS POMDP

Our objective is to provide an optimal approach for
decision-making under model and state uncertainty in con-
tinuous domains. More concretely, the goal is to be able
to choose optimal action according to the posterior distri-
butions over unknown means and precision matrices defin-
ing the POMDP model. To achieve this, we adopt the

Bayesian RL perspective, and begin by creating an ex-
tended POMDP model, called the Bayes-Adaptive Contin-
uous POMDP (BACPOMDP), in which the normal-Wishart
parameters are included in the state space. Thus the belief
update operation in the BACPOMDP model (Eqn 1) will
compute a posterior over both the state of the system and
the normal-Wishart parameters. This allows us to track how
the parameters evolve as actions and observations are made
in the environment, thereby allowing us to consider the value
of learning information about the environment, as an integral
part of the planning.

A. Model Definition

Let NWk be the space of normal-Wishart parameters
for the vector random variable V defining the transition
probabilities, i.e. 4-tuples < µ̂, ν, α, Ŝ >∈ R

k×R×R×R
k2

,
where k is the dimensionality of V , and NW l be the space
of normal-Wishart parameters for the vector random variable
W defining the observation probabilities, where l is the
dimensionality of W . Let U be the update function, such
that for some < µ̂, ν, α, Ŝ >∈ NWk, and some observation
v ∈ R

k then < µ̂′, ν′, α′, Ŝ′ >= U(µ̂, ν, α, Ŝ, v), where
< µ̂′, ν′, α′, Ŝ′ > are defined as in equation 6. Similarly,
for any ψ ∈ NW l and w ∈ R

l, then U(ψ,w) updates the
normal-Wishart parameters in ψ with new observation w,
according to equation 6.

The BACPOMDP is defined as follows: the new state
space S′ = S × NWk × NW l, where S is the original
state space of the POMDP with unknown model parameters,
and the new action and observation space are the same as in
the original POMDP. To avoid confusion, we refer to these
extended states as hyperstates.

The transition-observation function P ′ of the
BACPOMDP specify the conditional probability density
f(s′, φ′, ψ′, z|s, φ, ψ, a) of moving from one hyperstate
(s, φ, ψ) to another hyperstate (s′, φ′, ψ′) by doing some
action a, and then observing z after such a transition.
Using our assumptions on gT and gO, we can recover
the values of V and W as follows: v = g−1

T |s,a(s
′)

and w = g−1
O|s′,a(z). Hence P ′ must ensure that the

parameters φ, ψ are updated properly for this transition:
i.e. φ′ = U(φ, g−1

T |s,a(s
′)) and ψ′ = U(ψ, g−1

O|s′,a(z)),
otherwise the probability density of transition is 0. Given
that these parameters are well updated, we have that the
joint density f(s′, z|s, a, φ, ψ) = f(s′|s, a, φ)f(z|s′, a, ψ) =
fV (g−1

T |s,a(s
′)|φ)JT |s,a(s′)fW (g−1

O|s′,a(z)|ψ)JO|s′,a(z). Here
fV (g−1

T |s,a(s
′)|φ) is the conditional p.d.f. of V given

normal-Wishart posterior φ and JT |s,a(s′) is the jacobian1

of the 1-1 transformation g−1
T |s,a evaluated at s′; similarly

for fW (g−1
O|s′,a(z)|ψ) and JO|s′,a(z).

Hence, we define the joint transition-observation function

1The absolute value of the determinant of the Jacobian matrix.



(analogous to the one in Sec. II-A) as:

P ′(s, φ, ψ, a, s′, φ′, ψ′, z) =
fV (g−1

T |s,a(s
′)|φ)JT |s,a(s′)fW (g−1

O|s′,a(z)|ψ)JO|s′,a(z)
Given φ′ = U(φ, g−1

T |s,a(s
′)), ψ′ = U(ψ, g−1

O|s′,a(z)).
(7)

Note that fV (v|φ) =
∫

Rk

∫
Rk2 f(v|m, t)f(m, t|φ)dtdm

where f(v|m, t) represents the multivariate normal density
function (Eqn 4) and f(m, t|φ) the normal-Wishart density
function (Eqn 5). fW (w|ψ) is obtained similarly by integrat-
ing over all mean vector and precision matrix.

The reward function of the BACPOMDP is taken directly
from the original POMDP: R′(s, φ, ψ, a) = R(s, a) (though
it could be learned through Bayesian updating as well).

The tuple (S′, A, Z, P ′, R′, γ) defines formally the
BACPOMDP. If b0 ∈ ∆S is the initial belief of the original
POMDP, and that φ0 ∈ NWk and ψ0 ∈ NW l are the
normal-Wishart prior parameters, then the initial belief of the
BACPOMDP is defined as b′0(s, φ, ψ) = b0(s)Iφ0(φ)Iψ0(ψ),
where I is the indicator function. Here, the belief state in
the BACPOMDP is a distribution over both state of the en-
vironment and values of the normal-Wishart parameters. The
model of the POMDP is effectively learned by monitoring
the belief state of the BACPOMDP.

Note that the BACPOMDP has a known model and is
an instance of a continuous POMDP. Therefore the belief
update (Eqn 1) and Bellman equation (Eqn 2), can be applied
directly to update the belief and compute the value function
of the BACPOMDP. Of course computing these complex
integrals in closed-form will usually be intractable. Thus the
next section describes a sampling-based approximation for
monitoring the belief, followed in the subsequent section by
an online planning approach suitable for the BACPOMDP
model.

B. Belief updating in the BACPOMDP via particle filtering

Particle filters using Monte Carlo sampling methods have
been widely used for sequential state estimation in POMDPs
[17], [18]. Given a current belief b, action a and observation
z, a standard approach to estimate the next belief b′, after a
and z are made, is to sample K states from the distribution b,
and for each of the sampled state s, sample a successor state
s′ according to the distribution T (s, a, ·) and add probability
density O(s′, a, z) to b′(s′). b′ is renormalized at the end so
that it represents a probability distribution, over at most K
particles.

Applying the same principles to the BACPOMDP, the
next belief b′ obtained after doing action a in belief b and
observing z can be estimated via by particle filter described
in Algorithm 1.

Sampling a precision matrix t and mean vector m from
a normal-Wishart distribution with parameters (µ̂, ν, α, Ŝ)
is achieved by first sampling t from a Wishart distribution
with α degrees of freedom and precision matrix Ŝ and
then sampling m from a multivariate normal distribution
with mean µ̂ and precision matrix νt. Details on how to
sample these distributions can be found in [19]. Note that

Algorithm 1 PARTICLEFILTER(b, a, z,K)
1: Define b′ as a 0 vector.
2: η ← 0
3: for i = 1 to K do
4: Sample hyperstate (s, φ, ψ) from distribution b.
5: Sample (m, t) from normal-Wishart parametrised by φ.
6: Sample v from multivariate normal distribution Nk(m, t).
7: Compute successor state s′ = gT (s, a, v).
8: Compute w = g−1

O|s′,a(z).
9: Compute φ′ = U(φ, v) and ψ′ = U(ψ,w).

10: Sample (m′, t′) from Normal-Wishart parametrised by ψ.
11: Add density f(w|m′, t′)JO|s′,a(z) (Eqn 4) to (s′, φ′, ψ′) in

b′.
12: η ← η + f(w|m′, t′)JO|s′,a(z)
13: end for
14: return η−1b′

these methods require the covariance matrices for both the
multivariate normal and the Wishart distribution, hence these
procedures must be executed with covariance Ŝ−1 to sample
the Wishart distribution and covariance t−1

ν to sample the
multivariate normal distribution.

The complexity of generating a single new particle is in
O(logK+k3+l3+CT +CO), where k is the dimensionality
of V , l the dimensionality of W , CT the complexity of
evaluating gT (s, a, v) and CO the complexity of evaluating
g−1
O|s′,a(z). Sampling a hyperstate from b is in logK, as b can

be maintained as a cumulative distribution, and the k3 and l3

complexity comes from the inversion of precision matrices
and the sampling procedure for the normal-Wishart distribu-
tion. Hence performing a belief update with K particles is
achieved in O(K(logK + k3 + l3 + CT + CO)).

C. Online planning in the BACPOMDP

To ensure tractability, we focus on online methods for
action selection, which means that we try to find the op-
timal action (over a fixed planning horizon) for the current
belief state. Several online planning algorithms have been
developed for finite POMDPs [5], [20], [21]. Most of these
require complete enumeration of the action and observation
spaces, which cannot be done in our continuous setting. For
this reason, we adopt a sampling-based approach [22], [20].
Algorithm 2 provides a brief outline of the online planning
method.

At each time step, V (b,D,M,N,K) is executed with
current belief b and then action bestA is performed in
the environment. The algorithm proceeds by recursively
expanding a tree of reachable beliefs by sampling uniformly
a subset of M actions and a subset of N observations at each
belief node, until it reaches a tree of depth D. The particle
filter is used to approximate the belief states. Sampling the
observation from f(z|b, a) is achieved similarly to how the
particle filter works, i.e. from Algorithm 1: proceed with
lines 4-7 to obtain a successsor state s′, then do line 10
to sample a mean m′ and precision matrix t′ from normal-
Wisart posterior ψ, draw w from Nl(m′, t′) and then the
sampled observation is gO(s′, a, w). An approximate value
function V̂ is used at the fringe node to approximate the



Algorithm 2 V(b, d,M,N,K)
1: if d = 0 then
2: return V̂ (b)
3: end if
4: maxQ← −∞
5: for i = 1 to M do
6: Sample a uniformly in A
7: q ←P

(s,φ,ψ) b(s, φ, ψ)R(s, a)
8: for j = 1 to N do
9: Sample z from f(z|b, a)

10: b′ ← PARTICLEFILTER(b, a, z,K)
11: q ← q + γ

N
V(b′, d− 1,M,N,K)

12: end for
13: if q > maxQ then
14: maxQ← q
15: maxA← a
16: end if
17: end for
18: if d = D then
19: bestA← maxA
20: end if
21: return maxQ

value V ∗ of the fringe beliefs. The fringe nodes’ values
are propagated to the parents’ nodes using an approximate
version of Bellman equation, where the maximization is
taken over sampled actions, and expectation over future
rewards is taken over sampled observations. This yields a
value estimate for each sampled action at the current belief.
The action with highest value estimate is stored in the
variable bestA. After executing bestA in the environment,
the agent updates its current belief b with the new observation
z obtained using the particle filter. The planning algorithm is
then run again on this new belief to compute the next action
to take.

The overall complexity of this algorithm is in
O((MN)D(Cp + Cv)), where Cp denotes the complexity
of doing the particle filter update, as given in the previous
section, and Cv denotes the complexity of evaluating the
approximate value function V̂ . A nice property of our
approach is that the complexity depends almost entirely
on user specified parameters, such that the parameters
(M ,N ,D,K) can be adjusted to meet problem specific
real-time constraints.

Recent analysis has shown that it is possible to achieve ε-
optimal performance with an online POMDP planner [21] by
using lower and upper bounds on V ∗ at the fringe node. In
our case, the use of sampling and particle filtering to track
the belief over state and model introduces additional error
that prevents us from guaranteeing lower and upper bounds.
However, it may still be possible to guarantee ε-optimality
with high probability, provided that one chooses sufficiently
large M ,N ,D and K, as was shown for the particular cases
of discrete MDPs and POMDPs by [22], [20]. That remains
an open question for our particular framework.

IV. EXPERIMENTS

To validate our approach, we experimented on a simple
simulated robot navigation problem where the simulated

robot must learn the drift induced by its imperfect actuators
and the noise of its sensors. The robot moves in an open 2D
area and tries to reach a specific goal location. We considered
the state to be the robot’s (x, y) position; actions are defined
by (d, θ), where d ∈ [0, 1] relates to the displacement and
θ ∈ [0, 2π] is the angle toward which the robot moves; the
observations correspond to the robot’s position with additive
Gaussian noise, i.e. gO(s, a, w) = s + w. The dynamics of
the robot are assumed to be of the form:

gT (s,< d, θ >, v) = s+ d

[
cos θ − sin θ
sin θ cos θ

]
v

The exact parameters of the normal distributions for v
are the mean, µv = (0.8; 0.3), and covariance Σv =
[0.04,−0.01;−0.01, 0.01]. Similarly, the observation noise,
w, is parameterized by µw = (0; 0) and Σw =
[0.01, 0; 0, 0.01]. Both v and w must be estimated from data.
The robot starts with the incorrect assumption that for v,
µ̂v = (1, 0) and Σ̂v = [0.04, 0; 0, 0.16], and for w, µ̂w =
(0; 0) and Σ̂w = [0.16, 0; 0, 0.16]. The normal-Wishart prior
parameters used for v are the tuple φ0 = (µ̂v, 10, 9, 9Σ̂v)
and for w, ψ0 = (µ̂w, 10, 9, 9Σ̂w). This is equivalent to
giving an initial sample of 10 observations to the robot, in
which the random variable v has sample mean µ̂v and sample
covariance Σ̂v and the variable w has sample mean µ̂w and
sample covariance Σ̂w.

Initially the robot starts at the known position (0; 0), and
the goal is a circular area of radius 0.25 unit where the center
position is randomly picked at a distance of 5 units. As soon
as the robot reaches a position inside the goal, a new goal
center position is chosen randomly (within a distance of 5
units from the previous goal). The robot always knows the
position of the current goal, and receives a reward of 1 when
it reaches it. A discount factor γ = 0.85 is used.

For the planning, we used a horizon of D = 1, and
sampled M = 10 actions, N = 5 observations and K =
100 particles to maintain the belief. The approximate value
function V̂ at the planning fringe was computed as V̂ (b) =∑

(s,φ,ψ) b(s, φ, ψ)γG(s,φ), where G(s, φ) is the number of
steps required to reach the goal from s if the robot moves
in a straight-line towards the goal with distance ||φµ̂||2 per
step.

The average return as a function of the number of training
episodes (averaged over 1000 episodes) is plotted in figure
1. We also compare it to the average return obtained by plan-
ning only with the prior (with no learning), and planning with
the exact model, using the same parameters for M ,N ,D,K.

As we can see, our approach is able to quickly reach
performance very close to the case where it was given
the exact model. Average running time for the planning
was 0.074 seconds per time step on an Intel Xeon 2.4Ghz
processor.

To measure the accuracy of the learned model, we com-
puted a weighted L1-distance of the estimate (sample mean
and sample covariance) in each particle compared to the true
model parameters as follows:
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Fig. 1. Average return as a function of the number of training steps.
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Fig. 2. Average weighted L1-distance as a function of the number of
training steps.

WL1(b) =
∑

(s,φ,ψ) b(s, φ, ψ) [||φµ̂ − µv||1+
||φŜ/φα − Σv||1 + ||ψµ̂ − µw||1 + ||ψŜ/ψα − Σw||1

]
(8)

In figure 2, we show how the average weighted L1-
distance to the true model evolves over 250 steps.

We observe that the weighted L1-distance decreases
quickly and thus the robot is able to quickly improve the
model of its actuators and sensors through selected learning.

V. RELATED WORK

The problem of optimal control under uncertain model
parameters was originally introduced by Feldbaum [23],
as the theory of dual control, also sometimes refered to
as adaptive control or adaptive dual control. Extensions of
this theory has been developed for time-varying systems
[24]. Several authors have studied this problem for dif-
ferent kinds of dynamical systems : linear time invariant
systems under partial observability [25], linear time varying
Gaussian models under partial observability [26], nonlinear

systems with full observability [27], and more recently a
similar approach to ours, using particle filters, has been
proposed for nonlinear systems under partial observability
[28]. Our proposed approach differs from [28] in that we
use normal-Wishart distributions to maintain the posterior,
and use a different particle filtering algorithm. Furthermore,
their planning algorithm proceeds by evaluating a particular
policy on the underlying MDP defined by each particle, and
then averaging the value of the policy over all particles.
Contrary to our approach, this does not reflect the value of
information gained by actions that help identify the state or
the parameters of the model, as it does not consider how
the posterior distribution evolves in the future, for different
actions and observations.

VI. DISCUSSION

The problem of optimal control in stochastic and partially
observable environments with unknown or uncertain model
parameters is a very important problem that commonly arizes
in practice, as the mathematical model of the system is rarely
known exactly. We have proposed a new Bayesian approach
to solve this problem, based on particle filtering to maintain
the posterior over states and models, and online planning,
using trajectory sampling, to find the best action. The method
we propose is able to trade-off between: (1) exploration to
learn model parameters, (2) identification of the system’s
state, and (3) exploitation to gather rewards; such that we
maximize return over the infinite horizon. The approach re-
quires significant computation, but the complexity of this can
be flexibly managed by increasing or decreasing precision of
the approximation, in order to meet problem specific real-
time constraints. Our preliminary experimental results have
shown that our approach is able to achieve good control
performance on a simple robot-navigation problem, while
learning online a good model of the system.

While the model we have considered uses Gaussian
distributions to model its dynamics, our approach can be
generalized to other types of distributions. It is particularly
appropriate for domains where it is possible to use the
conjugate family of distributions to define the prior and
maintain the posterior. The BACPOMDP method can also
be generalized to learn the reward function, provided infor-
mation on this function is contained in the observation space
of the system.

Many interesting research problems remain open. In par-
ticular, we would like to investigate how to deal with
such problems when the form of the functions gT and gO,
that specify the dynamics of the transition and observation
function, are unknown. It would also be interesting to adapt
our approach to time-varying systems, i.e. systems where
the parameters of the model may change with time. This
often happens in practice due to aging sensors and actuators.
Finally, we would also like to develop more efficient planning
algorithms that can better scale to larger domains. On a
more practical level, we intend to implement our approach
on more complex problems, such as the control of a robotic



wheelchair, which we are developing for people with dis-
abilities.
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