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Abstract

Boosted ensemble classifiers have a demon-
strated ability to discover regularities in
large, poorly modeled datasets. In this
paper we present an application of multi-
hypothesis AdaBoost to detect epileptiform
activity from electrophysiological recordings.
While existing boosting methods do not ac-
count automatically for the sequence infor-
mation that is available when analyzing time-
series data, we present a recurrent extension
to AdaBoost, and show that it improves clas-
sification accuracy in our application domain.

Medical treatment design has long been the exclusive
domain of clinical experts. In recent years however,
there has been a growing awareness of the difficulties
involved in optimizing adaptive treatment strategies for
the management of chronic diseases. The challenge
is in developing sequences of treatments which auto-
matically adapt to a patient’s characteristics and the
disease’s progression. There are tremendous opportu-
nities in applying automated learning and discovery
techniques to this class of problems.

The optimization of an adaptive treatment strategy
can be cast as a reinforcement learning problem (Mur-
phy, 2005). Reinforcement learning (RL) addresses the
problem of optimizing action sequences in dynamic
and stochastic systems (Kaelbling et al., 1996). In
this paradigm, the state of the system represents the
patient’s medical history, and the goal is to use di-
rect experimentation with the system to learn, for each
state, the optimal treatment strategy (or policy). Re-
inforcement learning unfortunately tends to be an ex-
pensive technique in terms of data requirement. This
is impractical in domains where data is sparse and ex-
pensive to acquire, as is the case with human data.

The best way to reduce data requirements is to im-
pose strong constraints on the state representation L
Thus a significant challenge is finding a good compact
state representation for a patient’s medical history.

In this paper, we focus on the problem of learning a
compact state representation to characterize epileptic
disorders. Epilepsy is a disease of the nervous sys-
tem. Treatment by electrical stimulation has recently
emerged as a promising alternative for patients who
do not respond to anti-epileptic drug therapies (Uth-
man et al., 2004). The technology is relatively simple:
a small pacemaker-like device is implanted in the pa-
tient and sends mild electrical stimulation to the ner-
vous system. The optimization of an adaptive treat-
ment strategy for such a device clearly requires having
a compact state representation, since it is unlikely that
we can afford large amounts of data during learning.
Therefore we require methods for extracting discrimi-
native information about epileptic states directly from
electrical field potential recordings.

Though this is not always well recognized, ensem-
ble methods such as AdaBoost provide a principled
and highly efficient mechanism for feature selection in
large, poorly modeled datasets (Freund & Schapire,
1997; Viola & Jones, 2004). This paper argues in favor
of treating the discrimination problem as one of clas-
sification over fixed time frames, and we investigate
the use of boosting techniques to discover information
about key features for our state representation.

Existing boosting methods do not naturally account
for the sequential nature of time-series data, such as
electrophysiological recordings. We present a new re-
current formulation of AdaBoost, in which the classi-

! A secondary technique is to impose strong constraints

on the policy space, but this generally requires a known
state representation.
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fication of prior time frames is included in the feature
vector of the current time frame. This technique dis-
tinctly improves classification accuracy in our appli-
cation, especially the detection of rare events. While
we do not provide a formal analysis of the properties
of boosting under the recurrent formulation, this sug-
gests interesting lines for future research.

1. Problem description

Epilepsy is a brain disorder characterized by seizures
(also known as ictal events) resulting from episodes of
of abnormal electrical activity in the brain. It affects
1% of the population. Moreover, 25% of these patients
do not respond to anti-epileptic medication. Epilepti-
form signals are also characterized by brief interictal
events, called spikes.

The problem of automated real-time detection and
prediction of epileptic seizures using electrophysiologi-
cal recordings has been investigated extensively, yield-
ing a variety of approaches, including neural networks
(Chiu et al., 2005), wavelet methods (Khan & Gotman,
2003), and nonlinear time series analysis (Martinerie
et al., 1998). However these results are not sufficiently
interpretable to build compact state representations.

1.1. Data recordings

The data used in this study are field potential record-
ings of seizure-like activity recorded in slices obtained
from rat brains (De Guzman et al., 2004). The record-
ings were made using microelectrodes inserted in the
regions of interest and sampled at a rate of 5012.5
Hz. The recordings were filtered to roll off frequencies
above 100 Hz. This study used three separate brain
slices. In each slice, neural activity was recorded in
three different channels placed in different brain struc-
tures, thus yielding a total of nine data traces. These
recordings are between 10.5 and 13 minutes in length.

1.2. Signal processing

Each data trace was processed as a series of nonover-
lapping frames, where each frame consisted of 4096
samples (0.82 sec). Each frame was normalized by
subtracting the mean and dividing by the full range
of the overall frame. The per-frame mean, range,
and energy (the sum of squared deviations from the
mean) were saved for use as features in the classifi-
cation. Each frame was then apodized with a Hann
window and converted to a power spectrum using the
discrete fast Fourier transform. Because the signals
were low-pass filtered at 100Hz, only the first 80 fre-
quency bands were used as features, representing a
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Figure 1. An example recording, showing several spikes
and an ictal event (far right)

frequency range of approximately 1-98 Hz. The real
and imaginary components of each band of the FFT
were combined into a single magnitude. This process
yielded 83 features per frame (the frequency bands,
plus mean, range and energy). Each recorded data
trace yielded between 731 and 947 usable frames, for
an overall total of 7692 data points.

1.3. Labeling

Each of the channels of the recordings was segmented
into normal, spike, or ictal (or seizure) periods based
on guidance from an expert. This classification was
somewhat qualitative and performed by visual analy-
sis. As can be seen in Figure 1, the events are in-
deed reasonably distinctive. Spikes were noted only
for the duration of the most prominent portion of the
spike waveform, giving a typical spike length of 50 mil-
liseconds. The majority (82%) of the duration of each
recording was classified as normal, with about 3% clas-
sified as an interical spike and 14% classified as ictal.

2. Algorithmic approach

Boosting is a general supervised learning technique
that seeks to combine an ensemble of simple, easily
chosen classification rules into a single strong rule.
Most boosting algorithms proceed in a series of rounds
in which a new simple rule is trained according to a
labeled set of training examples. After each round,
the distribution of the training examples is updated
to increase the weights of those examples that were
improperly classified in the current round. The final
strong classifier is formed by a weighted combination
of the simple rules (Schapire, 1990).

2.1. AdaBoost

The general boosting framework specifies neither how
distributions and weights are updated, nor how the
weak rules are to be combined. The AdaBoost (“adap-
tive boosting”) algorithm was invented by Freund and
Schapire (1997). Its input is a set of m training ex-
amples (z;,;),1 < i < m where x; is a feature vector
drawn from some domain X and y; is drawn from a
label set Y, typically {—1,+1}. For T rounds, a new
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simple rule, or “weak learner”, is trained using exam-
ples drawn from the training set such that example 7 is
given weight Dy (¢) on round ¢. Starting from the uni-
form distribution (i.e. D;(i) = 1/m, Vi), each round
selects a new weak rule h;(x;) that minimizes the er-
YOT: €4 = D ;0 o, (o) De(1). A weight oy is calculated:
ap = %ln 1;—? Next, the distribution D; is updated
according to the rule Dyyq(i) = 20 CXP(_Z?tyih*(“))
where Z; is chosen such that >, Dy11(i) = 1. The
equation H(z) = sign (ZtT:l atht(x)) is the final
strong classification rule.

Our choice of AdaBoost was motivated primarily by
the relative simplicity of the final classifier. While
perhaps less amenable to human interpretation than
a decision tree, a boosted classifier can yield insights
into the structure of a poorly characterized problem
by weighting features according to their discrimina-
tive power (Viola & Jones, 2004). Also, while the al-
gorithm’s performance is influenced by the choice of
weak learners, the final strong classifier can often be
evaluated very efficiently.

The choice of the AdaBoost family of algorithm was
also motivated in part by recent work in music genre
classification which revealed AdaBoost as a power-
ful classification approach for complex time-series sig-
nals (Bergstra et al., 2005).

All  results presented below use “real” Ad-
aBoost.MH (Schapire & Singer, 1999), a multiclass
extension of AdaBoost that generalizes both the
distribution D; and the weak learners over a set of
possible labels ¢ € Y. For each classified example,
real AdaBoost.MH outputs a real value for each
class that represents the confidence of that example’s
membership in the class.

We use the freely available AdaBoost.MH implementa-
tion BoosTexter 2.1 (Schapire & Singer, 2000), which
includes weak learners consisting of simple decision
stubs over continuous attributes. While this imple-
mentation was intended for text processing applica-
tions, it is general enough for our application.

In this case, we use the features described in section 1.2
to form the feature domain X.

2.2. Recurrent AdaBoost

AdaBoost does not directly represent any dependen-
cies between events; each training example is consid-
ered separately from all other examples. In the case
of time series data, where each example is in fact a
(small) fixed-sized window of data, there is reason to
believe that the information about frames earlier in

the time series may provide useful discriminative in-
formation for the classification of subsequent frames.

The most obvious way to do this is to incorporate fea-
tures from prior time frames x;_1,...,z;_n with fea-
tures of the current time frame x; when learning the
AdaBoost classification rule. This is conceptually sim-
ple, and maintains the good theoretical properties of
boosting. However it scales badly for domains with a
large feature space.

Instead, we propose to use the classification labels of
the prior time frames. This means that we learn a clas-
sification rule f such that y; = f(@s,¥iz1,..., Yi-nN),
where x; is the input feature of frame 7, N is the num-
ber of prior predictions considered, and y; is the set of
real numbers corresponding to the class membership
scores output by AdaBoost.MH. This learning rule is
what we call Recurrent AdaBoost. 1t scales nicely with
history size, assuming a small number of classes (3 in
our case). A problem with K classes and N recurrent
time steps adds N K features to the input vector.

Our recurrent approach requires inserting two steps in
the AdaBoost training procedure. First, during initial-
ization we set all of the prior labels in our training ex-
amples to zero. Second, these labels must be updated
at the end of each round of training. The testing pro-
cedure also must be modified slightly in cases where
test frames are processed in a batch manner. It is nec-
essary to iterate classification of the test set (up to N
times) to allow full incorporation of the classifier infor-
mation. This is not necessary when test examples are
presented in an order consistent with the time-series.

3. Experimental evaluation
3.1. Method

In this section, we investigate the performance of
boosting for the classification of epileptic brain ac-
tivity from electrophysiological signals. We consider
three different classification approaches:

Yi = f(xz)
yi = flzy, @iz, .., TimN)

Yi f(@i Yim1, o YienN)

Standard AdaBoost
AdaBoost with Memory
Recurrent AdaBoost

In the control experiment, which we call Standard Ad-
aBoost, each feature vector includes the 80 Fourier
magnitudes along with the mean, range, and energy
of the signal over the time window.

In the second experiment, which we call AdaBoost with
Memory, each feature vector includes both the features
of both the current time window and the prior time
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window for a total of 166 scalar values. This method
can be extended to longer memory, but we did not try
this because of the substantial training time required.

In the third experiment, which we call Recurrent Ad-
aBoost, the input feature vector includes the 83 stan-
dard features with the addition of the output weights
for each class, for each of N prior windows (where we
vary N from 1 to 5.)

In each experiment, three folds of training and test-
ing were performed using six of the nine traces as the
training set and three traces as the test set. Training
proceeded for exactly 300 rounds, as the classification
error fell only trivially after that point.

3.2. Results

We begin by considering an illustrative example. Fig-
ures 2b, 2¢, and 2d show the recognizer outputs during
a test classification of a fairly typical trace, using no
additional data from prior frames. While overall re-
sults in this case were good (93% accuracy), only 10
of 12 spike frames (83%) and 82 of 119 ictal frames
(69%) were properly classified.

Figures 2e, 2f, and 2g show improved recognition re-
sults for the same trace when incorporating the predic-
tions of the two prior frames. Here all 12 spike frames
were properly identified (100%), and the recognition
of ictal frames increased to 102 out of 119 (86%).

We now present a more formal comparison of the ap-
proaches using the entire train/test set. Average over-
all classification accuracy of at least 90% was achieved
with all methods considered.

Results for all cases are summarized in Table 1. For
Standard AdaBoost, the variance among train/test
folds was relatively high, ranging from 90% to 97% for
each strong classifier. Recognition of spikes was quite
poor. Spike events appear to be especially difficult for
our detector, because of both their short duration and
the relatively small number of such events (3% of all
frames). We observed that in some cases the classifier
developed a tendency to classify spikes as ictal events.
This may reflect variability in the spikes, which may
resemble brief ictal events (see Figure 3).

In the AdaBoost with Memory case, all features from
the prior frame are concatenated with all 83 features
from the current frame. This approach yielded a large
improvement over Standard AdaBoost, and markedly
reduced the variance in the accuracy. Note especially
the improved detection of interictal spikes.

Results for Recurrent AdaBoost are shown for two
cases, incorporating the predictions for either one or
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Figure 3. Three channels showing a spike at roughly the
same time. The bottom channel shows a long “ictal” tail.
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Figure 4. Per-class and overall classification results incor-
porating predictions from varying numbers of prior frames.

two prior frames. For the results with one prior
frame, there is a strong improvement over Standard
AdaBoost in classifying both spikes and ictal events.
Incorporating the predictions from two prior frames
reduces the error in the spike class by 5 percentage
points, while increasing error of the ictal class by 3
percentage points. This suggests that we may be able
to control tradeoff of the accuracy between these two
classes. Results with Recurrent AdaBoost are compa-
rable to those of AdaBoost with Memory, but with less
training time.

We evaluated Recurrent AdaBoost when incorporating
predictions for 1-5 prior frames into the feature vec-
tor. These results are summarized in Figure 4. There
is little improvement beyond two frames, suggesting
that, for our dataset, there is little added information
in more distant time frames.
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Figure 2. Results for classification of one channel.

(a) The original trace.

(b) (¢) (d) The predictor for the normal,

spike, and ictal classes using Standard AdaBoost. (e) (f) (g) The predictor for the normal, spike, and ictal classes using

Recurrent AdaBoost with from two prior time frames.

3.3. Feature extraction

We examined the strong rules produced by Ad-
aBoost.MH for all of the experiments. A number of
striking regularities were observed.

In all recurrent examples, the first weak rule recruited
was either frequency band 62 or 63, corresponding
to frequencies of 76 or 77 Hz. High values in these
bands favor a normal classification, whereas low values
weight towards ictal classification. Frequency bands
68 (~ 7-10 Hz) were consistently recruited early.
Low values in these bands favor normal classification,
whereas high values favor ictal classification.

In most cases, energy was recruited in the first 20
rounds. A high energy value resulted in a strong
weighting toward a spike classification. A similar effect
was observed for the range feature.

In recurrent cases, prior labels primarily acted as a
source of hysteresis in the system: prior labels of ictal
or normal biased the present frame towards either ictal
or normal, respectively.

4. Discussion

We provide the first empirical evidence that AdaBoost
can be used to characterize epileptic activity from neu-
rophysiological recordings. This task is difficult, due
to the large feature space, the unbalanced class distri-
butions, the limited availability of training data, and
the great variability exhibited by these recordings.

We also propose a new way to apply boosting to time-
series data that improves results by recurrent incorpo-
ration of class predictions into the feature vector.

These findings show robust detection of key epilepsy
states. Recognition of interictal spikes was the most
problematic, exhibiting high variance over the test
cases. Note however that the training set is very
small for this class, at most 204 examples for an 83-
dimensional feature space.

Our investigation was limited to using very simple
weak learners. There is evidence that more sophisti-
cated weak learners may yield a better strong hypoth-
esis (Bergstra et al., 2005). Other methods for apply-
ing boosting to time series data involved modifying the
weak learners to account for time or spatial relation-
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Table 1. Summary of experimental results. Row labels reflect ground truth, column labels reflect classification results.

EXPERIMENT NORMAL SPIKE IcTaL ToTaL Crass% OVERALL% RANGE%
STANDARD NORMAL 6209 18 67 6294 99 95 90-97
ADABOOST SPIKE 35 119 99 253 47

IcTaL 97 65 983 1145 86
ADABOOST NORMAL 6242 15 37 6294 99 97 93-99
WITH SPIKE 48 187 18 253 74
MEMORY IcTAL 92 15 1038 1145 91
RECURRENT NORMAL 6253 16 25 6294 99 98 94-99
ADpABoOOST SPIKE 49 187 17 253 74
(1 PRIOR) IcTAL 69 12 1064 1145 93
RECURRENT NORMAL 6239 22 33 6294 99 97 92-99
ADpABoOOST SPIKE 42 199 12 253 79
(2 PRIOR) IcTAL 101 15 1029 1145 90

ships (Diez & Gonzalez, 2000; Boné et al., 2003). This
may be something to consider in the future.

We also note that the Fourier transform is intended
for use with stationary signals rather than the non-
stationary recordings used in this study. Thus, wavelet
methods may be better able to extract useful fea-
tures from this data. However, wavelets may be less
amenable to interpretation as in section 3.3.

We do not yet provide a formal analysis of the conver-
gence properties of Recurrent AdaBoost. The main
challenge is that the input set is not stationary ow-
ing to its dependence on the classification of prior in-
stances. This raises interesting theoretical questions
which will be addressed in the future.
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