t.
AN
(2

' p—
m:'m-os

[JCAI-05 Workshop

Reasoning with Uncertainty in
Robotics (RUR-05)

Edinburgh, Scotland, 30 July 2005

Workshop Notes

Preface

This volume contains the workshop notes of the Reasoning with Uncertainty in Robotics (RUR-
05) workshop, held at the IJCAI-05 International Joint Conference on Artificial Intelligence, in
Edinburgh, Scotland, on 30 July 2005. This RUR-~05 workshop is the 5th in the series of RUR
workshops (four of them at IJCAI), bringing together researchers from the AI and the robotics
community to discuss issues related to robotics and artificial intelligence, and in particular on
ways to deal with uncertainty. This year RUR-05 has focussed on the following topics:

— Representations for dealing with uncertainty in robotics.

— Planning in continuous state/action/observation spaces.

— Simultaneous localization and map building (SLAM).

— Single- and multi-robot planning under motion and sensor noise.
— Simultaneous planning, localization, and map building (SPLAM).
— Successful applications.

We would like to thank the authors for their interest in the workshop, as well as the members of
the program committee for their help in reviewing papers and providing useful comments:

Henrik Christensen (Royal Institute of Technology, Sweden)
Gregory Dudek (McGill University, Canada)

Eric Hansen (Mississippi State University, USA)
Joachim Hertzberg (University of Osnabrueck, Germany)
Ronald Parr (Duke University, USA)

Pascal Poupart (University of Waterloo, Canada)
Stergios Roumeliotis (University of Minnesota, USA)
Nicholas Roy (MIT, USA)

Alessandro Saffiotti (Orebro University, Sweden)

Luis Enrique Sucar (ITESM, Mexico)

Sebastian Thrun (Stanford, USA)

We would also like to thank Aristeidis Diplaros for his help in preparing these notes.

The RUR-05 organizers:

Nikos Vlassis, University of Amsterdam, The Netherlands
Geoff Gordon, Carnegie Mellon University, Pittsburgh PA, USA
Joelle Pineau, McGill University, Montreal, Quebec, Canada

Contents

A Bayesian Approach for Place Recognition [p. 1]
F.T. Ramos, B. Upcroft, S. Kumar, and H. Durrant-Whyte
University of Sydney, Australia

Vision-based SLAM using the Rao-Blackwellised Particle Filter [p. 9]
R. Sim, P. Elinas, M. Griffin, and J.J. Little
University of British Columbia, Canada

Towards Solving Large-Scale POMDP Problems via Spatio-Temporal Belief State Clustering
X. Li, W.K. Cheung, and J. Liu
Dept. of Computer Science, Hong Kong Baptist University

Human Sensor Model for Range Observations [p. 25]
T. Kaupp, A. Makarenko, F. Ramos, and H. Durrant-Whyte
University of Sydney, Australia

Symbolic Probabilistic-Conditional Plans Execution by a Mobile Robot [p. 33]
A. Bouguerra and L. Karlsson
Department of Technology, Orebro University, Sweden

Planning in Continuous State Spaces with Parametric POMDPs [p. 40]
A. Brooks, A. Makarenko, S. Williams, and H. Durrant-Whyte
University of Sydney, Australia

Navigation and Planning in an Unknown Environment using Vision and Cognitive Map [p. 48]

N. Cuperlier, M. Quoy, P. Gaussier, and C. Giovanangelli
ENSEA - Universite de Cergy-Pontoise, France

Real-Time Hierarchical POMDPs for Autonomous Robot Navigation [p. 54]
A. Foka and P. Trahanias
FORTH - University of Crete, Greece

Speeding up Reinforcement Learning using Manifold Representations: Preliminary Results
R. Glaubius, and M. Namihira, W.D. Smart
Washington University in St. Louis, USA

Symbolic Focused Dynamic Programming for Planning under Uncertainty [p. 70]
P. Fabiani and F. Teichteil-Konigsbuch
ONERA/DCSC, Toulouse, France

iii

[p- 62]

v

IJCAI Workshop Reasoning with Uncertainty in Robotics, Edinburgh, Scotland, 30 July 2005

A Bayesian Approach for Place Recognition

Fabio T. Ramos Ben Upcroft Suresh Kumar Hugh F. Durrant-Whyte

ARC Centre of Excellence for Autonomous Systems
Australian Centre for Field Robotics
The University of Sydney

Sydney, NSW 2006, Australia
{f.ramos,b.upcroft, suresh, hugh}@acfr.usyd.edu.au

Abstract

This paper presents a robust place recognition algorithm for mobile robots. The framework pro-
posed combines nonlinear dimensionality reduction, nonlinear regression under noise, and variational
Bayesian learning to create consistent probabilistic representations of places from images. These gener-
ative models are learnt from a few images and used for multi-class place recognition where classification
is computed from a set of feature-vectors. Recognition can be performed in near real-time and accounts
for complexity such as changes in illumination, occlusions and blurring. The algorithm was tested with
a mobile robot in indoor and outdoor environments with sequences of 1579 and 3820 images respec-
tively. This framework has several potential applications such as map building, autonomous navigation,
search-rescue tasks and context recognition.

1 Introduction

Localisation in complex environments is one of the main challenges for autonomous navigation. Currently,
this task is performed by solving the simultaneous localisation and map building problem (SLAM) [7]. The
main issue of this approach is the identification of landmarks in unstructured environments - they have to
facilitate detection and association. On the other hand, rather than navigating using relative coordinates,
humans have an abstract notion of distance but are still able to recognise where they are in the space. This
ability is provided mainly from visual information associated with an internal (map) representation that,
rather than localising the person with distances from objects, localises it based on the appearance of that
scene. The same approach is used here for robot localisation in two different situations, indoor and outdoor
environments. Places are learnt and identified from images obtained with a camera fixed in a mobile robot.
The aim is thus to learn a multi-class classifier to label new images as the robot navigates. No other extra
information such as a topological map is provided.

Place recognition and localisation from images are not new in robotics. Some previous approaches use
image histograms and topological maps for classification [21, 14]. Others use invariant features such as
[11, 22]. Place recognition was also shown to improve the performance of object recognition when both
are performed simultaneously [20]. In another approach, image features were used to estimate the position
of the robot for map building problems [17, 18, 5]. The novelty of this work compared to the others lies on
the proposed method that allows robust recognition from few training images (usually 3 to 10 per place)
and without the need of a map. Because the robot needs fewer training images, a quick learning exploration
is enough for further localisation tasks. In addition, the framework was tested in both indoor and outdoor
environments proving to be robust for practical applications.

In the solution proposed, the world is interpreted as a set of places. Each place has a probabilistic rep-
resentation learnt from images and localisation is performed in near real-time by evaluating the responses
of each model given a new image. The place recognition task is treated as a Bayesian learning problem
in a space of essential features. Initially, training images are divided into small patches that constitute a
high dimensional set. The dimensionality of this set is then reduced with nonlinear and neighbourhood

preserving techniques to create a low dimensional set. These two sets are used to learn a mixture of linear
models for the nonlinear regression, from points in the high to the low dimensional space. Points is this
low dimensional space constitute the set of essential features and are used in the next step where the vari-
ational approximation for Bayesian learning is computed to create a probabilistic density for each place.
Recognition is performed by computing the log-likelihood of an entire image over each place model. This
approach was tested with sequences of images obtained by a mobile robot operating under different con-
ditions - moving objects, changes in illumination, different viewpoints, occlusions, outdoor and indoor
environments - and proved to be robust for localisation.

2 Approach

This paper focuses on a classification procedure to map images to labels. Each label corresponds to a place
learnt from a set of images. The learning algorithm is supervised as every image in the training set has an
assigned label. Thus, given a training set of n pairs (I;, p;), where I, is the ith image and p; is the label of
that particular image, the algorithm has to generate a model able to classify new images regardless whether
they come from different view points or are partially occluded.

Images are represented as sets of patches of the same size that, when combined, recover the original
image. Thus an image I, is represented as a set of m patches {I; 1,. .., i m }. Each patch is convolved
with a sequence of Gabor wavelets to quantify texture. This convolution has also a natural interpretation as
it provides a good approximation of natural processes for spectral decomposition that occurs in the primary
visual cortex. Each patch now has a feature-vector representation z; ; = ¢ (I; ;) € RP. The dimension
D is usually intractable for direct density estimation. Hence, dimensionality reduction techniques are
applied to extract the essential information of each patch and represent them in a lower dimensional space.
However, this reduction should preserve important characteristics of the original space such as keeping the
neighbourhood of points unchanged. This ensures that patches representing trees and grass for example are
situated nearby and not mixed up with other patches even when lying in a nonlinear surface.

2.1 Neighbourhood-Preserving Dimensionality Reduction

Dimensionality reduction is one of the techniques that can manage the amount of information robotics
application face. In this work, a nonlinear technique, Isomap [19], is applied to reduce the dimensionality of
image patches into a feasible number where further statistical learning methods can be used. As opposed to
principal components analysis (PCA) [8] and multidimensional scaling (MDS) [4], Isomap has the desired
property of preserving the neighbourhood of points in the low dimensional manifold.

2.2 Noisy Non-Linear Regression

Isomap and indeed most nonlinear dimensionality reduction algorithms are inherently deterministic algo-
rithms that do not provide a measure of uncertainty of underlying states of high dimensional observations.
In addition, Isomap does not output a model or function to directly compute the low dimensional coor-
dinates of new observations, thus requiring k-neighbours based algorithms that can be cumbersome in
real-time applications.

An alternative solution is to learn a generative model p(z|y), where z is the feature-vector in the high
dimensional space and y is its low dimensional representation. This model encapsulates the uncertainties
inherent in the inference of low dimensional points from noisy high dimensional observations. It can be
learnt in a supervised manner to derive compact mappings that generalise over large portions of the input
and embedding space. The input-output pairs of Isomap can serve as training data for an invertible function
approximator in order to learn a parametric mapping between the two spaces. Once the model is learnt,
patches of new images can have their low dimensional representation according to the manifold of the
training set. This is the key point to make real-time recognition since the essential features of a new image
can be quickly computed from the model by making probabilistic inferences.

Given the results of Isomap, the parameters of a mixture of linear models p(z,y, s) can be learnt
through Expectation Maximisation (EM) [6], where s is a hidden discrete variable representing the weights

of the components. Mixture of linear models are similar to mixtures of factor analysers, that are commonly
used to perform simultaneous clustering and local dimensionality reduction [9]. The only differences are
that the low dimensional variable y is observed (through Isomap), not hidden, and the Gaussian distribu-
tions p(y|s) have nonzero mean vectors v, and full covariance matrices 5. Learning when the variable y
is observed seems to discover a solution of better quality than in the opposite situation, the conventional
mixture of factor analysers [16]. The discrete hidden variable s introduced in the model physically repre-
sents a specific neighbourhood on the manifold over which a mixture component is representative. This
representation conveniently handles highly nonlinear manifolds through the capability to model the local
covariance structure of the data in different areas of the manifold.

The result of the inference process in this model is a mixture of Gaussians with means y, covariances
3 and weights s. To make it feasible for Bayesian learning this mixture is collapsed so as to have a single
mean, which will be used as a training point, and a covariance matrix which will be used in the initialisation
of the hyperparameters.

2.3 VBEM for Mixtures of Gaussians

The training data now represented with its essential features in the low dimensional space is used to learn
a generative model for each place. This problem is formulated in a Bayesian framework where the model
selection task consists of calculating the posterior distribution over a set of models (which in this case will
be mixtures of Gaussians with different numbers of components) given the prior knowledge and the dataset.
Denoting s for the hidden variable representing the weights, y, for the observations of a place i, 8 for the
parameters of a model M, the marginal likelihood p(y;|M) is the key expression in the Bayesian formu-
lation for model selection. It represents an average of how good a particular model fits the observations
over all possible parametrisation, convoluted by the prior. This quantity permits the comparison of differ-
ent models given the data by having the Occam’s Razor property[12]. However, analytical solutions are
intractable so that the idea of the variational Bayesian approach is to approximate the marginal likelihood
with a lower bound by using variational calculus techniques [10, 13, 2].

Introducing a free distribution ¢ over s and 6, with [> _¢(s,0)df = 1, and applying the Jensen’s
inequality [3], it is possible to compute a lower bound on the log of the marginal likelihood. Maximising
this lower bound with respect to the free distribution ¢ (s, #) is analytically intractable. A better strategy is
to factorise this free distribution to yield a variational approximation in which ¢ (s, 0) ~ ¢s (s) go (0):

np (i |30 2 [30)0 (0) ln%de 0
=Fum (gs(s),q0 (0),yi) 2)

The quantity Fj; is a functional of the free distributions gs (s) and ¢p (#) and is known as the neg-
ative free energy. The variational Bayesian algorithm iteratively maximises Jj; with respect to the free
distributions until the function reaches a stationary value.

An interesting implementation of VBEM can use conjugate priors that are analytically tractable and
easy to interpret. Thus, Dirichlet, Normal and Wishart multivariate distributions [15] are used as priors
over weights, means and covariances. They are denoted as D (m; A), N/ (x; Ly 2_1) and W (T'; o, B) and
are functions of their hyperparameters. Also, a multivariate Student-t distribution S (x; p, A, w) is used to
represent the predicted density.

Assuming a particular model M, the Gaussian mixture model has S components, where each com-
ponent has weight given by s, mean us and covariance I's. The set of parameters can be written as
0 = {m, pn,T'} where m# = {my,m2,...,ms}, p = {p1, p2,...,ustand T = {T'1,Ts,... , Tg}.

Given these parameters and the model, the likelihood of an observation y; ; in a d-dimensional space
can be written as

S
P (Wi | 6, M) = plsn=s|m)pWi;| s Ts), 3)

s=1

where each component is a Gaussian with p (y; ; | ps, T's) = N (ys,5; s, T's) and p (s,, = s | m) is a
multinomial distribution representing the probability of the observation y; ; be associated with component
s.

The prior over the parameters is given by

p(0|M)= Hp p(us | T) “

where the weight prior is a symmetric Dirichlet p (w) = D (; AoI), the prior over each covariance matrix
is a Wishart p (T's) = W (T'; ap, Bo) and the prior over the means given the covariance matrices is a mul-
tivariate normal p (us | T's) = N (us; mo, BoT's). The joint likelihood of the data, assuming the samples
are i.i.d., can be computed as

N
p(YiaS|9,M)=HP(STL=S|7T)p(yi,n|Ms,1_‘s) (5)

n=1

where y; = {yi1,¥i2,---,Yin} and s = {s1,82,...,85}.
The variational approximation for the log marginal likelihood leads to the following free densities g:

e For the covariance matrices, ¢ (I') = [[, ¢ (T's) with ¢ (T's) = W (T'; o, Bg);
e Forthe means, ¢ (11 | T') = [[, ¢ (s | T's) with g (us | T's) = N (x; myg, B;Ts);
e For the mixing coefficients, ¢ (m) = D (m; A), where A = {A1, A2, ..., A\s};

e For the hidden variable s, ¢ (s) =[], ¢ (ss).

Taking the functional derivatives of the free energy with respect to the free densities ¢ produces the update
rules of VBEM for the mixture of Gaussians case. In the VBE-Step the weights of the hidden variable are
calculated and in the VBM-Step parameters and hyperparameters are updated. These rules are omitted here
for brevity but can be found in [1].

Once parameters and the model were obtained, the predictive density for a particular patch p (v’ | yi, M)
has a close-form solution of a mixture of Student-t distributions,

S
y |y17 Z YQp57A57Ws)7 (6)

with wy = a5 + 1 — d degrees of freedom, where the means arep, = m; and the covariances are A; =
((Bs + 1) /Bsws) Bs. The weights are computed based on the hyperparameters of the Dirichlet distribution
with Ty = X/ D Agr.

2.3.1 Heuristic for Searching

VBEM allows direct model comparison by evaluating the free energy function of different models. In
the case of mixtures of Gaussians this model can be a single component or a mixture with hundreds of
components. Theoretically, there is no limit for the number of components and the search for the best
model can be cumbersome. To cope with this problem, an heuristic based on birth and death of components
is used. This heuristic seems to be appropriate for robotics problems since simpler models are evaluated
before more complex ones, which decreases the computational complexity.

The heuristic used here has the same stopping and splitting criteria as in [2] for mixtures of factor
analysers. The selection for splitting is based on the component with the smallest individual free energy.
The search ends when all existent components were divided but none of those divisions resulted in free
energy improvement.

2.4 Multi-Class Classification

As opposed to most classification problems where the input is a single feature-vector, in this approach
the whole set of patches of an image is used. Each patch has equal contribution to the final classification
decision and it is evaluated under the different models representing the places. The idea is to compute the
log-likelihood of a set of image patches for every model learnt. The log-likelihood with the largest value is
the final decision of the classification. Thus, the label of an image 7 is the label corresponding to the place
model that maximises the expression:

m
arg max 2 ogp (i | M) (7)
j=
The computation for the log-likelihood in selecting the model that best explains the set of patches can
be quickly computed. Also, it is possible to include more models, allowing sequential learning implementa-
tions. This is one of the demands for autonomous navigation as the robot visits new places, representations
of them should be incorporated and correlated with the current knowledge.

3 Implementation

The whole framework was implemented in Matlab and tested with a Pioneer 2-AT. Images were obtained
with 320x240 of resolution in 24-bits colour. Patches have a size of 5x5 pixels and were convolved by 4
Gabor wavelets resulting in a input space of 175 dimensions. Each image is thus a set of 3072 patches
equally distributed, and of the same size. Isomap is then used to reduce the dimensionality to 5 and create
the training data. The intrinsic dimensionality was also estimated by Isomap through the evaluation of the
residual variance.

Learning is performed offline with labelled images from the above set. The training images were
selected to give a multi-view perspective of the place. They were, however, taken from a particular position
inside the place so as to verify how the algorithm generalises them to multiple positions. In the indoor
experiment for example, if an office has a rectangular shape, 4 training images are taken close to the walls
but the algorithm should still be able to recognise the place when observing it from the centre.

The variational Bayesian learning starts searching for the best model from a single-component model
and follows the heuristic of birth and death as described before. The covariance obtained from the mixture
of linear models is used to initialised the parameters g and B of the Wishart distribution.

When testing the algorithm, the whole set of 3072 patches of an image is used. The process takes about
1 second per image in a Pentium M 1.7GHz which comprises Gabor convolutions, inference in the mixture
of linear models and log-likelihood computation for each model learnt. Further implementations may use
a subset of patches sampled from the original set to reduce the classification time. This, however, may
decrease the accuracy which characterises an accuracy-time trade-off.

4 Experiments'

Two different experiments were performed to evaluate the algorithm in different conditions - indoor and
outdoor environments. In both experiments, there were people walking by the places and sometimes oc-
cluding the robot’s view. In the outdoor experiment, there were also cars and bicycles moving in some
places which make the problem more difficult since the environment is dynamic.

4.1 Indoor dataset

The indoor dataset consists of 55 training images of 9 different places - each place has 5 to 9 training
images. The test set has 1579 sequence images obtained by the robot when navigating inside the lab. The
classes are {kitchen, seminar room, student cubicle 1, corridor 1, student cubicle 2, corridor 2, corridor

Videos with the experiments are available at: http://www.acfr.usyd.edu.au/people/postgrads/ftozeto

Eigenvalue 2
Eigenvalue 2

a) Kitchen model. b) ACFR Park model.

Figure 1: Generative models learnt for kitchen (indoor) and ACFR Park (outdoor). Points are plotted on
the direction of the two largest eigenvalues of the essential features (the total dimensionality of this space is
5). Ellipses correspond to the covariance matrices of the components learnt with VBEM. The association
between the patches and their location in the real scene is also indicated.

3, research office and professor office}. The generative model for the kitchen is depicted in Figure la. It
shows the covariance matrices learnt through VBEM from the essential features. The correlation between
the patches and their real position is also indicated.

Table 1a shows the precision and recall results for this 9-class problem. The classification was accurate
considering that in many occasions the robot was very close to walls or other objects, in situations where
even for a human, the classification would be difficult. Also, some places are very alike, for example, the
corridors and the student cubicles. These places can be distinguished from few objects such as paintings in
the case of the corridors and books, computers on the desks of the student cubicles. However, both objects
were not observed by the robot since they are in a higher position, away from the robot view. Figure 2
shows the training images for the kitchen model. Even not having a training image with a wider view of
the kitchen, the classifier was able to recognise the kitchen from the image of Figure 1a. This generalisation
is one of the main properties of the algorithm.

4.2 Outdoor dataset

The outdoor dataset consists of 57 training images of 11 different places at University of Sydney, with
each place having 3 to 8 training images. The test set has 3820 images obtained from a half-kilometre
journey around the University of Sydney. The classes are { ACFR front, ACFR park, Eng. Building, Eng.
Road, Eng. Carpark, Mech. Building, ACFR carpark, ACFR road, garage(indoor) and office(indoor) }. The
generative model for the class ACFR park is shown in Figure 1b. Also annotated is the correlation between
patches and their real location.

Table 1b presents the precision and recall results which are in general better than the indoor dataset.
The most difficult problem of the outdoor dataset was to distinguish between the two carparks. When the
robot was very close to a car, it was not able to have a more general view of the place which resulted in

Figure 2: The training images used for the kitchen model. The model learnt from them was able to recog-
nise wider views of the place such as the image in Figure 1a.

| Place Name | Precision | Recall |
| Place Name | Precision | Recall | ACFR Front 71.04 87.44
Kitchen 81.82 76.60 ACFR Park 83.19 71.05
Seminar Room 68.07 81.82 Eng. Building 65.40 77.31
Student Cubicle 1 52.86 48.05 Eng. Road 91.43 45.43
Corridor 1 74.96 84.09 Eng. Carpark 26.17 87.10
Student Cubicle 2 62.96 46.12 Mech. Building 64.47 17.63
Corridor 2 40.00 62.50 Mech. Corridor 90.68 65.54
Corridor 3 100 15.13 ACFR Carpark 55.24 76.40
Researcher Office 73.01 90.16 ACFR Road 87.00 74.34
Professor Office 62.96 71.83 Garage 23.94 87.18
Office 99.47 61.84
a) Indoor results. b) Outdoor results.

Table 1: Precision and recall results for the indoor and outdoor datasets.

classifying the image as the other carpark. Also, “Mech. Building” and “Eng. Building” are physically in
the same building and the limits of where one starts and the other finish are not very clear.

5 Conclusions

The framework here proposed has three main contributions: it shows that mixture of linear models can
be used as a tool for nonlinear regression problems with noise such as Isomap mappings; it demonstrates
how variational Bayesian learning with a free-energy heuristic can choose the right number of components
of a mixture of Gaussians; it shows how the log-likelihood can be applied to multi-class problems where
classification is given from a set of samples rather than from a single point.

Patches of images and images themselves are treated here as independent and identically distributed.
In the case of patches, further implementations can include the positions of each patch as additional di-
mensions in the feature-vector. Also, spatial relations among them can be included in more sophisticated
relational statistical models. This, however, should preserve the main benefits of the model such as learning
from few images and real-time classification.

Most of the wrong classifications took place when the robot was close to a wall or object that occluded
a wider view of the scene. This problem could be avoided if a topological map of the environment were
encoded in a hidden Markov model to constrain the search to fewer places. In future works, algorithms for
learning this topological map will be investigated as well as how to integrate them in the framework.

Acknowledgements

This work is supported by the ARC Centre of Excellence programme, funded by the Australian Research
Council (ARC) and the New South Wales (NSW) State Government.

7

References

(1]

(2]

(3]
(4]
(3]

(6]

(7]

[8
(9]

—

(10]

(11]

(12]

[13]

[14]

[15]
(16]

(17]

(18]

(19]

[20]

[21]

[22]

H. Attias. A variational bayesian framework for graphical models. In Proceedings of Neural Information Pro-
cessing Systems 12, Cambridge, MA, USA, 2000. MIT Press.

M. J. Beal. Variational Algorithms for Approximate Bayesian inference. PhD thesis, The Gatsby Computational
Neuroscience Unit, University College London, May 2003.

T. M. Cover and J. A. Thomas. Elements of Information Theory. John Wiley & Sons, Inc, New York, 1991.
T. Cox and M. Cox. Multidimensional Scaling. Chapman and Hall, 1994.

A. Davison and D. Murray. Simultaneous localisation and map-building using active vision. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 24:865-880, 2002.

A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data via the EM algorithm.
Journal of the Royal Statistical Society B, 39:1-37, 1977.

M. G. Dissanayake, P. Newman, S. Clark, and H. F. Durrant-Whyte. A solution to the simultaneous localization
and map building (SLAM) problem. [EEE Transactions on Robotics and Automation, 17:229-241, 2001.

R. Duda, P. Hart, and D. Stork. Pattern Classification. Wiley-Interscience, New York, second edition, 2001.

Z. Ghahramani and G. E. Hinton. The EM algorithm for mixtures of factor analyzers. Technical report, Depart-
ment of Computer Science, University of Toronto CRG-TR-96-1, 1996.

M. L. Jordan, Z. Ghahramani, T. Jaakkola, and L. K. Saul. An introduction to variational methods for graphical
models. Machine Learning, 37(2):183-233, 1999.

J. Kosecka and F. Li. Vision based topological Markov localization. In Proc. of IEEE International Conference
on Robotics and Automation (ICRA), 2004.

D. J. C. Mackay. Information Theory, Inference, and Learning Algorithms. Cambridge University Press, Cam-
bridge, UK, 2003.

T. P. Minka. Using lower bounds to approximate integrals. Informal notes available at
http://www.stat.cmu.edu/minka/papers/learning.html, 2001.

T. Mitchell and F. Labrosse. Visual homing: a purely appearance-based approach. In In Proc. of Towards
Autonomous Robotic Systems, Colchester, UK, 2004.

R. J. Muirhead. Aspects of Multivariate Statistical Theory. Wiley, New York, USA, 1982.

L. K. Saul and S. T. Roweis. Think globally, fit locally: Unsupervised learning of low dimensional manifolds.
Journal of Machine Learning Research, 4(Jun):119-155, 2003.

S. Se, D. Lowe, and J. Little. Global localization using distintive visual features. In Proc. of International
Conference on Intelligent Robots and Systems, pages 226231, Lausanne, Switzerland, 2002.

R. Sim and G. Dudek. Learning environmental features for pose estimation. Image and Vision Computing,
19(11):733-739, 2001.

J. Tenenbaum, V. DeSilva, and J. C. Langford. A global geometric framework for nonlinear dimensionality
redution. Science, 290:2319-2323, 2000.

A. Torralba, K. Murphy, W. Freeman, and M. Rubin. Context-based vision system for place and object recogni-
tion. In Proceedings of International Conference of Computer Vision, 2003.

I. Ulrich and I. Nourbakhsh. Appearance-based place recognition for topological localization. In Proceedings of
ICRA 2000, volume 2, pages 1023-1029, April 2000.

J. Wolf, W. Burgard, and H. Burkhardt. Robust vision-based localization for mobile robots using an image
retrieval system based on invariant features. In Proc. of the IEEE International Conference on Robotics &
Automation (ICRA), 2002.

IJCAI Workshop Reasoning with Uncertainty in Robotics, Edinburgh, Scotland, 30 July 2005

Vision-based SLAM using the Rao-Blackwellised Particle
Filter

Robert Sim, Pantelis Elinas, Matt Griffin and James J. Little

Laboratory for Computational Intelligence
Computer Science Department
University of British Columbia

Vancouver, BC, V6T 1Z4

Canada

Abstract

We consider the problem of Simultaneous Localization and Mapping (SLAM) from a Bayesian point
of view using the Rao-Blackwellised Particle Filter (RBPF). We focus on the class of indoor mobile
robots equipped with only a stereo vision sensor. Our goal is to construct dense metric maps of natural
3D point landmarks for large cyclic environments in the absence of accurate landmark position mea-
surements and reliable motion estimates. Landmark estimates are derived from stereo vision and motion
estimates are based on visual odometry. We distinguish between landmarks using the Scale Invariant
Feature Transform (SIFT). Our work differs from current popular approaches that rely on reliable mo-
tion models derived from odometric hardware and accurate landmark measurements obtained with laser
sensors. We present results that show that our model is a successful approach for vision-based SLAM,
even in large environments. We validate our approach experimentally for long camera trajectories. We
identify the areas where future research should focus in order to further increase its accuracy and scala-
bility to significantly larger environments.

1 Introduction

In robotics, the problem of Simultaneous Localization and Mapping (SLAM) is that of estimating both a
robot’s location and a map of its surrounding environment. It is an inherently hard problem because noise in
the estimate of the robot’s pose leads to noise in the estimate of the map and vice versa. In general, SLAM
algorithms must address issues regarding sensors, map representation and robot/environment dynamics. A
probabilistic framework is necessary for combining over time the incoming sensor measurements and robot
control signals.

Previous work on SLAM has focused predominantly on planar robots that construct 2D occupancy
grid maps [15] using sonar or laser sensors [2, 6, 14]. Laser sensors have high depth resolution providing
accurate measurements of landmark positions but suffer from the perceptual aliasing problem. We focus
on using vision as the sensing modality. Vision can be used to construct 2D [20] and 3D occupancy grids
or maps of 3D natural landmarks [17].

In order to integrate sensor measurements and robot control signals over time, the Extended Kalman
Filter (EKF) has been the most common approach since its application by Smith et. al. [18]. The complexity
of the EKF grows quadratically with the number of landmarks added to the map making its use problematic
for learning maps of large environments. The EKF is also very sensitive to outliers in landmark detection. A
single outlier measurement once incorporated into the covariance matrix cannot be corrected at a later time
if more information becomes available. Another approach is the use of Particle Filters (PFs) to approximate
the posterior distribution over robot poses and maps. PFs can handle outliers better than the EKF but scale
poorly with respect to the dimensionality of the state. The Rao-Blackwellised Particle Filter (RBPF) is a
method for handling this dimensionality problem [5]. Murphy [16] was the first to study the application
of RBPFs to SLAM and others followed [2]. Sampling over robot poses allowed him to independently

estimate each landmark using an EKF. A naive implementation yields a complexity of O(M N), where
M is the number of new particles at each step. Montemerlo et al. [14] present FastSLAM, a variant of
RBPF-based SLAM that introduces a tree-based structure which refines this complexity to O(M log N) by
sharing landmarks between particles. Similarly, Eliazar et. al. have constructed an efficient 2D occupancy
grid representation for particle-based SLAM [6].

The approach we advocate here depends on a motion model based on visual odometry and an observa-
tion model based on 3D landmarks from stereo vision coupled with the Scale-Invariant Feature Transform
(SIFT) detector [12]. SIFT is used for robust data association. These features are desirable as landmarks
because they are invariant to image scale, rotation and translation as well as partially invariant to illumina-
tion changes and affine or 3D projection. This combination can result in many viable landmarks from an
unaltered environment and in fact SIFT has been shown to outperform other leading edge image descriptors
in matching accuracy [13].

The major contributions of this paper are two-fold. First, we present RBPF-based SLAM utilizing
vision-based sensing, rather than traditional range sensing with a laser. Our motion model depends on
visual odometry that generalizes to unconstrained 3D motion. That is, we assume no prior knowledge of
the control actions that drive the camera through the world. Furthermore, where previous implementations
of the SLAM algorithm have generally employed sensors with a wide field of view, our experimentation
demonstrates the performance of the algorithm using sensors with a narrow field of view. We leverage
the strengths of particle filter-based methods for uncertainty estimation (such as the possibility of multi-
modal estimates), with data association techniques that were previously only applied to Kalman-filter based
estimators [1, 9, 17].

Our works differs from [10] because their approach learns topological maps. The maps we learn are
similar to those first introduced by [17] but our approach can handle longer trajectories. In addition, our
work does not depend on mechanical odometry measurements which are used in both [10] and [17].

This paper is structured as follows. We first present an overview of Bayesian filtering applied to SLAM
and its RBPF approximation. We then focus on the details of our vision-based SLAM presenting our map
representation, observation and motion models. We provide experimental results to support the validity of
our approach and conclude by discussing scalability issues and implementation pitfalls along with direc-
tions for future work.

2 SLAM using the Bayes Filter

Formally, and in accordance with popular SLAM literature, let s; denote the robot’s pose at time ¢, m; the
map learned thus far and z; = {s;, m;} be the complete state. Also, let u; denote a control signal or a
measurement of the robot’s motion from time ¢ — 1 to time ¢ and z; be the current observation. The set of
observations and controls from time 0 to ¢ are denoted by z! and u’ respectively. Our goal is to estimate
the density

p(se, me|2t, ul) = p(ay|2t, uh) (1

That is we must integrate the set of observations and controls as they arrive over time in order to compute
the posterior probability over the unknown state. Applying Bayes rule on 1 we get [19]

p(xe]2',u') = Bel(w;) = np(z|a) /p($t|utaxtfl)p(xtfﬂzt_laUt_l)dxtfl =
np(ze|t) /p(xtlut, zy—1)Bel(zi—1)dxi—1 2
where 7 is a normalizing constant.
Equation 2 allow us to recursively estimate the posterior probability of maps and robot poses if the two
distributions p(z;|x¢) and p(x¢|us, x¢—1) are given. These distributions model the observations and robot

motion respectively. For SLAM, an analytical form for Bel(z;) is hard to obtain and as such the Bayes
filter is not directly applicable. Instead we approximate it using a Particle Filter as we describe next.

10

2.1 Rao-Blackwellised Particle Filters

In the previous section we showed how we can recursively estimate the posterior density Bel(z;) using the
Bayes filter. As discussed we cannot directly implement this filter and so we employ a common approxi-
mation technique known as Particle Filtering. PF is a general method for approximating Bel(x;) using a
set of m weighted particles, Bel(x;) = {z(?), w(i)}izl}...7m. The system is initialized according to p(zo)
and the recursive update of the Bayes filter proceeds using a procedure known as sampling-importance-
resampling [3]. A major caveat of the standard PF is that it requires a very large number of particles as
the size of the state increases. Since for SLAM the state of the system includes the map that often has
tens of thousands of landmarks, the PF is not applicable from a practical point of view. The method of
Rao-Blackwellization can be used to reduce the complexity of the PF [4]. In the case of SLAM, we sample
over possible robot poses, s;, and then marginalize out the map [16]. The posterior then is factored as:

Bel(x;) = Bel(sy,my) = p(s, my|2t, ut) = p(se] 2", u’ Hp k)|st, 2%, ut) 3)

where m(k) denotes the k-th landmark in the map. We use a standard PF to estimate p(s;|z%, u') and an
EKEF for each of the k£ landmarks.

3 Vision-based SLAM

In this section we present our RBPF model for vision-based SLAM. We first describe how we represent
maps that are central to our method. Next we define observations and how we compute the observation
likelihood followed with a description of our motion model based on visual odometry.

3.1 Map Representation

We construct maps of naturally occurring 3D landmarks similar to those proposed in [17]. Each landmark
is a vector | = {P,C% a,s, f} such that P = {X% Y% Z%} is a 3-dimensional position vector in the
map’s global coordinate frame, C“ is the 3 x 3 covariance matrix for P, and «, s, f describe an invariant
feature based on the Scale Invariant Feature Transform [12]. Parameter « is the orientation of the feature, s
isits scale and f is the 36-dimensional key vector which represents the histogram of local edge orientations.

3.2 Observation Model

Let I7 and I} denote the right and left gray scale images captured using the stereo camera at time t. We
compute image points of interest from both images by selecting maximal points in the scale space pyramid
of a Difference of Gaussians [12]. For each such point, we compute the SIFT descriptor and record its scale
and orientation. We then match the points in the left and right images in order to compute the points’ 3D
positions in the camera coordinate frame. Matching is constrained by the stereo camera’s known epipolar

geometry and the Euclidean distance of their SIFT keys. Thus, we obtain a set O = {01, 02, ,0n}
of n local landmarks such that o; = {P,, = {XOL ,Yof ZL} Do, = {To,,C0;,1},CL a5, f} where

Po; = {70;,Co;, 1} is the image coordinates of the pomt and j € [1---n].

An observation is defined as a set of k correspondences between landmarks in the map and the current
view, z; = Uy..p{l; < o;} such that ¢ € [1..m] and j € [1..n] where m is the number of landmarks in
the map and n is the number of landmarks in the current view. Each local landmark either corresponds
to a mapped landmark [;, or has no corresponding landmark, denoted by the null correspondence /. We
compare the landmarks’ SIFT keys in order to obtain these correspondences just as we did before during
stereo matching. There are no guarantees that all correspondences are correct but the high specificity of
SIFT results in a reduced number of incorrect matches.

A pose of the camera, s, defines a transformation [R, T, from the camera to the global coordinate
frame. Specifically, R is a 3 X 3 rotation matrix and 7" is a 3 x 1 translation vector. Each landmark in the
current view can be transformed to global coordinates using the well known equation

PS¢ =R, P,, + T,)

11

Using Equation 4 and the Mahalanobis distance metric we can define the observation log-likelihood,
log p(z:|m?). Special consideration must be taken when computing this quantity, particularly where large
numbers of feature observations, with significant potential for outlier correspondences, are present. We
compute it by summing over the feature correspondences:

logp(z:/m;) = _ log p(og|l},) (5)
k

The log-likelihood of the k-th observation is given by
log p(ox|l},) = —0.5min(Ti, Py} — PF)TS™H(Py) — YY) (©6)

where the correspondence covariance .S is given by the sum of the transformed observation covariance CoLk
and the landmark covariance C,? :
L pT G
S =R, C, R, +Cy. @)

t

For the null correspondence, S is assumed to be zero.

The maximum observation innovation 7; is selected so as to prevent outlier observations from signif-
icantly affecting the observation likelihood. However, given the potentially large numbers of correspon-
dences, even with a reasonable setting for 7} (in our case, 4.0), the magnitude of log p(z¢|m?) can be such
that raising it to the exponential to evaluate the i-th particle weight:

p(z|my)

N J
Zj:l p(zi|my)
results in zero weights. In order to preserve numerical accuracy, we note the following simplification. Let

H; = —log p(z;|m?). Without loss of generality, assume that mY is the particle that minimizes H;. Then
for all particles:

®)

w; =

log p(z|mi) = —(Ho + H;). ©
where H] = H; — H,. Substituting into Equation 8:

o C(H) esp(-Hoesp(-H) _ exp(~H) w0

SN exp(—(Ho+ H)) exp(—Ho) S.iL exp(—H]) SN, exp(—H])

Note that for m?, H{ = 0, so we guarantee that at least one particle has a numerator of 1, above, and
the denominator is at least 1.0. This approach effectively eliminates the probability mass associated with
outliers that is common to all particles. It is also important to note that using this approach assures that all
particles have comparable weights — every particle has the same number of input observations, and outliers
are represented in the model on a per-particle basis. Hence, a particle with more outlier matches will have
a lower weight than a particle with better data association.

3.3 Motion Model

An essential component to the implementation of RPBF is the specification of the robot’s motion model,
uy. In all previous work, this has been a function of the robot’s odometry, i.e., wheel encoders that measure
the amount the robot’s wheels rotate that can be mapped to a metric value of displacement and rotation.
Noise drawn from a Gaussian is then added to this measurement to take into account slippage as the wheels
rotate. Odometric measurements of this type are limited to robots moving on planar surfaces. We want to
establish a more general solution. Thus, we obtain u; measurements by taking advantage of the vast amount
of research in multiple view geometry [8]. Specifically, it is possible to compute the robot’s displacement
directly from the available image data including an estimate of the uncertainty in that measurement.

Let I; and I;_, represent the pairs of stereo images taken with the robot’s camera at two consecutive
intervals with the robot moving between the two. For each pair of images we detect points of interest,
compute SIFT descriptors for them and perform stereo matching, as described earlier in section 3.2, result-
ing in 2 sets of landmarks L;_; and L;. We compute the camera motion using a non-linear optimization

12

Figure 1: Sample images from the 4000 frame sequence.

algorithm minimizing the re-projection error of the 3D coordinates of the landmarks. We employ the
Levenberg-Marquardt (LM) non-linear optimization algorithm [8]. We utilize the 3D coordinates of our
landmarks and use the LM algorithm to minimize their re-projection error. Let s; be the 6-dimensional
vector §; = [roll, pitch,yaw, Th1,To1, T51] corresponding to a given [R,T]. Our goal is to iteratively
compute a correction term

St =5 —x (11
such as to minimize the vector of error measurement e, i.e., the re-projection error of our 3D points. For a
known camera calibration matrix K, € is defined as

€. P — K(RP), +T)
ef pi — K(RPL, +T)
e=| . | = : (12)
e pf — K(RP[, +T)
Given an initial estimate for the parameters, we wish to solve for x that minimizes ¢, i.e.,
J X = ; s (JTT+ M)y =J e+)\ (13)
A Ad

Oeq .. aj]T

where J = | o o o is the Jacobian matrix, [is the identity matrix and d is an initial solution that
in this case is set to zero rotation and translation. The LM algorithm introduces the variable A that controls
the convergence of the solution by switching between pure gradient descent and Newton’s method. As
discussed in [11] solving Equation 13, i.e., the normal equations, minimizes

[Tx — €l + X?||x — d]|? (14)

The normal equations can be solved efficiently using the SVD algorithm. A byproduct from solving Equa-
tion 14 is that we also get the covariance of the solution in the inverse of J7.J.

4 Experimental Results

For the purposes of our experiments, we used an RWI B14 robot with a BumbleBee stereo head from
Point Grey Research. We manually drove it through two connecting rooms in a laboratory environment,
and we collected 4000 images along a trajectory of approximately 67.5m. Figure 1 displays a subset of
the collected images. While the visual odometry produces 6-DOF motion estimates, we chose to estimate
only three parameters in constructing s; from s;. While for this particular experiment, this assumption
was reasonable, we have preliminary results suggesting that relaxing the assumption altogether will be
successful [7].

As a summary of the map construction process, Table 1 describes at 200 frame intervals the mean
number of landmarks per particle (SIFT features observed more than three times), the total distance traveled
according to the robot’s odometer, and the total number of SIFT features (landmarks have been observed at
least three times, whereas SIFT features have been observed at least once, and are removed if unobserved
for a second time within three frames).

Part (a) of Figure 2 depicts the map constructed for the maximum-likelihood particle at the end of
exploration. This map is not post-processed to remove noise or perform any global optimization. The

13

x10* Processing time per frame
4.5 T T T
4
3.5¢
m
E 3r
Q
Eost
2
z ol
3
o 1.5¢
o
1 -
0.5f
0 . . .
0 1000 2000 3000 4000
frame
(@) (b)

Figure 2: (a) The constructed map for the best sample at the end of exploration. The blue trajectory indi-
cates the trajectory of the best sample and the green trajectory indicates the visual odometry measurements.
The robot odometer (not used for map estimation) is plotted as a yellow trajectory. Landmark positions are
marked with red ‘X’s. The set of particles is shown by the cyan blob near the center. The width of the map
is approximately 18m. (b) Processing time per frame. The mean is 11.9s.

blue trajectory indicates the trajectory of the best sample and the green trail indicates the visual odometry
measurements. The robot odometer (not used for map estimation) is plotted as a yellow trajectory. All
three trajectories begin from the origin, on the left side of the image. Landmark positions are marked
with red ‘X’s. The set of particles is shown by the cyan blob near the center. Figure 4 depicts the maps
as constructed using only visual odometry and the robot’s odometry, respectively. Clearly, the filter out-
performs both kinds of odometry.

Part (b) of Figure 2 depicts the computation time for each frame of the sequence on a 2.6GHz Pentium
4 CPU. The mean compute time per frame is 11.9s. The base-line cost (horizontal line near about 2s)
corresponds to the motion estimation, whereas the larger costs correspond to RBPF updates (which are
triggered only when sufficient motion is detected). A major contributor to the increased cost over time
is the cost of matching SIFT features. For this experiment, to ensure robustness in data association, we
employed a linear-time comparison of image features with SIFT features in the map (O(M N) where M
is the number of observed features and N is the number in the map). There are a variety of fast methods
for improving this result, particularly kd-trees. We have found that there is some degradation in data
association quality using kd-trees, and that the kd-tree can become overcrowded over time as a result.
Future work will address these issues.

S Scalability Issues and Implementation Pitfalls

In this paper, we have presented experimental results which push the envelope for what can be accom-
plished using vision and no prior knowledge of the camera’s motion. In particular, we are successfully
building accurate maps over long-range motion. However, there are several considerations that were taken
into account in order to compute an accurate result in a reasonable amount of time.

There are two barriers to full frame-rate operation. First, the number of particles must be small in order
to update the maps in a reasonable amount of time. While some papers have argued that a proposal distri-
bution conditioned on the observation can lead to a filter that converges with only one particle, we would
argue that this distribution is highly over-confident and somewhat biased, necessitating the injection of
noise into the distribution, and also necessitating a reasonably large number of particles to ensure diversity
in the filter (particularly important for loop closing). For these experiments, we used 400 particles, and we

14

(a) (b)

Figure 3: The constructed map (a) based solely on the visual odometry and (b) based solely on the robot’s
odometer (which was not used for constructing the map in Figure 2).

believe the loop can be reliably closed over reasonable distances We have not experimented significantly
with fewer particles, or the level of noise that must be injected.

The second barrier is the management and correspondence of SIFT features. We use 36-element SIFT
feature vectors, but perform a list traversal to match each feature. As mentioned above, matching can be
improved by using a kd-tree, but this can present additional complications for key maintenance (for exam-
ple, deleting unmatched keys from the tree after a few frames). Without sophisticated key maintenance, the
tree can become over-populated, making it very difficult to verify good matches. The rate at which SIFT
keys are added is another consideration, and we insert a limited number of keys into the database at each
frame (10-15). These insertions are predicated on the new keys being sufficiently distinct from the keys
already in the database. Without these limits, the number of SIFT keys can grow by up to 500 keys per
frame.

6 Conclusions

In this paper we have presented our model for vision-based SLAM from a Bayesian point of view using
the RBPF. We show that we can successfully construct dense metric maps of more than 11,000 3D point
landmarks for long camera trajectories in the order of 68 meters and 4000 image frames. We have utilized
SIFT for identifying landmarks and defining the observation function of our model. We diverged from
popular SLAM literature by not relying on motion estimates based on odometric hardware but only on
visual odometry. We have identified a number of areas that need further work to increase the computa-
tional efficiency, and representational power of our method, in order to build accurate maps of even larger
environments.

References

[1] A.J. Davison. Real-time simultaneous localisation and mapping with a single camera. In Proc. International
Conference on Computer Vision, Nice, Oct. 2003.

[2] F. Dellaert, W. Burgard, D. Fox, and S. Thrun. Using the CONDENSATION algorithm for robust, vision-based
mobile robot localization. In IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, pages
2588-2593, Ft. Collins, CO, June 1999. IEEE Press.

[3] A.Doucet, N. de Freitas, and N. Gordon. Sequential Monte Carlo in Practice. Springer-Verlag, 2001.

[4] A. Doucet, N. de Freitas, K. Murphy, and S. Russell. Rao-blackwellised particle filtering for dynamic bayesian
networks. In Uncertainty in Artificial Intelligence. 2000.

15

(3]

[6]
[7

—

(8]

(9]

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(7]

(18]

(19]

[20]

Frame | Mean Landmarks Distance SIFT
Number per particle traveled (m) | Features
4000 11085 65.71 38394
3600 10056 58.82 34404
3199 9065 52.05 30639
2797 8355 43.58 27369
2400 7155 38.07 23259
1998 6213 31.11 19869
1600 4857 26.01 15264
1200 3773 18.69 11424
800 2625 11.48 7674
400 1542 4.02 4194

Table 1: Summary of map construction statistics at 400 frame intervals.

A. Doucet, S. Godsill, and C. Andrieu. On sequential Monte Carlo sampling methods for Bayesian filtering.
Statistics and Computing, 10(3):197-208, 2000.

A. 1. Eliazar and R. Parr. DP-slam 2.0. In Proc. ICRA 2004, New Orleans, LA, 2004. IEEE Press.

P. Elinas and J. Little. sMCL: Monte-Carlo localization for mobile robots with stereo vision. In Proceedings of
Robotics: Science and Systems, Cambridge, MA, USA, 2005.

R. Hartley and A. Zisserman. Multiple View Geometry in Computer Vision. Cambridge Univ. Pr., Cambridge,
UK, 2000.

M.-H. Y. Jason Meltzer, Rakesh Gupta and S. Soatto. Simultaneous localization and mapping using multiple
view feature descriptors. Sendai, Japan, September 2004.

N. Karlsson, E. D. Bernardo, J. Ostrowski, L. Goncalves, P. Pirjanian, and M. E. Munich. The vSLAM algorithm
for robust localization and mapping. In IEEE Int. Conf. on Robotics and Automation (ICRA), pages 24-29,
Barcelona, Spain, April 2005.

D. Lowe. Fitting parameterized three-dimensional models to images. IEEE Trans. Pattern Analysis Mach. Intell.
(PAMI), 13(5):441-450, May 1991.

D. G. Lowe. Object recognition from local scale-invariant features. In Proceedings of the Int. Conf. on Computer
Vision, pages 1150-1157, Corfu, Greece, September 1999. IEEE Press.

K. Mikolajczyk and C. Schmid. A performance evaluation of local descriptors. In International Conference on
Computer Vision & Pattern Recognition, volume 2, pages 257-263, June 2003.

M. Montemerlo, S. Thrun, D. Koller, and B. Wegbreit. FastSLAM: A factored solution to the simultaneous local-
ization and mapping problem. In Proceedings of the AAAI National Conf. on Artificial Intelligence, Edmonton,
Canada, 2002. AAAL

H. P. Moravec and A. Elfes. High resolution maps from wide angle sonar. In Proc. IEEE Int. Conf. on Robotics
and Automation, pages 116-121, 1985.

K. Murphy. Bayesian map learning in dynamic environments. In 1999 Neural Information Processing Systems
(NIPS), 1999.

S. Se, D. G. Lowe, and J. Little. Mobile robot localization and mapping with uncertainty using scale-invariant
visual landmarks. Int. J. Robotics Research, 21(8):735-758, 2002.

R. Smith, M. Self, and P. Cheeseman. A stochastic map for uncertain spatial relationships. In Workshop on
Spatial Reasoning and Multisensor Fusion, 1987.

S. Thrun. Robot mapping: A survey. Technical Report CMU-CS-02-11, Carnegie Mellon university, February
2002.

V. Tucakov, M. Sahota, D. Murray, A. Mackworth, J. Little, S. Kingdon, C. Jennings, and R. Barman. A stereo-
scopic visually guided mobile robot. In Proc. of Hawaii International Conference on Systems Sciences, 1997.

16

IJCAI WorkshopReasoning with Uncertainty in Robotidsdinburgh, Scotland, 30 July 2005

Towards Solving Large-Scale POMDP Problems Via
Spatio-Temporal Belief State Clustering

Xin Li, William K. Cheung, Jiming Liu
{lixin,william,jiming } @comp.hkbu.edu.hk

Department of Computer Science of Hong Kong Baptist University

Abstract

Markov decision process (MDP) is commonly used to model a stochasiioement for supporting
optimal decision making. However, solving a large-scale MDP probledeuthe partially observable
condition (also called POMDP) is known to be computationally intractable. Betiefpression by re-
ducing belief state dimension has recently been shown to be an effecijvéowmaking the problem
tractable. With the conjecture that temporally close belief states shouldsgasdew intrinsic degree
of freedom due to problem regularity, this paper proposes to clusteetlet states based on a criterion
function measuring the belief states spatial and temporal differenoeseFreduction of the belief state
dimension can then result in a more efficient POMDP solver. The pegpoethod has been tested using
a synthesized navigation problem (Hallway2) and empirically shown tqberaising direction towards
solving large-scale POMDP problems. Some future research direetiersdso included.

1 Introduction

Markov decision process (MDP) is commonly used to model ehststic environment for supporting opti-
mal decision making. An MDP model is characterized by a fipdtieof statesS, a finite set of actionsl, a
set of corresponding state transition probabilifiesS x A — II(S) and a reward functioR: S x A — R.
Solving an MDP problem means finding an optimal policy whicaps each state to an action so as to
achieve the best long-term reward. One of the most impoassumptions in MDP is that the state of the
environment s fully observable. This, however, is unfit totaf real-world problems. Partially observable
Markov decision process (POMDP) generalizes MDP in whiehdicision process is based on incomplete
information about the state. A POMDP model is essentiallyivedent to that of MDP with the addition
of a finite set of observationg and a set of corresponding observation probabiliflesS x A — TI(Z).
Thus, a standard POMDP model is described by a tupl§, A, Z, T, O, R >, usually companied with
two parameters the discount factore [0, 1] and the initial belief. The policy of a POMDP can then be
understood as a mapping from histories of observationstioresc

The MDP problem can be solved with(|S|?) complexity wherelS| denotes the number of states
with value iteration or policy iteration the popular appbas. For POMDPSs, the policy is defined over
the belief state which can be taken as a probability distribution olier unobservable real states as an
effective summary of the observation history. The belietestis updated based on the last action, the
current observation, and the previous belief state usiadtiyes rule. The policy of a POMDP is thus a
mapping from a belief state to an action. The space of bahgé & continuous. Obviously, the complexity
of computing the optimal policy for a POMDP is much higherrthhat of an MDP. The best bound for
obtaining the exact solution is doubly exponential in theizom [3]. For large-scale POMDP problems,
it is computationally infeasible even though it is knowntttize value function can be proven piecewise
linear and convex (PWLC) over the internal state space [1].

With the conjecture that temporally close belief stategtfavrigation related problems should possess
a low intrinsic degree of freedom, this paper proposes tstetbelief states by considering belief states’
spatio similarity and their temporal order in a given betitsfte sample. The expected outputs are clusters
of belief states, each characterized by a much lower diroaakspace. The proposed method has been

17

tested using a synthesized navigation problem and emibjrgfzown to be a promising direction towards
solving large-scale POMDP problems.

The remaining of this paper is organized as follows. Sec#grovides the background on belief
compression. Section 3 describes the proposed beliefdtmiering technique. Experimental results are
reported in Section 4 with possible extensions found iniBe&. Section 6 concludes the paper.

2 Belief Compression

In the literature, there exist a number of different methodgposed to solve large-scale POMDP problems
efficiently. They include the witness algorithm [1], VDC afghm [11], BFSC alogrithm [12], etc. Belief
compression is one recently proposed paradigm [8] whichaeslthe sparse high-dimensional belief space
to a low-dimensional one via projection. The principle Imehis to explore the redundancy in computing
the optimal policy for the entire belief space which is tyglig sparse. Using a sample of belief states
of a specific problemn computed based on the consecutivenaltiems, data analysis techniques like
exponential principal component analysis (EPCA) can bgtedbfor characterizing the belief states and
thus the corresponding dimension reduction. This paradigmbeen found to be effective in making
POMDP problems much more tractable.

Let S denote the set of true staté@&denote the belief state space of dimensish b; € B denote the
belief state where itg!" elementh;(j) > 0 andZL.S:‘O bi(j) = 1, B denote &S| x n matrix defined as
[b1]b2]...|bn] wheren is the number of belief states in the training sample.

According to [8], one can apply EPCA and obtainSa x [transformation matriXJ which factorsB
into the matriced/ and B such that

B~ eUB (1)

where each column aB equalsh ~ b” = eU® and the dimension aB is [x n. As the main objective of
U is for dimension reduction, it is typical thatc < |S]|.

For computing the policy, an MDP using the sampled belietestas its true states is created. The
corresponding transition probabilities have to be es@hdtased on those of the original POMDP. Then,
the value iteration method can be used to compute the optiatialy for the MDP which then becomes the
policy for the POMDP. This way of approximation has been proto be bounded-error [4]. It is to noted
that due to the nonlinear projection using EPCA, the PWLC eriypof the POMDP value function is lost
and thus some existing efficient exact algorithms no longéo 8olving the POMDP problem after belief
compression.

3 Clustering Belief Statesfor Problem Decomposition

3.1 Motivation

We believe that the contribution of belief compression ismerely yet another technique to address the
POMDP’s scalability issue. Itin fact opens up a new dimem$io tackling the problem and shows the pos-
sibility to apply data analysis techniques to the beliefestpace to result in more elegant problem solving
tricks. As mentioned in [8], the efficiency of belief compsiEs is owing to its strategy of "compression”
the high-dimensional belief state which is one of the maiursea for the exponential complexity.

To further exploit the dimension reduction paradigm, weppse to partition the entire belief space
by analyzing the manifold of a sample of belief states instan By clustering the belief states sample,
dimension reduction techniques can be applied to indiVidwaters of belief states instead of the overall
belief state sample. With the assumption that the instridshensions of the belief state clusters are much
lower than that of the original sample owing to problem ragitikes found in a lot of real applications, it
is anticipated that the dimensional reduction per clusi#b& more significant, and thus the subsequent
complexity for solving the POMDP problem can be further i@t This idea can intuitively be explained
as exploitation of the structural modularization of thedfedtate domain.

18

For related work, it is to be noted that the proposed beliafestlustering has some analogy with
POMDP decomposition. However, in the literature, most ef pnoposed POMDP decomposition tech-
niques [10] focus on analyzing the original states of the BP)Mnstead of based on the statistical prop-
erties of belief state occurrence as what being proposedusdrpaper. In [13], an MDP state aggregation
algorithm has been proposed, which however focus on clagtére true states with similar features. For
POMDPs, we perform clustering in the belief state spaceo Adscontrast with the standard clustering
problem where the typical objective is to identify data tdus with large inter-cluster distances and small
intra-cluster distances, the objective here is to clustebelief states in such a way that at least the resul-
tant clusters of belief states can further be compressed atmpared with the compressing all the belief
states. In this paper, with the assumption some regukastieuld exist for temporally close belief states,
we propose to cluster the belief states based on both thileagldistance between them as well as their
temporal difference in the belief state sample.

3.2 A Spatio-Temporal Criterion Function for Clustering

Among all the clustering algorithms, tHemeans algorithm [7] is used here for the simplicity reason,
where a distance function between the cluster means andtadnds first to be defined. Then, data found
to be closest to one of the cluster means will contribute ¢éoupdate of that mean in the next iteration.

The whole process will repeat until it converges. For clistebelief states with the dimension-reduction

objective, we propose to achieve that implicitly by definangpatio-temporal distance function between
two belief states, given as

L)
S|

dist(b;, bj) = \/|b¢bj||2+>\|| (2
where is a trade-off parameter for controlling the relative cdmttion of the first (spatio) term and the
second (temporal) one. For navigational problems, a bstad€ provides a good indication of the spatial
location of the agent. Therefore, we use "spatio” to desctiile first term which measures the distance in
the belief state space. The second term is essentially miegshie terporal steps apart between two belief
states as indicated by their indicesS| is introduced to normalize the second term to be within-]. If A

is too large, it will dominate the first term and thaneans clustering results will essentially be cutting the
belief state sample into some consecutive parts accordititetstate appearance sequence in the sample.
Also, the value of, i.e., the number of clusters, is another parameter that one canfon optimal belief
state dimension reduction. To determine the valuesaridk, we only used an empirical procedure in this
paper to be explained in the following. It is in fact possitdeeplace th&-means clustering with mixture
of Gaussian so that the data partition becomes soft instelaald and the analytical derivation of optimal
A could be possible. This part will further be pursued in thieife due to the promising empirical results
we obtained.

The optimality ofk and X should be defined based on some criterion function which nmeaghe dif-
ference between the original belief states and the reaanstt belief states after belief compression is ap-
plied. As each belief state is a probability distributionylliiack-Leibler (KL) divergence (KL-divergence
has been shown that this is asymmetry, and there are alterma¢asures that could be used for instance
the Kontorovich metric and the total variation metric, wdl extend this part in future work)could be used
for evaluating the discrepancy between the original bsliafes and the reconstructed belief states, given

as n .
) =S Gy [216)
KL(blel) - sz(j)ln br(j) . (4)

19

3.3 Multiple Transformation Matrices

For the original belief compression, the compression iethas primarily one transformation matrix
as described in Section 2. Now, as the belief states areeohastthere will be several transformation
matrices, each corresponding to a particular cluster. hetbelief state sample be partitioned irfto
clusters{C}, Cs, ..., Cp} and the transformation matrix of th&" clusterC), to beU,,. The reconstructed

belief states associated @, can then be approximated &> = eU»b. To measure the dimension
reduction effectiveness via the clustering, the KL divexgeper cluster is to be computed, given as

i S co, KL(b|[b77)
KL(C,) = =% o J
p

(5)

Before proceeding to the section on experimental resuéisyauld like to highlight the fact that cluster-
ing the belief states can result not only in reducing the aVeomplexity for solving the original POMDP
problem, but also that for performing the EPCA for belief gmassion and that for computing of the tran-
sition probabilities for the belief state pairs. This corgtional gain is achieved at the expense of the
clustering overhead as well as the optimality of the resglpolicy that we may sacrify after the problem
decomposition. Fortunately, the clustering overheadusdicto be not significant when compared with the
overall complexity. For the resulting policy’s optimalfyrther evaluation will be needed.

4 Experimental Results
4.1 TheHallway2 Problem

a sample belief at step t a sample belief at step t+1

0.8 0.8

0.6 0.6
2 2
3 3

g 0.4 8 0.4
o o
= =

0.2 0.2

0 0

0 50 100 0 50 100
states states
a sample belief at step t+2 a sample belief at step t+3

0.8 0.8

S 0.6 > 0.6
3 3

g 04 T 04
o [}
s s

0.2 0.2

o

o

50 100 0 50 100
states states

Figure 1: Navigation environment with 92 Figure 2: Belief states sampled in consecutive time
states. steps.

The Hallway?2 Problem which is constructed by [6] to modellaotmavigation domain with a specific
maze is commonly used to test the scalability of algorithorssblving POMDP problems (see Figure
1). The problem is to find the goals in the maze with 92 statego@sible orientations in each of 22
rooms, and 4 being the goal states which are 4 possible afiens in the star room), and contains 5
actions (stay in place, move forward, turn right, turn l&d;n around) and 17 types of observations (all
combinations of walls, plus "reaching goal”). Reaching of¢he goal states will yield a1 reward and
then the next state will be set to a random non-goal statedditian, it is assumed that all the non-goal
states of the problem are equally likely to be the initiatestacation and thus the starting belief state is
b1 = (g5, 35,0.0,0.0,0.0,0.0, g5, ..., 35)* . The zeros are corresponding to four goal states. Also, the
discount factor used is 0.95. In this paper, all the expantalgesults reported are based on this problem
setting.

20

4.2 Belief State Sampling

The process of belief compression is operated on a belief stanple generated via simulation. During
the simulation for sample generation, two levels of randomibers are used to select an action (one level
is used to determine when to call MDP program, another leve$ed to determine the random action), and
the Bayes rules are used to evolve the belief states. Wheraadem number is found to be less than the
threshold defined as 0.5, another random number will be getkto decide the next action. Otherwise, it
will sum up all the beliefs generated so far and take the stitethe maximal sum of probabilities as the
current state. Then, an MDP solver will be called to get theeesponding policy table to choose the next
action for its "current state’.

The belief states in consecutive time steps often have airsilape with the same number of modes
(see Figure 2). Obviously, these “structurally” similadibestates could have them represented with a
much lower dimension. That's why the belief state spacetenafonsidered to be sparse.

4.3 Performance of Belief State Clustering

The first experiment focuses on evaluating the effectiverndghe proposed spatio-temporal clustering
scheme for overall dimension reduction. We enumerated of sbfferent values for the trade-off param-
eter\ and evaluated the corresponding dimension reduction peafoce. For performance measurement,
we contrasted the values of the KL-divergence between thefswiginal belief states and the ones re-
constructed based on the conventional belief state cosipreg§.e., without clustering) and the one we
proposed in this paper with belief state clustering. Fidd{e9 shows a lattice with the three axes being the
reduced dimension, the number of clusters Anglue. We only plot the lattice points which correspond
to the parameter setting resulting in the averaged KL deecg of the clusters being less than the aver-
aged KL divergence using the conventional belief compoassiccording to Figure 3(a), it is noted that
a number of settings can result in better overall dimenstoluction. Among those settings, we set a filter
and highlight those with high reduction as shown in Figut®) 3T he filtering is based on a rat#® which
illustrates the degree of the KL-divergence’s reductiafiretd as

P
(KLy(M1,Cp) — KLy, (A1, C))
ROLLP)=1/Px 3 KLPU()\ZC) :
s Uy Up

p=1

(6)

where KLy (A, 1,C,) stands for the KL-divergence between the original beliefest in thep'” cluster
and the corresponding reconstructed belief states basedlpy (original EPCA), and< Ly, (A, [, Cy)
stands for the KL-divergence between the original beliafest in thep'” cluster and the corresponding
reconstructed belief states based.gn(resulted from applying EPCA to the cluster).

In Figure 3(b), the filled points show the parameter settwig)s R > 0.95. Among them, the operation
point R(3, 4, 3) was chosen for the subsequent experiments. This point igadejat to the situation that the
belief state sample is partitioned into 4 clusters, its disien is reduced to 3, and the trade-off parameter
A is 3. Figure 4 shows the reconstructions of a particulaebstate using the conventional EPCA (Figure
4(a)) and the proposed clustered EPCA (Figure 4(b)). Therlahe’s reconstruction can almost completely
recover the original belief state and is more accurate wiobempared with the former one. Also, Figure
5 shows the temporal sequence of the belief states in easteclut is noted that in some clusters (e.g.,
Cluster 1 and 3), the belief states under them are only figrtiedered, which is consistent to the spatio-
temporal criterion function used.

Table 1 tabulates the performance comparison using the ¥drgiénce given the belief state dimension
is reduced to three. Obviously, the values of the KL diveogarbtained using the proposed spatio-temporal
clustering were much lower than the case using only EPCAurEi® shows the comparison of the KL-
divergence averaged over all sampled beliefs at differetiticed dimensions using EPCA and the KL-
divergence using proposed method. Note that our propos#tbhachieves more accurate reconstruction
than that of using conventional EPCA. In addition, our pgmbmethod is much more timesaving than
the conventional EPCA. As reported in the rightmost colurhfiable 1, our proposed method took 71.94
seconds while the conventional EPCA took 153.08 seconds.

21

(a) Parameter settings with better overall dimension redncti (b) The best parameter settings with> 0.95.

Figure 3: Parameter settings

5 Discussion and Future Works

This paper mainly demonstrates the possibility of cluatethe belief states in a spatio-temporal manner
for achieving further belief state compression. We areamnily working on the evaluation of the optimality
of the policy computed based on the proposed belief stagtering. Some experiments on evaluating the
optimal policy based on the proposed approach has been ptisbed with positive results(more details
can be found at http://www.comp.hkbu.edu.hk/tech-réis6B006f.pdf). Some future extensions of this
work can include at least the following two directions.

5.1 Hierarchical POMDP Decomposition

Hierarchical POMDP (HPOMDP) Decomposition has recentlgriygroposed for decomposing a POMDP
problem into a hierarchy of related POMDP models of reducasl #0ICA [10] is a representative example
where the decomposition is resulting from the decompoaloif the action domain. The limitation of
HPOMDP is that the decomposition is not fully automatic, wehthe underlying hierarchy of actions
requires knowledge of domain experts. In other words, ghidomain-specific. Also, the decomposition
is not based on the belief states. However, it would be isteteto see if the notion of hierarchical
decomposition can be incorporated into the proposed sgatiporal clustering framework.

5.2 TheMulti-Agent Consider ation

Given a POMDP decomposition, one can model each sub-POMDEPpasblem solving agent for the
specific sub-problem. As the decomposition based on theopeapbelief state clustering may not result in
a set of sub-POMDP problems which are equivalent to therald@OMDP problems, interaction between
those multiple agents for achieving the overall optimaiqyak an important research issue to look at. Nash
Equilibrium is an important concept commonly used in matient learning [5] for solving decentralized
MDP [2] and POMDP problems [9]. Our research agenda is tostiyate how this paradigm can be
applied to our decomposition scheme. The basic idea is tleay @gent would conjecture other agents’
behaviors and give the best response to other agents frémeatisview. A Nash equilibrium usually would
not deduce the optimal policy. However, it should be ableuargntee a not-too-bad sub-optimal one.

What being described so far assumes that the whole model dfttision process is known. That is,
we have the perfect knowledge about the reward functiongsitian function and observation function.
Solving the corresponding POMDP problems is an off-linecpss. It is also interesting to see how the
multi-agent approach can be extend to support online legrfg.g., Q-learning [14]) for POMDP under
partial observation scenarios.

22

belief || Original Proposed| Comp('
states|| EPCA Method|| Cost (sec.)
Clusterl 96 || 1.3997 0.0024 || 1.84
Cluster2 16 || 0.4998 0.0004 || 0.34
Cluster3 36 || 0.1893 0.0003|| 0.49
Cluster4 352 || 4.2596 0.4938| 69.27

Table 1: Performance comparison between the conventidgt@lHor belief compression and the proposed
method, where the number of clusters is 4, the reduced dioreiss3 and\ = 3.

1 T T 1 : :
o Original beilef T Original beilef
gl Reconstructed belief ‘ Reconstructed belief]
5 06} 06F
8
0 04r D4F
o
02f 02F
0 P . T L ot 0 . A b L
0 20 40 60 80 100 0 20 40 60 80
states states

a) Belief reconstruction using EPCA

b) Belief reconstruction using proposed method

Figure 4: Reconstructed belief states using the convealtBRCA and the proposed method.

100

¥ 14 T
)] © *
3 450 3 as0 ok K + EPCA
g g * - Proposed method (k=3 and 4 clusters)
g 400 S 400 Lt *
£ 350 2 * * 12}
S S 350
£ £
g 300 3
® @ 300
2 250 2
: s < 250 i
< 20 < *
2 150 s— F200f 4 *
g g *
g Tl g
10
0 0 45 60 75 909 0 10 15 L, 08
beliefs in clusterl beliefs in cluster2 4
)
g
]
g
<
50 50 065 . *
@ @
8 8
3 450 3 400 N
A 3
2 2
g g o4 *
< 400 < 300
£ £
8 g
£ 350 £ 200 *
& § 0.2
£ £ *
§ 300 § 100
3 3 * *
g g M "
o t * ki
0 30 0 300 1 2 3 4 7 8 9

20
beliefs in cluster3

200
beliefs in cluster4

Dimension

Figure 5: Temporal sequence of the belief states in theRimure 6: Comparison of average KL Divergences us-
ing conventional EPCA and the proposed method.

clusters.

23

6 Conclusion

This paper extends the recently proposed belief compmessiintroducing a spatio-temporal belief state
clustering for addressing large-scale POMDP problemsa#t found that the proposed the spatio-temporal
method can further compress the belief states in each chastiemuch lower dimension with similar belief
state reconstruction accuracy. Future research direxitietude at least hierarchical clustering of the belief
states and investigating the integration of the proposéeftstate clustering and the multi-agent paradigm
as a complete solution for solving large-scale POMDP proble

Acknowledgements

We would like to thank the anonymous reviewers’ valuable w@mts and insight into this work. This
work has been partially supported by RGC Central Alloca@oup Research Grant (HKBU 2/03/C).

References

[1] A.CassandraExact and approximate algorithms for partially observable Markov degipi@cessesU.Brown,
1998.

[2] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman. Transitimlependent Decentralized Markov Decision
Processes. IRroceedings of the Second International Joint Conference on AutmmAgents and Multi Agent
Systemgpages 41-48, Melbourne, Australia, July 2003. ACM Press.

[3] D. Burago, M. de Rougemont, and A. Slissenko. On the complexitpasfially observed Markov decision
processesTheoretical Computer ScienckEs57(2):161-183, 1996.

[4] G.J. Gordon. Stable function approximation in dynamic programmingA. Prieditis and S. Russell, editors,
Proceedings of the Twelfth International Conference on Machine Legyrpiges 261-268, San Francisco, CA,
1995. Morgan Kaufmann.

[5] M. P. W. Junling Hu. Nash g-learning for general-sum stochastizegalournal of Machine Learning Research
4:1039-1069, 2003.

[6] M. L. Littman, A. R. Cassandra, and L. P. Kaelbling. Learning polidier partially observable environments:
Scaling up. pages 495-503. 1997. (Reprinted fRyoteedings of the 12th International Conference on Machine
Learning, 199%.

[7] J. MacQueen. Some methods for classification and analysis of amigiie observations. I5th Berkley Sympo-
sium on Mathematics and Probabilitgages 281-297, 1967.

[8] N. Roy, G. Gordon and S. Thrun. Finding approximate POMDP saistitbrough belief compressiondournal
of Artificial Intelligence Researcl23:1-40, 2005.

[9] R. Nair, M. Tambe, M. Yokoo, D. Pynadath, and S. Marsella. Tandacentralized pomdps: Towards efficient
policy computation for multiagent settings. 2003.

[10] J. Pineau and S. Thrun. An integrated approach to hierarchyabsitaction for pomdps. Technical Report
CMU-RI-TR-02-21, Robotics Institute, Carnegie Mellon University, Piitsiin, PA, August 2002.

[11] P.Poupartand C. Boutilier. Value-directed compression of pemith S. T. S. Becker and K. Obermayer, editors,
Advances in Neural Information Processing Systempages 1547-1554. MIT Press, Cambridge, MA, 2003.

[12] P. Poupart and C. Boutilier. Bounded finite state controllers. InhBur, L. Saul, and B. Sdhkopf, editors,
Advances in Neural Information Processing Systemdl® Press, Cambridge, MA, 2004.

[13] S. P. Singh, T. S. Jaakkola, and M. I. Jordan. Reinforcetheanting with soft state aggregation. In G. Tesauro,
D. S. Touretzky and T. K. Leen, (Eds.), ji¢Advances in Neurarmftion Processing Systems (NIPS) 7i/i¢,
Cambridge, MA: MIT Press, 1995., 1995.

[14] C. Watkins.Learning from Delayed Reward®hD thesis, Cambridge Univ., Cambridge England, 1989.

24

IJCAI WorkshopReasoning with Uncertainty in Robotics, Edinburgh, Scotland, 30 July 2005

Human Sensor Model for Range Observations

Tobias Kaupp, Alexei Makarenko, Fabio Ramos and Hugh Durrant-Whyte

ARC Centre of Excellence for Autonomous Systems (CAS)
The University of Sydney, Australia
www.cas.edu.au
{t.kaupp, alexei, f.ramos, hug@cas.edu.au

Abstract

This paper presents the design of a probabilistic model of human perception as an integral part of
a sensor network. Human operators are regarded as information sources cooperating with robotic plat-
forms, together forming a heterogeneous team. A human sensor model converts raw human observations
into a probabilistic representation suitable for fusion with the belief maintained by the sensor network.
The initial model is built offline based on calibration experiments involving multiple human subjects. At
runtime, this averaged model is used to convert raw human observations into a probabilistic form. Due to
the possibly wide variation in performance levels of individual operators, the human sensor model needs
to be adapted at runtime. Since the true feature state is unknown, the network estimate is used for online
model adaptation. Results of an outdoor calibration experiment using range and bearing observations are
presented. This data is used to build a conditional Gaussian sensor model with linearly increasing stan-
dard deviation. Simulations show the online adaptation of the human sensor model when the operator’s
estimates include a bias.

1 Introduction

This paper considers the problem of incorporating information perceived by human operators into a prob-
abilistic feature description produced by a Sensor Network (SN). The SN under consideration represents
a solution to the problem of Distributed Information Gathering (DI@) [The SN’s goal is to maintain

a common estimate of a distributed phenomenon which can be described by a state: vagtoically,

robotic platforms collect information through observations with their on-board sensors. This approach is

extended by incorporating human operators observing the phenomenon through their senses.

This problem is motivated by many automated applications where human operators remain the center
of the system, mostly at a supervisory or decision making level. These areas would benefit from incor-
porating additional information perceived by humans, e.g. in search and rescue, bush fire fighting, and
defence. When observing complex environments, the observations made by robots and humans may be
complementary. Robotic sensors perform well with low-level representations such as geometric properties.
In contrast, human operators can be more valuable in identifying more abstract properties such as class
labels.

The SN considered here uses Decentralized Data Fusion (DDF) to build a common representation of the
environment 7). Physically, the network is formed by a heterogeneous team of outdoor robotic platforms
and human operators. All members of the team must communicate using a common language which is
defined in terms of probability distributions on the state of the environment.

The focus of this paper is on human operators contributing information to the global belief which
requires the SN to have a probabilistic model of human perception. Hinisan Sensor Mod€HSM)
converts raw human observations into likelihoods using probabilistic modeling techniques. The HSM is
built offline based on experiments involving several human subjects. Since operators are likely to differ
in their performance, an online adaptation of the modehtlividual operators is required. In the online
phase, however, the true feature state is unknown. Instead, the DDF belief is used for model adaptation.

The proposed methodology is implemented for static point features with location uncertainty. Both
robotic sensors and human operators make raw range and bearing observations of the features. Estimating

25

feature locations in a mixed human/robotic network is considered in this work because it is a prerequisite
for contributions of any other feature property human operators may observe. The implementation is
part of the ANSER II project which aims at demonstrating DDF techniques for natural features using a
heterogeneous outdoor SN.

2 Operators in Sensor Networks

The architecture of the SN used in our experiments is called Active Sensor Network (ASN) which is a
realization of anacroSN (MSN) [4]. Typical MSN'’s are comprised of a number of platforms capable of
executing complex algorithms such as data fusion. ASN’s decentralized architecture results in the system
properties okcalability, robustnesandmodularity.

Conceptually, the ASN architecture is composed of interacting components. Several component types
are identified which realize certain interfaces. The design of the ASN architecture emphasizes interac-
tion between components to achieve extensibility in component types. ASN components are capitalized
throughout the remainder of this paper.

The ASN architecture favorseer-to-peeiinteraction between human operators and other SN compo-
nents B]. Operators communicate with the SN through tfeeR INTERFACE It is used to fulfill two main
objectives of human-SN interaction defined in terms of information flow: (1) to present the human opera-
tor with the global belief state (network-to-human, operator as informaiitg), and (2) to allow human
operators to contribute information to the network (human-to-network, operator as inforrsaitie).

This paper discusses the human-to-network information flow. Human observations are given in a raw
form which requires the translation into a language the fusione's of the ASN understand. TheoDE's
perform Bayesian filtering according to the following equation:

P(z | Z%) = aP(z | 5 0)P(x | 25°) (1)

where Z* represents all raw observations up to time step is a normalizing constant, ang is a raw
observation obtained &t. P(z; | z) represents a distribution over the values of the true statbich is
referred to adikelihood It is generated using the sensor model's paraméleiskelihoods are generated
by roboticSENSORs such as lasers or by theserR INTERFACEWhich converts human raw observations.
Likelihoods are subsequently combined with the belief from the previous timePgtep Z+~1).

3 Offline Creation of the Human Sensor Model

In order to find a model of human perception, experiments with multiple human subjects are required. Other
options include using expert opinions or results from experiments reported in the lite@tugenice we

are interested in a probabilistic model, this offline phase determines the type of probabilistic representation
and the initial model parameters adequate for the particular problem.

The example we have implemented is location estimation of point features in an outdoor environment.
The HSM is used in the ANSER Il project where human operators, ground, and air vehicles cooperatively
build a map of rich features. Humans also observe more complex feature properties but in order to do this,
they need to specify the location of the features.

3.1 Calibration Experiment

In a calibration experiment eight poles were placed in an open space with known coordinates. Twenty-one
human subjects were asked to estimate range and bearing to each pole used in the experinigaj. Fig.
shows the true location of the poles, mean estimates and single observations of all subjects. The ellipses in
the graph indicate a 2-standard deviation assuming a Gaussian distribution.

The evaluation of the experiment focuses on the range estimates. Decoupling range and bearing esti-
mates implies the assumption that there is no correlation between them. The results, both qualitatively and
guantitatively, can be summarized as follows:

26

[[[O True position

+ Mean estimate

* range standard deviation
— linear regression

60| — Covariance ellipses
- Human estimates

range standard deviation [m]
(=]

E
>

301

4k
20¢
10 r
ol B 0
0 10 20 30 40 50 60 70 80 0 10 20 30 40 50 60 70
x [m] true range [m]
(@) (b)
701
—— error bars
% mean ranges
60 | — linear regression
ideal mean ranges

o
=]
T

I
[=)
T

w
=]
T

mean range estimate [m]

IN]
=]
T

0 10 20 30 40 50 60 70

(=) [
true range [m] o e °
(©) (d)

Figure 1: Results of the calibration experiment: (a) all range/bearing estimates of poles, Gaussian uncer-
tainty ellipses around means; (b) range standard deviation increases linearly with range; (c) mean range
estimates are linear to true ranges, ranges are underestimated, error bars indicate increasing standard devi-
ations; (d) a BN representation of the HSM.

(1) The standard deviations of the range estimates can be approximated as a linear function of range,
i.e. uncertainty increases with range as shown in Kig). (2) The mean range error can be approximated
as a linear function of range. On the average, the range was underestimated for all the poles as shown in
Fig. 1(c). (3) Range estimates can be approximated by a Gaussian distribution as verified through a normal
probability plot of all range measurements.

Researchers in the field of psychology have also investigated the topic of human distance estimation.
Baird et al. demonstrated that the relationship of perceived distance and actual distance, on average, can be
described by a power function with an exponent of approximately 1.0 and thus very close to being linear
as our results suggedt][Da Silvaet al. found that it is slightly greater than 1.0 with indoor observations
and generally slightly less than 1.0 with outdoor observatiéhs [

3.2 Probabilistic Human Sensor Model

Based on our experimental data, it is possible to build a probabilistic sensor model with initial model
parameters. For a HSM, the goal is to produce a likelihoad giffen a raw human observatian

The HSM for range is graphically represented as a Bayesian Network (BN) as shown i{(djig.
This representation is adopted to show the conditional independencies of the random variables and their
parameters. It is common practice to include the nodes’ parameters as additional random variables in the
graph if they are learned offline or adapted at runtime which both apply to our problem.

The BN consists of the following nodes: nogdeepresents the range to the target and is encoded as a
Gaussiarpdf. Nodez represents the human range observation and is encoded as a conditional Gaussian

27

density function. Nodeg, o andw are mean, standard deviation and regression coefficient of the condi-
tional Gaussian sensor model. Nddstands forLocationand is required to encode the range-dependent
uncertainties of the range observations. Although this variable is continuous it is discretized into several
bins for implementation purposes.

The initial parameter estimates based on the results of the calibration experimeint@ré=[2 4 6]
(dependent on value &f), andw=0.9. The model can now be used for inference of range at runtime.

4 Online Usage of the Human Sensor Model

After the BN is initialized, it can be used in tlomline phaseo yield estimates of the state However,
individual operators differ in their performance and it is desirable to adapt the HSM to the particular
operator.

4.1 Online Learning Algorithm

We suggest that the model paramet@rshould be updated online. The algorithm consists of two steps for
each time slice:

(1) Belief update orx: Equationl is used to yield a posterior overincorporating a local likelihood.

(2) Adapting®: A sample pairzy, zx) is used to update a distribution éhat time stepk:

P(zy, 2z | ©)P(O | XF1, ZF71)
PO | X% ZF) = ,
(O] Z") fP(l‘/mZk | G))P(@) | Xk_l,Zk_l)d@ (2)

whereX* represents all samples ofup to time stegk.

Equation2 refers to the case of parameter learning @in a Bayesian approach. Computationally
cheaper methods can be used sucMazimum LikelihoodML) or Maximum A Posterior{MAP). These
methods choose a particular parameteat each time step rather than keeping a distributio®on

oML = arg mgxP(xk,zk | ©) (3)

@MAP — argnjlgxp(ajk,zk | @)P(@ | Xk—l,Zk—l) (4)

The ML method only uses online data to yield an estimate of the parameters. The MAP method, how-
ever, takes a prior belief about the parameters into account. Particularly well suited priors over parameters
are callectonjugate priord2]. Since the offline phase determines initial parameters, it is possible to define
a reasonable prior distribution @

The online phase yields likelihoods éhproduced by data samplés, z;.). However, unlike in the
offline phase, the true state is unknown. Instead, a posterior beliefsofised to obtain values far, as
further described in Sed.3.

4.2 Parameter Learning for a Gaussian Density

This section presents the derivation of Baand4 for the special case of a Gaussjadlf. The conditional
Gaussian model from Fidl(d) can be represented as a single two-dimensional Gaussian vayiable

(:) Thepdf including its parameterg, andX, is:
_ 1
V2r|S,|®

The conjugate prior of a Gaussian distribution is a Normal-Wighdifr{2]. The parameters of this dis-
tribution are(m, 7) for the Normal and A, «) for the Wishart. They are referred to as thgerparameters
of the two-dimensional Gaussian The parameters’ prior can be written as:

P(y; pry, Xy) e (=) "2 =))

P(py, By) = Puy) P(Ey | py) = N(Nwmﬂ'_lb)w(zymy;Ava) (6)

28

The log likelihood (ML) and unnormalized log posterior (MAP) are given by:
LM = log(N (y; py, Zy)) (7)

LMAY = LME £ 1og(N (py; m, 77 12)) + log(W(Sy |y; A,) (8)

The parameter estimates can be computed by setting the derivafivé’oaind L 4" with respect to
1y @andX, to zero. The final results are:

~ M , Belyl+mm ~ M , Bt ly]
pMAP — 2 S LML = > = (9)
XAIS/[AP _ A+T(My—m)(uy_m)(jj;%:j\t/Et[(y_Ny)(y_ﬂy)T] : XAJfJWL _ 2 Et[(y—;:/'y)(y_ﬂy)T] (10)

whereN is the number of data sampleE;[y] represents the expectation afigl(y — 1,)(y — u,,)7] the
covariance ofy at time step.
It remains to calculate the parameters of the conditional Gaussian distribution:

R SER .
H=Hyz ;5 0= 222_2” ;W=

(11)

M‘M
g
s

4.3 Efficient Adaptation

As stated in Seal.], the true belief is not available for online learning. However, the DDF network provides

a common estimate generated from multiple sensors. We propose to use the common DDF network’s
estimate to adapt the HSM. However, the common state cannot be used naively since it iaqudes

fused human (biased) information.

The DDF network maintains different estimates of the state of the world depending on the source of
information: local beliefr; based on local sensor observations; global DDF belib&sed on all sensor
observations; global DDF belief excluding local information;.

We suggest to use all DDF network informatiercludinglocal information to find(zy, z;) sample
pairs to efficiently adapt the model parameters. This approach assumes that human operators and other
sensors observe the same states.

Fig. 2 shows the collaboration of thesER INTERFACEandNODE i. Arrows indicate the information
flow. An incoming message from tiODE's point of view consists of a likelihood and triggers the execu-
tion of step (1) of the algorithm from Se4.1 An incoming message from theseR INTERFACES point
of view consists of the combined DDF posterior and triggers the execution of step (2). Local information
needs to be removed from the posterior.

USER INTERFACE NODE i

Local filter @
Fusing N . Linkable
—[]—[DDF filter Channel filter j] [3.0
Pz, | %)

A
Rez|Z0)

Channel filter |

Local belief

®

Informed
1

1
TP(x | ZT

Figure 2: Internal functionality ofODE andUSER INTERFACE Information flow is indicated by arrows.
Incoming messages trigger the steps of the algorithm from4sgc.

To demonstrate the proposed algorithm described insguasing efficient adaptation, a one-dimensional
simulation is presented. A DDF network with tw@DE's (oneSENSOReach) is created. OrgENSORhas

29

a correct model and observations are generated according to that model. Thesotherhas a constant

bias which means its sensor model has an additive error. It is also wrong in the standard deviation, i.e. the
sensor’s uncertainty is larger than the sensor model assumes. Both sensor model parameter errors need to
be corrected. Thedf overzx is a Gaussian. The density function oveis a conditional Gaussian with
parameters, o andw. The biasedsENSORadapts its sensor model's mearand standard deviation at

each time step to learn the constant additive bias and the larger standard deviation uSiigd.Eq.

Fig. 3 shows the progress of learning a bias of absolute value 3 and an uncertainty of absolute value
4 (the initial value is 2). Each plot displays the adaptation using three different estimateshef local
belief, the global DDF belief naively and the global belief excluding local information. The results show
that the best way for model adaptation is to use the suggested method of using the global belief excluding
local information.

The top two rows of Fig3 show learning using the MAP method. The behaviour of the learning curve
depends on the choice of the hyperparameters defined i6.Efhe graphs on the top row show faster
learning compared to the graphs on the second row since we "trust” the initial (offline) parameters more by
defining them as more certain. The bottom row shows the ML graphs which are less smooth than the MAP
graphs because they only take the online data into account.

--------------------------- o 4
’—’—— g " ___
7 = PP PP PLLELLE
2 S R © 3¢
by E A T g !
P N
5 | e P
1 Fpree °
ft,f 2,0
5
[z
0 ol
0 20 40 60 80 100 0 20 40 60 80 100
time steps time steps
(@) b
5-
3L
------- o 4t
_______________ <
e —— 2
o Tt U SSPRRPPRILLLL 4 i S
” 3
L I e N
1k / 3 e
e 8
R S
1. §
0 i~ 7} o
0 20 40 60 80 100 0 20 40 60 80 100
time steps time steps
(c)
~~— 5-

P

N

LN r o R N e

VANRA, AT
\-l\/

~

standard deviation ¢

0 20 40 60 80 100 0 20 40 60 80 100
time steps time steps

(e) ®

Figure 3: Progress of learning an additive bias of absolute value 3 and a standard deviation of absolute
value 4 using different beliefs:;, z andz_;. (a),(b): MAP method; (c),(d): MAP method using “stronger”
hyperparameters; (e),(f): ML method.

Fig. 4 once more illustrates efficient adaptation. It shows that the errors of the system estimates get
within the expected (fused) variance bouadster when the global belief excluding local information is
used for adaptation.

30

system estimate error

_4 1 1 1 1 1 1 1 1 1 1
0 10 20 30 40 50 60 70 80 90 100

time steps

Figure 4: Errors in the system estimate when the HSM is adapted using bgliefendx_,. The errors
get within the expected variance boundfaster when:_; is used.

4.4 Model Adaptation of the HSM for Range

This section shows a practical example for online adaptation of the HSM for range which has been learned
offline as presented in Se8.2 In this scenario, a mixed human/robotic team observes a point feature
location in a global coordinate system.

The DDF network consists of tweODE'S. Two lasersENSORS submit their likelihoods tovODE 1.

It is connected tovoDE 2 which receives likelihoods from@seR INTERFACE This example only adapts
parametey, i.e.w ando are kept according to the offline model.

Fig. 5(a) shows the deployment of the scenario. The two lasers are located at position (0,25) and (25,0).
The human operator is positioned at (0,0). Both lasers and the operator observe a feature at position (25,25)
by making range/bearing observations for 200 time steps. Laser observations are generated according to
their fixed sensor model. The human range observations are generated according to the offline HSM but
additionally include an additive bias of -4 m. This bias is not accounted for in the model and needs to
be learned. Human bearing information is assumed to have constant uncertainty (compass readings). All
observations are plotted and Gaussian ellipses are fit to the observations.

30 301
laser observations _ i
2 : i + ; 28!
laser 2 i - .
20 B 26,
E1s5 Eq
> >
human observations
10 22 L
L : : before adaptation . \
5 20, " after adaptation
operator laser 1 \
* 5 10 15 20 é 30 18 20 22 24 26 28 30
x [m] x [m]
(a) (b)

Figure 5: (a) Physical deployment and raw observations; (b) likelihoods from lasers (small ellipses) and
human operator (large ellipses). The two operator likelihoods correspond to before and after adaptation
(dotted and solid line).

31

Fig. 5(b) shows likelihoods generated from raw observations. The two small ellipses are likelihoods
generated by the lasers at a random time step. The bigger ellipses show two operator likelihoods: the dotted
ellipse is generated before adaptation, the solid ellipse is generated after adaptation. It is clear that the bias
has been learned. It is incorporated in the HSM of the particular operatoras 4.

5 Conclusions and Future Work

This paper presented the design of a probabilistic model of human perception as an integral part of an
outdoor SN. Human operators and robotic platforms are considered entities of a heterogenous team which
cooperatively builds a representation of a distributed phenomenon. A DDF algorithm ensures that each
platform has the global belief. Humans contribute information the same way as their robotic teammates.
Raw observations require the conversion into a common language defined in state space which is performed
by a HSM. The creation of the model involves two phases: offline and online. The initial model is built
offline based on an average of many human subjects. At runtime, the model is applied to raw human
observations to convert them into likelihoods. Furthermore, the common DDF belief is used to adapt
the parameters of the model to individual operators since the true feature state is unknown at runtime.
We investigated the feasibility of this theory for range estimation with experiments and in simulation.
Specifying feature location is a prerequisite for any other feature property operators may observe.

This work has dealt with humans and robotic sensors observing the same low-level property. However,
human operators perform better at observing more abstract properties. Future work will include the design
of a state space with several abstraction layers which depend on each other in a hierarchical way. Human
operators and different types of robotic sensors will be able to contribute information at a level which
best fits their capabilities. This concept leads to the “multi-level data fusion” paradigmThe BN
representation is considered to be suitable for offline learning and online inference and adaptation. The
work presented here will be integrated into these hierarchical models.

Acknowledgment

This work is supported by the ARC Centre of Excellence programme, funded by the Australian Research
Council (ARC) and the New South Wales State Government. ANSER Il is supported by BAE Systems,
Bristol, UK.

References

[1] J. C. Baird and W. R. Biersdorf. Quantitative functions for size and distance judgmietseption and Psy-
chophysics2:891-902, 1967.

[2] J.Bernardo and A. SmitiBayesian TheoryJohn Wiley and Sons, New York, 1994.

[3] E. Blasch and S. Plano. JDL level 5 fusion model: User refinement issues and applications in group tracking.
Aerosensgd729:270-279, 2002.

[4] A. Brooks, A. Makarenko, T. Kaupp, S. Williams, and H. Durrant-Whyte. Implementation of an indoor active
sensor network. 18th Int. Symp. on Experimental Robotics (ISER ,@lhgapore, 2004.

[5] J. Da Silva and S. Fukusima. Stability of individual psychophysical functions for perceived distance in natural
indoor and outdoor setting®erceptual and Motor Skil|$3:891-902, 1986.

[6] M. Druzdzel and L. van der Gaag. Building probabilistic networks: "Where do the numbers come from?” Guest
editors’ introduction|EEE Trans. on Knowledge and Data Engineeritig(4), 2000.

[7] A. Makarenko and H. Durrant-Whyte. Decentralized data fusion and control in active sensor netwdiksintn
Conf. on Info. Fusion (Fusion’045tockholm, 2004.

[8] A. Makarenko, T. Kaupp, B. Grocholsky, and H. Durrant-Whyte. Human-robot interactions in active sensor
networks. INIEEE Int. Symp. on Computational Intelligence in Robotics and Automation (CIRAZ0G3}.

32

IJCAI Workshop Reasoning with Uncertainty in Robotics, Edinburgh, Scotland, 30 July 2005

Symbolic Probabilistic-Conditional Plans Execution by a
Mobile Robot

Abdelbaki BOUGUERRA and Lars KARLSSON

‘Department of Technology
Orebro University, SE-70182

Orebro; Sweden
http://aass.oru.se

Abstract

In this paper we report on the integration of a high-level plan executor with a behavior-based architec-
ture. The executor is designed to execute plans that solve problems in partially observable domains. We
discuss the different modules of the overall architecture and how we made the different modules interact
using a shared representation. We also give a detailed description of the hierarchical architecture of the
executor and how execution-time failures are handled.

1 Introduction

Carrying tasks through in real world environments presents a multitude of challenges to contemporary
mobile robots. Most importantly is how to deal with the uncertainty inherent in on-board sensing, acting
and lack of information. Acknowledging that classical planning, i.e. planning that assumes that the en-
vironment is static and the robot is omniscient, is not the best choice for reasoning in such environments,
research has focused on developing planning approaches capable of reasoning under uncertainty and par-
tial observability [6][2][8]. However, most developed planning approaches forget about plan execution
and monitoring. Even with plans that incorporate contingencies of execution, there is still an uncountable
number of unexpected events that might prevent executing the plan reliably or even invalidate it.

In this paper we report on the successful implementation of a high-level plan executor on top of a
behavior-based mobile-robot control architecture. The executor is designed to handle probabilistic condi-
tional plans and is not constrained by using a specific planner. In fact the executor can execute any plans
fulfilling some representational constraints, mainly the syntax of the plans, and the specification of how
to execute the plans actions. The execution system uses three hierarchical layers each with a specialized
process. The top layer manages high level plans, user requests, and recovery when necessary. The middle
layer has a more specialized process whose task is to execute the actions of the plan selected by the upper
layer, whereas the third layer is responsible of low-level execution and monitoring. The overall system
has been successfully used for research on sensor-based planning for mobile robots, most notably in the
areas of perceptual anchoring [5] and active smelling [11]. One of the main strengths of our execution
framework is the ability to act in partially observable domains as a result of using reasoning with symbolic
planning under uncertainty. POMDP:s are by far the most used paradigm for decision making in partially
observable domains, however the kind of symbolic planning that we use has certain advantages over using
POMDP:s. First, symbolic planners are much faster then POMDP solving algorithms which makes replan-
ning possible at execution-time, that is not the case with POMDP:s because policies have to be found to
cover an exponential number of continuous belief states. Second, at execution time, no belief-state tracking
is required, since belief states used by symbolic planners are distinguishable by their set of observations as
opposed to implemented mobile-robot architectures executing POMDP policies which requires updating
belief states online [15] [13], although in theory it is possible to approximate policies using finite state ma-
chines [7][12]. For an overview of planning under uncertainty including decision-theoretic planning and

33

symbolic planning, the reader is referred to [3]. A survey of approximate methods used to solve POMDP:s
can be found in [1].

One central issue that we address is how to respond to unexpected events at execution time. Our
framework provides some degree of flexibility regarding failure recovery: with each low-level executable
action, a very quick recovery strategy can be specified. If low-level execution is not recoverable, a more
high-level deliberate recovery is launched to cope with the unexpected situation.

2 Architecture Overview

The plan executor and high-level planning were added as a deliberation layer on the top of the ThinkingCap
behavior-based control architecture [14]. Figure 1 gives an overview of the overall architecture and how
both layers are integrated. In the following subsections we briefly outline the different entities forming the
complete system.

2.1 Behavior-based Architecture

The ThinkingCap (TC) robot-control architecture is composed of a fuzzy-logic controller and a naviga-
tional planner called B-Planner. TC controls the mobile robot using fuzzy behaviors expressed as sets of
control rules. To generate navigation plans, B-Planner (for Behavior Planner) computes a set of context-
behavior rules having the form IF context THEN behavior, where context is a formula of fuzzy
predicates evaluated on the current world model. The context-behavior rules of a B-Plan are evaluated in
parallel, influencing the overall robot behavior according to the blended value of their respective context.

TC uses a local perceptual space LPS to store information about the world around the robot expressed
as object descriptors and perceptual data. The LPS provides data to the self-localization module used
to compute the robot position in the different sectors of the map. The controller produces crisp control
values (steering and velocity) through defuzzification of the result of the blended active fuzzy behaviors
(according to their context calculated from the LPS).

2.2 High-level Planning

The kind of symbolic planning used within the overall system solves problems in partially observable
domains i.e. observations reveal only part of the real state. Both planners PTLPLAN [9] and C-SHOP [4]
that we used in our experiments use the same formalism for actions and world model. The action model
makes it possible to reason about conditional non-deterministic effects with probability distribution over
them. The description of effects might also include making observations. To represent uncertainty about
the state of the world belief states are used. Both Planners take an initial belief state and a goal formula
and return a plan with a certain probability of success.

2.3 Anchoring and Perception

The anchoring module provides an interface to perceptual information from the sensor systems of the mo-
bile robot. It contains a number of functionalities for establishing the connection between the high-level
symbolic representation and low-level perceptual representations such as video camera images. Typically,
executing an action such as “(move-near gasbottle1)” requires the identification of what perceptual data cor-
respond to the symbol “gasbottle]l”. On the symbolic level “gasbottle]” should have a symbolic description
such as (shape gasbottle1 = bottle), (color gasbottle]l = red), which is matched against the available percep-
tual data. If a matching percept is found, the symbol is anchored to that percept. It sometimes happens that
the anchoring module fails to find a specific object, either because no match is found, or there are several
but partial matches. This is one important class of situations where recovery is needed [5]. The anchoring
module can also provide information about already perceived objects, such as position and visual features
extracted from the LPS.

34

User| requests

Deliberation xactions FZZZZZ e I lie
7y i location:
— E L
omain i
! BP
Model —» Executor | || aner g controls
7y] S g
obs.i | |1 e
goad eval! i R
plans \ 4 | Self-
il localization
v Curr_ent N
Belief N
Planner 7} g '
] 1
] i
t [17T & Anchoring Perception | Sensor
oo 4_data

Figure 1: Global architecture

3 Shared Representation

Making the planner, the plan executor, and TC work together implies representing the different entities at
the borderline between the different layers with a notation that all of them understand. More specifically is
how to represent the robot’s belief about the world, syntax and semantics of plans, the process of making
observations and how plan actions should be executed by TC.

3.1 Belief States

The high-level plan executor is designed to execute and monitor plans that solve partially observable prob-
lems. Belief states are used to model partial observability about the state of the environment. The repre-
sentation of belief states we use is similar to the one used by many symbolic planners such as C-SHOP
[4], PTLPLAN [9], and C-BURIDAN [6], where a belief state is a probability distribution over elementary
states that share the same set of observation fluents. For instance, the following belief state represents that,
after making the observation of noticing a red light inside a room, the robot is either in room r; with 70%
or in room o with 30%.

belief = (obs ={redlight};{0.3: (robot—in 7r9);0.7: (robot—in r1)})

To be able to evaluate observation fluents at execution-time, a procedure must be defined and associated
with each observation fluent. When executing a plan, the executor uses the observation fluent to determine
the evaluation procedure associated with it. The procedure specifies how to make the observation by calling
TC’s fuzzy observation predicates such as (open d) that refers to the degree to which the door d is open.
The procedure might also use the data stored in the LPS to evaluate observation fluents not computed by
TC suchas (near objl obj2) forevaluating whether obj1 is near ob j2 based on metric data in the
LPS about both objects.

3.2 Conditional Plans

The symbolic planning system is required to generate plans with following syntax that the executor adopts
for plan representation:

plan ::= (action* end-step)

end-step ::= :success | :fail | (cond branch*)
branch ::= (obs-cond action* end-step)

action := (action-name term*)

obs-cond ::= fluent-literal | (and fluent-literal*)

35

action represents an instantiated domain action, obs-cond is a conjunction of fluent-value formulae de-
fined over observations, and :success, :fail are used to denote predicted plan success and failure
respectively. This grammar accepts plans that have the structure of a tree where nodes with one successor
represent actions, and nodes with more than successor represent a conditional branching. The following
plan is an example of plans accepted by the executor:

((go—near di) (check di) (cond (open di) : (enter 71) :success)
(not (open di)) : :fail))

Besides the syntax, the executor and the planner must agree on the semantics of the conditional plans. In
our case, the semantics of a conditional plan can be interpreted as applying the first action of the plan in the
initial belief state. The second action is applied in the resulting belief state of the first action, and repeatedly
applying an action in the resulting belief state of its preceding action. If the application of an action results
in more than one belief state, then the subsequent action must be a conditional plan (cond (¢1 p1) ... (cm
Pm)) with as many branches as resulting belief states. Each branch (c; p;) represents a contingency plan
p; to be executed in the belief state whose observations satisfy the branch condition ¢;. As mentioned in
the introduction, since belief states at a certain execution time are uniquely identified by their observations,
execution-time belief update is no longer required. Only the the observations fluents are evaluated and the
branch that has its observation fluent formula verified in the real world is selected for subsequent execution.
Of course at execution time, there must be only one belief state whose observations are verified in the real
world.

3.3 Executable Actions

To be able to execute the actions of a high-level plan, the domain creator must specify with each high-level
action the different executable actions xactions in terms of the robot control-architecture (in this case
TC) functionalities. Typically, an executable action defines a procedure that calls TC’s functions to produce
behaviors that would achieve a specific low-level goal. The procedure also defines the monitoring process
to be associated with the execution of the behaviors in order to make sure to respond to unexpected events
and apply local recovery strategies if possible. The monitoring process must also give an indication of
whether the xaction has been executed successfully or with failure, so that a deliberate recovery would
be considered for the high-level action.

Example 1 In order to execute the high-level action (enter r;) to enter room 71, the execution part
may consist of a procedure “execute-enter (room)” that 1) calls the B-Planner with the goal
(robot—in ry), where the goal represents a fuzzy predicate, and 2) installs a monitor process for the
generated B-Plan. In case of failure to achieve the b-plan goal, the monitor may call the B-Planner to replan
for another navigation path to enter room r1.

4 High-Level Execution

In this section we outline the main processes involved in executing a high-level conditional plan and its
actions. The executor uses different data structures to manage the execution of multiple plans that can
arrive asynchronously. After having generated a plan, the planner creates an execution context that includes
the initial belief state, the goal, the plan itself, the last action executed, and the priority of the plan. The
execution context is then placed in one of three queues waiting for execution. The queues are associated
with classes of plans identified by their priorities. A plan can have either low, medium, or high priority.

Plan execution is performed hierarchically. At the top-level, there is a process responsible for selecting
the plan with the highest priority for execution. It is also responsible of launching the recovery of plans
when one of their actions fails to execute. At the second level, a more specialized process is used to
control the execution of the actions of conditional plans, reporting the outcome of the action to the high-
level process. The action execution process is mainly responsible of extracting the executable actions of
the current plan action considered for execution, and launching the appropriate processes to achieve the
executable actions and monitor their progress, see Fig 2.

36

4.1 Plan Execution Process

The plan-execution process is launched upon starting up the robot. While in state INIT, the process checks
periodically for waiting plans, proceeding with the execution of the plan with the highest priority. The
actual execution of a plan starts in state NEXT-ACTION, where the executor checks the type of the current
action selected for execution. An action canbe : success, : fail, aconditional plan, or a domain action.
It is also in this state where plans with higher priority can interrupt the execution of the plan in execution.
As mentioned earlier, the two special actions : success and : fail reflect predicted success and failure
by the planner of the plan, respectively. If the plan reaches a predicted failure, then the process simply
drops the plan. Reaching a predicted success state means that the plan has achieved its goals with success.
Because the currently dropped or succeeded plan might have interrupted the execution of another plan with
lower priority, the execution process checks subsequently whether there is an interrupted plan waiting for
execution in order to restore its execution context and start it again (state RESUME).

One issue in restarting the execution of an interrupted plan that might arise is the possibility not being
able to start the execution of the interrupted plan, because its action to resume is not applicable in the the
current real world situation resulting from the execution of an interrupting plan. To remedy partly to this
problem, the process does not interrupt an executing plan unless it can find a chaining plan that ensures that
the interrupted plan can be resumed when the interrupting plan finishes execution with success. It is worth
noting that finding a chaining plan might be problematic since the interrupting plan can have more than one
branch that leads to success. Generating the chaining plan would take into account this issue which results
in a chaining plan with a possible branch for each possible belief state where the goals of the interrupted
plan are satisfied. Upon resuming the execution of an interrupted plan, the process executes the chaining
plan first, and then the rest of the interrupted plan. Obviously, this works only when the interrupting plan
has successfully been executed, in case of failure, the process has to launch the planner to find a chaining
plan that reaches the preconditions of the first action of the rest of the interrupted plan starting from the
current situation.

If the current action is a conditional plan, the process checks the contingency condition for every branch
in the real world, and chooses the branch whose condition is verified in the real world observations. Check-
ing the branching conditions is done through calls to the procedures associated with the observation fluents
that evaluate the condition fluents using the perceptual data provided by the anchoring module. If, on the
other hand, the current action is an instantiated domain action, the process checks its preconditions in the
current belief state. In case the preconditions are satisfied, another process is launched to execute the action
as described in the next subsection. In case of discrepancy, the process calls special functions that build
the current belief state so that more information is included about the current situation and then calling the
planner to find a plan that achieves the preconditions of the failing action (state RECOVERY).

4.2 Action Execution Process

The execution of high-level actions is performed by a more specialized process whose states are outlined
in Fig 2. Activating action execution at this level involves blocking the launching process i.e. the plan-
execution process. High-level action execution starts by retrieving the xactions one at a time (state
xaction). As we outlined before, there are specialized procedures defined with each xact ion specify-
ing the necessary steps to perform along with a monitoring process. Calling the specialized procedure of
an xaction, results in blocking the action-execution process and launching the monitoring process of the
xaction.

The monitoring process of an xaction can respond to failures by calling precomputed procedures
or by calling the B-Planner to find another local B-plan. The implementation of an xact ion monitoring
process has also to to guarantee that the blocked action-execution process is notified about the outcome of
the execution of the xaction. If the execution of the xaction is successful, then the action-execution
process is awaken in the state XOK, otherwise it is awaken in the state XFAIL.

Awaking the action-execution process in state XFAIL is an indication of the inability of the robot to
execute the xaction with success which leads to the failure of the high-level action. Therefore the
plan-execution process is notified in turn that the execution of the current action has failed (state DIS-
CREPANCY/FAIL). If, on the other hand, the monitor of the xact i on reports to have executed xaction

37

successfully, the action-execution process repeats the same steps with the remaining xactions. When
all the xact ions have been successfully executed (state SUCCESS), the action-execution process awakes
the plan-execution process in the state NEXT-ACTION, so that the same steps can be performed with the
next high-level action of the plan.

- ~4

'/ Ve “A[xaction
g execution
monitoring

SUCCESS o INIT) XOK)a-t--| Proces

\ 4
Plan-execution process

(success)

NEXT
ACTION

___________ T Action-execution process

Figure 2: The different processes of the plan executor

S Experiments

The system reported in this paper has been used on two Magellan Pro mobile robots for a number of exper-
iments, in particular relating to the problems of anchoring with ambiguities, and the use of an electronic
nose on a mobile robot. In the following, we briefly present some of those experiments. Although they
were designed to test other specific capabilities of our system, they also serve well to illustrate what the
executor can achieve.

The visual anchoring experiments, some of which were reported in [5], consisted of recovery planning
in situations where the robot was supposed to find and approach an object but could not immediately
determine which of several objects was the correct one. One series of experiments involved a number of
gas bottles. The robot had the task to approach the marked gas bottle but the mark was not visible from the
robot’s current position. This resulted in a recovery plan where the robot inspected the different gas bottles
from different angles and eventually detected the correct one. The success rates for these experiments were
87% of 45 runs, with setups of 2, 3 or 4 gas bottles. The maximal time required for the recovery planning
was below 1.5 s for these experiments. More recent experiments involved using relational information to
find objects (““ the green can near to the red ball with a mark™) with similar levels of success (80-93%)
and performing recoveries from a sequence of problems occurring when the robot was to approach several
different objects located in different corridors.

A series of e-nose experiments [11] involved the e-nose as a complementary sensor modality. The
experiments were performed by using a number of cups containing different substances and in order to find
the correct cup, the robot first needed to visually search for candidate objects and then use the electronic
nose to discriminate between these candidates (success rates 82 — 76% for 2-5 candidates). In another series
of experiments [10] the robot patrolled a number of corridors, traveling in total more than 1.2 km, while
maintaining and updating information about cans it encountered. Cans were sometimes added, removed or
displaced. In addition, the robot was occasionally given odour samples and had to find cans with similar
odours.

6 Conclusion

We have presented a hierarchical system to execute probabilistic conditional plans that solve problems
in partially observable domains. One major advantage of using hierarchy of processes is the ability to

38

reason about failure and recovery at different levels of detail and complexity. We also demonstrated how
we integrated the proposed execution system on top of a behavior-based control architecture. Among the
issues that were encountered in the process of integration, was the common representation that should
be used to interface the executor and the planning system on one hand, and the executor and the control
architecture on the other hand. We tackled this issue by adopting a simple set of rules that do not require
too much effort from the planning domain writer.

References

(1]

(2]

[3
(4]

—

[5

—

[6

—_

(7]

(8

—_—

(91

[10]

(1]

(12]

(13]

[14]

[15]

D. Aberdeen. A (revised) survey of approximate methods for solving partially observable markov decision
processes. Technical report, National ICT Australia, Canberra, Austalia, 2003.

P. Bertoli, A. Cimatti, M. Roveri, and P. Traverso. Planning in non-deterministic domains under partial observ-
ability via symbolic model checking. In Proceedings of the 17th International Joint Conference on Artificial
Intelligence. (IJCAI), pages 473—478, 2001.

J. Blythe. An overview of planning under uncertainty. A Magazine, 20.

A. Bouguerra and L. Karlsson. Hierarchical task planning under uncertainty. In 3rd Italian Workshop on Planning
and Scheduling (AI'*IA 2004). Perugia, Italy, 2004.

M. Broxvall, L. Karlsson, and A. Saffiotti. Have another look: On failures and recovery planning in perceptual
anchoring. In Proceedings of the 4th International Cognitive Robotics Workshop (CogRob-2004), 2004.

D. Draper, S. Hanks, and D. Weld. Probabilistic planning with information gathering and contingent execution.
In Proceedings of the 2nd International Conference on Artificial Intelligence Planning Systems (AIPS), pages
31-63, 1994.

E. Hansen. Solving pomdps by searching in policy space. In Proceedings of the 14th Annual Conference on
Uncertainty in Artificial Intelligence (UAI-98), pages 211-219, San Francisco, CA, 1998. Morgan Kaufmann
Publishers.

L. Kaelbling, M. Littman, and A. Cassandra. Planning and acting in partially observable stochastic domains.
Artificial Intelligence, 101:99—134, 1998.

L. Karlsson. Conditional progressive planning under uncertainty. In Proceedings of the 17th International Joint
Conference on Artificial Intelligence (IJCAI), pages 431-438, 2001.

A. Loutfi and S. Coradeschi. Maintaining coherent perceptual information using anchoring. In Nineteenth Inter-
national Joint Conference on Artificial Intelligence (IJCAIO0S, to appear), 2005.

A. Loutfi, S. Coradeschi, L. Karlsson, and M. Broxvall. Putting olfaction into action: Using an electronic nose on
an multi-sensing mobile robot. In Proceedings of IEEE/RSJ Int. Conference on Intelligent Robots and Systems,
IROS04, 2004.

N. Meuleau, K. E. Kim, L. Kaelbling, and A. Cassandra. Solving pomdps by searching the space of finite policies.
In Proceedings of the 15th Annual Conference on Uncertainty in Artificial Intelligence (UAI-99), pages 417-426,
San Francisco, CA, 1999. Morgan Kaufmann Publishers.

J. Pineau, N. Roy, and S. Thrun. A hierarchical approach to pomdp planning and execution. In Workshop on
Hierarchy and Memory in Reinforcement Learning (ICML), June 2001.

A. Saffiotti. Autonomous Robot Navigation: a fuzzy logic approach. PhD thesis, Faculté de Sciences Appliqueés,
Université Libre de Bruxelles, 1998.

V. Verma, J. Fernandez, and R. Simmons. Probabilistic models for monitoring and fault diagnosis. In R. Chatila,
editor, The Second IARP and IEEE/RAS Joint Workshop on Technical Challenges for Dependable Robots in
Human Environments. October 2002.

39

IJCAI WorkshopReasoning with Uncertainty in Robotics, Edinburgh, Scotland, 30 July 2005

Planning in Continuous State Spaces with Parametric
POMDPs

Alex Brooks, Alexei Makarenko, Stefan Williams, Hugh Durrant-Whyte

ARC Centre of Excellence for Autonomous Systems
Australian Centre for Field Robotics
The University of Sydney
Sydney, NSW 2006, Australia
{a.brooks, a.makarenko, s.williams, hjgcas.edu.au

Abstract

This paper presents a novel approach to efficiently applying the POMDP formulation to problems
with continuous states, typical in robotics. Continuous distributions over state-space are stored in para-
metric form, using a vector of sufficient statistics. The value function over continuous sufficient-statistic
space is represented using a grid-based approximation, and Dynamic Programming is used to estimate
this value function. The algorithm is applied to a simulated robot navigation problem.

1 Introduction

Traditional MDP-based approaches to planning are well-studied and effective in solving problems where
perfect knowledge of the agent’s state is available. Unfortunately, they are less effective in problems where
the agent’s state is uncertain, a condition which prevails in many real-world problems. Partially-Observable
Markov Decision Processes (POMDPSs) are promising as a method for dealing with this uncertainty. Instead
of considering the agent’s state to be perfectly known, POMDPs operate on the agent’s belief, which is a
probabilistic distribution over possible states of the world. The POMDP is essentially transformed into an
MDP, using the belief distribution as the known state.

POMDPs are often cited as potential solutions for robot navigation problems, with the motivation that
localization is imperfect and MDP-based approaches do not account for this uncertainty. The POMDP
solution explicitly models the robot’s position uncertainty, making decisions based on the probabilistic
distribution over pose space. This naturally imparts the useful property that the robot will trade off actions
that move the robot towards its goal with actions that reduce the robot’s uncertainty, in a principled way.

POMDP solution methods can be divided into two approaches: policy-based methods and value-based
methods [1]. This paper deals with the latter. The majority of mainstream value-based POMDP research
has focussed on the discrete case, requiring that the state space be a finite set of cells. Robot navigation,
however, is a fundamentally continuous problem that is poorly represented in the discrete domain unless
the discritization is sufficiently fine. POMDP solution methods have problems with fine discretizations
because the computational complexity increases rapidly with the size of the state space.

This paper presents an approach to solving robot-navigation POMDP problems in a continuous state-
space. By constraining distributions over state space to a parametric family, points in the infinite-dimensional
continuous belief space can be represented by finite vectors of sufficient statistics. For an appropriate
choice of parametric family and MDP model, the parametric form of beliefs is closed under the transition
and observation functions. Under these conditions value iteration can be performed efficiently, directly in
the space of sufficient statistics. Since the value function is not likely to be piecewise-linear and convex
(PWLC) in sufficient-statistic space, a grid-based approximation is used to solve the POMDP.

Section 2 discusses related approaches, and Section 3 formulates the DP equations on which the
POMDP solution is founded. Section 4 provides a brief overview of POMDP representations based on

40

a discretization of the state-space and Section 5 describes the equivalent continuous representations. Sec-
tion 6 describes a solution using this representation, Section 7 applies this solution to a robot navigation
problem and Section 8 concludes.

2 Related Work

To the authors’ knowledge there have only been three cases where POMDPs have been solved using a
value-based approach in a continuous state space. In the case of linear systems with quadratic cost, a
closed-form solution is available [2]. Unfortunately systems that are interesting from a planning point of
view are generally not linear-quadratic.

Thrun uses a set of particles to represent beliefs, and represents the value function using a set of stored
belief points [10]. Looking up the value of a belief that has not been stored involves applying k-nearest-
neighbours, using KL divergence to measure the similarity between beliefs. The approach proposed in this
paper is to represent beliefs more compactly, using an appropriate parametric form.

More recently, Porta et al extend the Perseus algorithm to continuous-state POMDPs [9][6]. The idea of
representing a PWLC value function as the supremum of a set of hyperplanes is generalized, for continuous
domains, to the supremum of a set of mixtures of gaussians (MoGs). Modelling beliefs and reward and ob-
servation functions with MoGs allows closed-form solutions to the integrations required for value iteration.
To prevent an explosion in the number of gaussian components required to represent the value and belief
functions, the number of components in each function is kept constant by approximating the function, at
each iteration, with a MoG of fewer components. In comparision to grid-based solutions this approach has
the advantage that values calculated at each belief point will generalize better over the belief space, at a
cost of higher computational requirements per update. The combined effect for real-world problems is yet
to be determined.

The algorithm presented in this paper bears similarities with the algorithms proposed by Roy [7]. Roy
uses a high-dimensional discrete representation of the state space, but estimates a value function (using
a grid-based approximation) over a lower-dimensional space. The first algorithm, AMDP, posits a set of
'belief features’ such as maximum likelihood and entropy of the belief. The second applies non-linear
dimensionality reduction (using E-PCA) to project beliefs to the low-dimensional space. To evaluate the
low-dimensional transition function at each belief point, both algorithms require a mapping from the low-
dimensional to high-dimensional space and an evaluation of the transition and observation functions in the
high-dimensional discrete space, followed by a mapping back to the low-dimensional space.

In comparison with the algorithm presented here, Roy’s can model arbitrary distributions (or rather
compressed versions of discrete approximations thereof). This is an advantage when used in conjunction
with a state estimator capable of producing arbitrary distributions, such as a patrticle filter. We expect our
algorithm to be particularly effective when used in conjunction with an estimator that produces precisely
the same parametric family of distributions which was used for planning. In addition, since our algorithm
does not require a transition function in a discrete space, the transition function used for planning can
exactly match the transition function used for online state estimation.

3 Formulation of the POMDP

The aim in a POMDP problem is to calculate a policy that optimizes a discounted set of future rewards in
a stationary, partially-observable environment with known dynamics. This section begins by establishing
some terminology.

At each discrete time interval, a POMDP agent is in an unknown statge. The agent chooses an
actionuy, receives a reward(xy, uy), and arrives in state, ;. It then receives an observatiopn,; from
the new state.

It is useful to define an information vector of all information up to tiknas

Ik? = (20)Z1> vy Ry UQ, UL, “‘7uk71)7 IO = 20, (1)

containing all the observations up to and including titéut only the control decisions up to tinke— 1.
Thereforel}, is the information available after making an observation but before taking an action. Since

41

the agent cannot observe the state directly it maintains a probability distribution over the state-space given
all available information, denotell, = p(xx|Ix), whereby is known as the belief. Due to the Markov
assumption it is a sufficient statistic for the entire history, so

brt1 = P(Xbot1 Ik, Uk, Zk11) = P(Xpt1 |0k, Uk, 2p41) = P (bk, Uk, Zr+1), (2

where® is the belief transition function. Note that while state transitions are stoch&st@deterministic
function of action, observation and prior belief. By maintaining a consistent belief, the POMDP over
unknown states is transformed into an MDP over known beliefs.

In order to maintain a consistent belief, the agent must know the follogiorgori:

1. the initial belief:by = p(xo|lp);
2. the probability distribution governing state transitiop&.1 |xx, ux); and
3. the observation likelihood functiop{ zx+1 |xx+1)-

Note thatp(x+1|xk, ur) is not a belief; it is a distribution over state at tirhe+ 1 given perfect state
knowledgdrom time k.

Over an episode, the agent executes a palicy= 7(I;). Since the probability distribution over state
is a sufficient statistic for the history, the policy is a function of that belief, thus- 7(bx). The value of
executing a policyr starting from a belieb, is equal to the discounted sum of expected future rewards:

o0

Valbe) = > E[Yr (X s)] 3
7=0

where~ is a discount factog 1. The aim of the POMDP agent is to find the optimal policy
7w (by) = arg max Vi (b). 4)

A standard approach to finding this optimal policy is to use Dynamic Programming [2]. The value function
at timek is defined recursively in terms of the value function at time 1,

Vaer (by) = max | E[r(xp,u)| +7 E [Var (®(bg, wp, 2141))] | - (5)
UL Xk Zk+1

Two issues need to be resolved before Equation 5 can be implemented. Firstly one needs a represen-
tation for probability distributions over state-space. Secondly one needs a representatiomvfach is
a continuous function of probability distributions (not states). To see why the latter issue is problematic,
consider a two-dimensional continuous state-sp&é;,) needs to assign a cost to every possible surface
(that integrates to one) over that two-dimensional space. There is an uncountable number of possible sur-
faces: certainly too many to represent with a digital computer. The standard solution to this problem is to
discretize the state, action and observation spaces.

4 Representing Value over Discrete States

When the state-space is discretized into a set of Gelisbelief can be represented by a vedtar RIS,
where|S| is the number of cells into which the state space is dividedbasidrepresents the agent’s belief
that it is in states. Approaches to representing the value function fall into one of two categories.

4.1 Grid-Based Representations

Grid-based approaches define a gficcontaining a finite set of belief stat¢s{...b7, }, b7 € RI°1. An
interpolation-extrapolation function estimates the value at any point in belief space using the values at
the grid points. The main problem with grid-based representations is that the number of required points
increases rapidly with both the size of the state space and the resolution of the grid. Regular [4], variable-
resolution [12] and arbitrary [3] grids have been proposed.

42

4.2 Gradient-Based Representations

Sondik shows that in the case where the state, action and observation spaces are all discrete, the value
function is piecewise-linear and concave (PWLC) [8]. In this ddsmn be represented by the supremum
of a finite set of hyperplanes over the belief space, each defined by a weetS!.

Exact solution methods manipulate theseectors directly. The computational cost is usually dom-
inated by thecurse of history in the worst case the number of hyperplanes afteriteiteration is

O(|A\|Oll_1), where|A| and |O| denote the number of discrete actions and observations, respectively

[5] [3]. Various techniques have been proposed to prune the redundant hyperplanes, however the pruning

steps are usually expensive and effect the constant factors rather than the order of the growth [5].
Point-based approximations perform updates by finding hyperplanes that maximize the value function

at a finite set of belief point®, where| B| is either fixed [9] or increasing [5]. Point-based approximations

claim to generalize better than grid-based approximations because they calculate both tl@ddhe

value gradientt each belief point.

5 Representing Value over Continuous States

It is possible to represent the value function over belief space if there is a finite set of scalars representing
each belief point. The value function is then a function of those scalars. Section 4 showed how this is
possible for discrete state spaces, this section examines the possibilities for continuous state spaces.

A requirement for the use of a parametric representation for the distribhyticthat the belief transi-
tion function® (b, ux, zx+1) Maintains the parametric form. This paper focusses on the use of a Gaussian
representation. While it is not the only choice, it has the advantage that there are well-known process
models and observation functions under which the parametric form of the belief distribution is closed. The
result of using a parametric representation is that the value function can be represented by a function over
the sufficient statistics of the distribution.

Consider a one-dimensional toy POMDP problem. The traditional approach is to partition the space
into |S| cells. One must then evaluate the value function over $haimensional continuous space of
distributions over those cells. This becomes expensive for [g¥ge Instead, one could represent the
distribution as a Gaussian with parametgrso). The problem is reduced to computing a value function
over a two-dimensional space.

This reduction in dimensionality introduces several potential problems. From an implementation stand-
point, the value function over the sufficient statistics is not likely to be PWLC, and thus cannot be repre-
sented by a set of hyperplanes. Therefore evaluating the expectations in Equation 5 will involve integrating
over the state space, and brute-force numerical integration becomes exponentially more expensive as the
dimensionality of the state-space increases. In addition, the gradient of the value function is not available.

A more fundamental issue is that the ability to represent arbitrary distributions is lost. This is prob-
lematic only when one is unable to represent distributions that are likely to occur in practice. As Roy
points out, the space of distributions commonly encountered in robot navigation problems is extremely
constrained [7]. Gaussians have certainly proven to be a sufficiently useful representation in many robot
mapping and localization problems [11]. They enforce the fact that nearby regions of the state space are
related to one another, which arbitrary distributions over a discretized state space do not. Constraining
oneself to precisely those distributions which are likely to occur offers obvious potential advantages.

If a single Gaussian is inadequate, more complex functions can be approximated arbitrarily accurately
by a mixture of Gaussians, the only problem being that the dimensionality of the sufficient statistics in-
creases linearly with the number of Gaussians.

6 Solving Parametric POMDPs

Given a parametric form, the continuous distribution over state-dpacen be written in terms of a vector
of sufficient statisticsd,,;,. Maintaining a consistent belief in this parametric form requires an initial
belief state®,,,, plus an update function:

6k+1‘1k+1 = é(ek‘1k7uk7zk+l) (6)

43

The instantaneous reward function and the observation likelihood function are also functions of the
sufficient statistics, defined in terms of integrals over the state space:

T(O1,, ur) = E[T(Xﬂ@kumw)] = /T(Xk,uk)P(XH@kuk)ka (7)
P(2k41|Ox) 1, , uk) = /p(zk+1|Xk+1)p(xk+1|@k\1k7uk’)dxk+1 (8)

Given an appropriate belief update functibnthe DP equation can be written, analogous to Equation 5,
in terms of sufficient statistics,

Ve (Op1,) = max {f(@kuk,uk) + Vzgl [V (R(Op 1, ke 2141))] | - 9)
Since the value function is not PWLC (and thus no gradient information is available) a grid-based
approximation is used, as in Section 4.1. The parametric grid-based solution is not expected to present the

same scalability problems since the dimensionality of the state-space is much lower.
Let G be a set of belief points in sufficient-statistic spaGe= {©F, ... @%l}, and let¥ be a set of

point-value pairs¥“ = {(©F,¥(©7)),... (0, 4(0F))}. Let V& be the grid-based value function
approximation at timér. Then the approximation at timie+ 1 is f/,ﬁl(@) = Rg(©,9¢,), whereR¢

is an interpolation-extrapolation rule that estimatésat any point in sufficient-statistic space. The values
associated with each grid point can therefore be updated using

wk((-)]G) = max F(@fvuk) +v E Wkﬁl(‘i’(@fvukazkﬂm (10)

Uk Zk+1

For a more detailed discussion of grid-based approximations, the reader is directed to [3].
The entire parametric POMDP algorithm can now be outlined:

1 Select a set of belief points

2 k+— MAX_ITERATIONS

3 initialize v, (©f) to zero,Yj € |G|

4 while not(converged)

5 k—k—-1

6 foreach®% € G

7 foreachu, € U

8 calculatep,, «— 7(©Y, uy)

9 Uy, <— 0

10 for eachzy, € Z

11 calculate the likelihood « p(zx11|©%, uz)
12 calculate®’ «— (O uy, z1,41)

13 interpolate/extrapolate to find — V;,1(®’)
14 Vg Uy + 0

15 end foreachey 41

15 end foreachuy,

16 wk((_)G) IAXqy,, [puk, + lyvuk]

17 end foreach®¢

18 end while

The convergence criterion at step 4 remains to be defined. An acceptable choice of criterion would
be when the maximum change in value of a belief pointridrops below a threshold. It should also be
noted that the algorithm iterates over a set of actions and observations. While this works well when they
are defined as discrete sets, continuous actions and observations can also be dealt with by sampling from
their distributions, as suggested elsewhere [10] [9].

44

For discrete actions and observations, the complexity of each iteration can be kept low by pre-calculating
most of the steps. If the instantaneous rewards, observation likelihoods and belief transitions, calculated
in steps 8, 11 and 12 respectively, were all pre-computed then each iteration could be performed effi-
ciently. The complexity of the algorithm B8(|G||A||O|CEgv ar(Rp,|G|), whereCgv a1 (Rg, |G]) is the
complexity of applying interpolation-extrapolation rukgs for |G| belief points. In addition, Hauskrecht
shows that under certain conditions the POMDP can be converted to a grid-based MDP such that the
interpolation-extrapolation rule need not be calculated at every step [3].

The question of how to select the set of belief poiGtdias not been addressed so far. If the state-
space is discrete, the value functidbhis convex. For a convex interpolation ruRy, the grid-based
approximation to the value functiof,, is also convex. This guarantees thais an upper bound o’

[3]. In the case of a continuous state-space, no such guarantee can be made, so it is important to select an
appropriate set of belief points, maintaining a balance between accuracy and computational complexity. In
general, belief points should be concentrated in areas where the second derivative of the value function is
high. These areas are where a linear approximation between belief points is worst and the optimal actions
vary most. Belief points should also be concentrated in areas of sufficient-statistic space that are likely to
occur in practice. While the shape of distributions has been constrained to those likely to occur, there are
still unlikely belief points (such as being well-localized in areas devoid of landmarks). Methods have been
proposed in the literature for adaptively improving grids [3], or finding likely beliefs by having a robot
randomly explore the environment during a training phase [9].

7 Robot Navigation Example

As an example application, consider the familiar robot navigation problem to which POMDPs are of-
ten applied: a robot moves in a known world towards a goal point. The state-space is continuous and
two-dimensional rather than discrete with one dimension per cell. The distribution over state-space is con-
strained to being a circular Gaussian, thus beliefs can be represented by the three-dimensional vector of
sufficient statistic® whose components afg,, 1y, o).

The robot relies on odometry for localization and has to avoid a known set of hazards. In addition,
there is a set of electric beacons on the floor which, should the robot run over them, will localize the
robot extremely well. In the absence of beacons, localization uncertainty increases linearly with distance
travelled. The robot’s control actions are discrete, limited to movements of 0.2m along the four compass
directions. Any movement shifts the mean of the robot’s distribution, as well as increasing the standard
deviation by 0.02m. If the robot attempts to shift its mean off the edge off the world, the mean does
not change. The observations are also discrete: there is one possible observation per beacon, plus one
observation representing ‘no beacon observed’. The observation is a deterministic function of state: if the
robot is over a beacon then it will observe it and become well-localized at that beacon. The probability of
each observation is given by Equation 8. For observations of beacons, the integral is simple to evaluate
since it is non-zero only at the beacons. The probability of the 'no beacon’ observation can be calculated
by taking the complement of the sum of the probabilities of the beacon observations. Together, the effects
of actions and observations define the deterministic belief transition fundti@y,;, , ux, zx+1).

The instantaneous reward is a simple function of state alone: the rewatdighe goal-1 at hazards,
and zero otherwise. For a given expected position and uncertainty in position there is some probability that
either of the above has occurred. Therefore a reward function can be constructed using Equation 8. This
integral is not difficult to calculate becausgx) is non-zero only at hazards and goals.

The set of belief pointgs have been chosen in a regular grid, spaced 0.2m apart in space and 0.02m
apart ing. This fairly naive placement leads to a large number of belief points but a trivial interpolation-
extrapolation rule, since the dynamics of the world and the placement of beacons coBstrajp,,, to
remaining on the grid i®,;, was on the grid. It would certainly be possible to reduce the number of
belief points without affecting solution quality.

Figure 1 shows the rewards, the final value function and the corresponding best actions after conver-
gence. The rewards show that the goal is only attractive when uncertainty is low. Note that beacons have no
effect on theinstantaneouseward. The actions demonstrate how the robot accounts for uncertainty when
making decisions: the probability of an uncertain robot finding the goal without encountering a hazard is

45

low, so it heads toward the beacons. When the robot is well-localized it is capable of avoiding hazards, so
it approaches the goal. The plots of the final value function in Figure 1 are on the same scale. It can be
seen that the value surface corresponding to uncertain beliefs lies entirely below the surface corresponding
to a smallo. Thus the agent always values certainty, regardless of the mean of a belief.

8 Conclusion

The contribution of this paper is a novel approach to efficiently applying the POMDP formulation to prob-
lems with continuous states, typical in robotics. Choosing a parametric form provides a compact represen-
tation and restricts the possible beliefs to a set that approximates those that are likely to occur in practice.
An approximate algorithm was presented for solving POMDPs under this formulation. While no exact so-
lution is available, it should be noted that discretization of the state space also involves an approximation.
Finally, the algorithm was applied to a simple simulated robot navigation problem.

POMDP solutions are generally considered to be incapable of scaling to real-world problems. The
limiting factors are the curses of history and dimensionality. Point-based and grid-based approximations
avoid the curse of history, however the curse of dimensionality remains: the number of samples required
to achieve a given sample density is exponential in the number of states. A parametric approach limits the
dimensionality of the state space, however the number of grid points required still increases with the size of
the map. A parametric approach is likely to be superior in domains where a fine discretization is required
to approximate continuous values, and where the number of sufficient statistics is small. A more realistic
robot navigation problem would involve modelling heading in addition to location and allowing arbitrary
uncertainty ellipses rather than only circular Gaussians. This would involve nine sufficient statistics (three
for the mean, six for the covariance). Whether this is feasible remains an open question.

Acknowledgement

This work is supported by the ARC Centre of Excellence programme, funded by the Australian Research
Council (ARC) and the New South Wales State Government.

References

[1] D. Aberdeen and J. Baxter. scaling internal-state policy-gradient methods for pomdpsockedings of the
International Conference on Machine Learnjr&02.
[2] D. BertsekasDynamic Programming and Optimal ControAthena Scientific, Belmont, Massachusetts, 2000.
[3] M. Hauskrecht. Value-function approximations for partially observable Markov decision procdssegral of
Artificial Intelligence Researci3:33-94, 2000.
[4] W. Lovejoy. Computationally feasible bounds for partially observed Markov decision proce€gesations
Research1991.
[5] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for POMDRS. In
Joint Conf. on Artificial Intelligence2003.
[6] J. Porta, M. Spaan, and N. Vlassis. Robot planning in partially observable continuous domaRsbholics:
Science and Systen005 (to appear).
[7]1 N. Roy. Finding Approximate POMDP Solutions Through Belief CompresdriiD thesis, MIT, 2003.
[8] E. J. Sondik.The Optimal Control of Partially Observable Markov ProcessehD thesis, Stanford University,
1971.
[9] M. Spaan and N. Vlassis. Perseus: Randomized point-based value iteration for POMDPs. Technical report,
Informatics Institute, U. of Amsterdam, 2004.
[10] S. Thrun. Monte carlo POMDPs. In S. Solla, T. Leen, and K.-Rill&t, editorsNIPS 12 pages 1064-1070.
MIT Press, 2000.
[11] S. Williams, G. Dissanayake, and H. Durrant-Whyte. Field deployment of the simultaneous localisation and
mapping algorithm. Iri.5th IFAC World Congress on Automatic Contra002.
[12] R. Zhou and E. Hansen. An improved grid-based approximation algorithm for POMDRECAh, pages 707—
716, 2001.

46

6
6
"
%

$
§
i

¢

Q
X
%
(K2
&

Q

4
o
o

Q
()

0
0
9

§
X

&

%

"
0

Am
hv
5

0
)
0
9

3

o

A
%
5
s
0
o

%

9%
9%
”

5
X
§
X
0’
X0
X

&
9

0

)
{
&

)
&
%

-

&
%

&

.m.
:
)

"

9%
(X
0
9%
Q

()
&0
&
&
O
&
8

9%
0
9%
Q

,xmmm
X
XX
SR
0%
K000
B0

(X

.’

50
0
()
K

§
)
$
X
o
i
R0

5
o

‘ ’

&
oo
o
SR
o
&
O

9

X
.o.\.

5
X

piemal

o“o
““
9

K

%
8
0
5
)

090,

9%
KO0
hoh
.o (>

0

0
(XK

£ XX
N,
OO
msu»

4
%
X
o
o

0
(X
()

3
5
8

X
&
&

X

.’

0

(X0

(X
0

0
(X

SRR
%
&

0
()

5

3

R
)

0
%

i
R
XN
2
R
“¢AHWr.%,waszzy»

&

o
2

9
%

X
0
00
e

(X
”

7
%

X

9,
4

>
i
5
1

R
X7
)

o

)
)
&
&

A
9

%
(Q
WY

(a) Rewardsg = 1.0

praa

e

15

i -

-0

e

¥

(a) Rewardsg = 0.1

oo

f—————————

45

35

25

0
<~

35

(a) Actions,o = 1.0

(a) Actions,c = 0.1

o

abianuoa
" A

pabianuo

A

(a) Valuesg = 1.0

(a) Valuesg = 0.1

Figure 1: The (a-b) rewards, (c-d) actions and (e-f) values as functions of belief (not state), plotted for all
g andy,, for o = 0.1 ando = 1.0. The arrows in (c) and (d) indicate the direction the robot will move

from a given belief. The known positions of hazards (circles), beacons (squares) and the goal (pentagram)

are overlaid over the actions.

47

1JCAI Workshop Reasoning with Uncertainty in Robotics, Edinburgh, Scotland, 30 July 2005

Navigation and planning in an unknown environment using

1

vision and a cognitive map

Nicolas Cuperlier, Mathias Quoy, Philippe Gaussier, Christophe Giovanangelli

ETIS-UMR 8051
Université de Cergy-Pontoise - ENSEA
6, Avenue du Ponceau
95014 Cergy-Pontoise France
cuperlier@ensea.fr

Abstract

We present a navigation and planning system using vision for extracting unpredefined landmarks.
The set of landmarks and their azimuth relative to the north given by a compass defines a particular
location. The transitions between two locations are coded in a graph (our cognitive map) where the links
are reinforced when the path is used. The transitions are linked with the integrated movement used for
going from one place to the other. Planning corresponds to the diffusion of an activation in the graph
from the location to reach to the possible transitions from the current location. The proposed transitions
are merged in a neural field so that the direction taken is the stable solution of a dynamical system.

Introduction

Various SPLAM methods have proved to be efficient in different indoor and outdoor environments. They
rely on the combination of different algorithms that have to be triggered appropriately (and concurrently)
when necessary. For instance, mapping may be linked with different sensors (laser, ultra-sound, visual
feature recognition ...) that have to be chosen appropriately. The main drawback of this approach is the
linking of ad hoc algorithms. We propose here a unified neuronal framework based on an hippocampal and
prefrontal model where vision, place recognition and planning are fully integrated. Assets of this model

are:

autonomous landmark extraction based on characteristic points (section 2)
autonomous place building: there are no a priori predefined squares, or world model (section 3)

autonomous cognitive map building associating transition between places with the integrated move-
ment given by the robot’s odometry (section 4)

autonomous planning using the cognitive map (section 5)

stable movement proposed given by the stable fixed point solution of a dynamical system (section 6)

Drawbacks will be left for conclusion.

2 Autonomous landmark extraction based on characteristic points

Images are taken by a panoramic camera. Curvature points are extracted from the gradient image (at low
resolution) by DOG filtering. These points are the center of a 32x32 pixels small image corresponding to
a landmark. This image is binarized through a log-polar transform [10]. Each landmark is linked with its
angular position relative to the north given by a compass [16, 11]. In a panoramic image, 30 (landmark,
azimuth) pairs are extracted (see figure 1).

The log-polar transform gives some rotation and depth robustness.

48

1200
12 St b 1 nnnnnn
1 J7n393n9 0.038830

2 szin
2 Sotwon
15 Dovssar 5es0

A A 1480 40
Voot Sitowoton bododid Jeioaodos

2:1.000000 3:1.000000 1
Looses 1L0.ome 4R0.000 IB00wTey gnD0wile 1050040 B 7
000090881 130, masss 170:0. 098651 73:0.093365 m 2.089088 199:0.089473 177
103:0.036375 B A ficoliatebe seioineares aiaosmee L1 nsvees i n nss 47
1000 0a6els Zhaonetiay Thchpssare eiob 148:0.087451 3:0.098830 gl1:).0985% %

B0berats SLOIONIN P 0iear . iaco odninn IORiDlemiss taio.ciens ithiaoesin

"ottt

0 s
hy §
AR

Figure 1: Image taken from a panoramic camera. Below are 15 examples of 32 x 32 log-polar transforms taken as landmarks and
their corresponding position in the image.

1900 aane
169:0.88852 1
54:0.038808

™

3 Autonomous place building

Each set of (landmark, azimuth) pairs is learned and thus characterizes one location. The neuron coding
for this location is called a “place cell” as the one found in the rat’s hippocampus [11]. Our exact neural
model will not be described here, but may be found in [9] (see fig. 2).

A matching function computes the distance between the learned sets and the current set. If the result of this
function is below a given recognition threshold, then a new neuron is recruited for coding this new location.
Hence, the density of location learned depends on the level of this threshold, but also on the position in the
environment. Namely, more location are learned near walls or doors because there is a fast change in the
angular position of near landmarks, or in the (dis)appearance of landmarks.

Two successively reached places are coded by a transition cell (see fig. 2). Each of these cells is linked
with the direction used to go from the starting location to the ending location. For instance, going from
place A to place B creates a transition cell AB linked with the direction (relative to the north) for going
from A to B. This direction integrates all direction changes performed between A and the creation of B.
It is reset when a new place cell is recruited.

Place recognition t-1

Azimuth Landmark - azimuth
[

°

Transition map

[e]e] INe)e) Place recognition t

Landmark

Q000000

Motor command
—— One to one links — No learning
—+#— Onetoall links — Learning

Figure 2. Sketch of the model. From left to the right: merging landmarks and their azimuth, then learning of the corresponding
set on a place cell. Two successive place cells define a transition cell which is linked with the integrated movement performed. The
cognitive map is not shown here.

4 Autonomous cognitive map building

Experiments carried out on rats have led to the definition of cognitive maps used for path planning [17].
Most of cognitive maps models are based on graphs showing how to go from one place to an other [2, 3].
They mainly differ in the way they use the map in order to find the shortest path, in the way they react to

49

dynamical environment changes, and in the way they achieve contradictory goal satisfactions. Other works
use ruled-based algorithms, classical functional approach, that can exhibit the desired behaviors, we will
not discuss them in this paper, but one can refer to [8].

Each time a transition is used, a link is created in the cognitive map. This link links the transition used with
the previous transition. After some time, exploring the environment leads to the creation of the cognitive
map (see fig. 3). This map may be seen as a graph where each node is a transition and the arcs the fact that
the path between these two transitions was used. We can give a value to each link. This value is increased
if the link is used, and decreased if it is not. After some time is the environment, some links are reinforced.
These links correspond to paths that are often used. In particular, this is the case when some particular
locations have to be reached more often than others (see section 5) [12].

& Serveur geomatique B

Ty

Av%%‘%’vi‘,; 3 G
XIS S
VAN, 30 7)
ﬂgv,'i\" S ‘
S N
Siva N | ag R

Figure 3: Cognitive map build by exploration of the environment. The triangles give the successive robot position starting from the
right to the goal (on the left).

5 Autonomous planning using the cognitive map

Some places are more important because they may be some goals to reach when necessary. When a goal
has to be reached, the transitions leading to it are activated. This activation is then diffused on the cognitive
map graph, each node taking the maximal incoming value which is the product between the weight on
the link and the activity of the node sending the link. After stabilization, this diffusion process gives the
shortest path between all nodes and the goal nodes. This is a neural version of the Bellman-Ford algorithm
[5, 14] (see fig. 4).

When the robot is in a particular location A, all possible transitions beginning with A are possible. The top-
down effect of the cognitive map is to bias the possible transitions such that the one chosen by the cognitive
map has a higher value. A competition mechanism makes this transition win (however see section 6). So,
the corresponding movement is triggered and thus the robot realizes the planned movement.

6 Movement and neural field dynamics

Obstacles are detected by 12 infra-red sensors. A reflex behavior is triggered by a Braitenberg-like archi-
tecture [6]. The direction given by this reflex behavior takes over the direction given by random exploration
or by planning. Nevertheless, these obstacle avoidance movements are integrated in the computation of the
overall direction used between two places.

After planning, different movements are proposed. One has a higher value. As seen in section 5, a sim-
ple competition mechanism selects the neuron with the higher value. However, this solution is not stable
enough, in the sense that the direction to use be brutally change from one step to the other. There are also
some deadlock cases [7].

The solution used for having a stable continuous direction to follow is to define a dynamical system where
the stable fixed point solution is the direction to follow. This is achieved using a neural field [1, 15, 13].

50

1M OIIVA

/. OMotivB
1 /

¢O.9

Figure 4: Diffusion of the activity n the graph corresponding to the cognitive map. Diffusion is starting from the goal. Each node
keeps the maximal activity coming from its neighbors. The activity is the product between the value of the link and the activity of the
sending node.

ER)

o :—f(z,t)+l(x,t)+h+/ w(z).f(x — z,t)dz Q)

z€Vy

Where f(z,t) is the activity of neuron z, at time ¢. I(x,t) is the input to the system. h is a negative
constant. T is the relaxation rate of the system. w is the interaction kernel in the neural field activation.
A difference of Gaussian (DOG) models these lateral interactions that can be excitatory or inhibitory. V,,
is the lateral interaction interval that defines the neighborhood. Without inputs the constant i ensures the
stability of the neural field homogeneous pattern since f(z,¢) = h. In the following, the = dimension will
by an angle (direction to follow), 0 corresponding to go straight forward.
The properties of this equation allow the computation of attractors corresponding to fixed points of the
dynamics and to local maxima of the neural field activity. Repellors may appear too, depending on the
inputs. A stable direction to follow is reached when the system is on any of the attractors.
The angle of a candidate transition is used as input. The intensity of this input depends on the corre-
sponding goal transition activity, but also on its origin place cell recognition activity. If only one transi-
tion is proposed, there will be only one input with an angle z.,,, = «* and it erects only one attractor
¥ = Tyqrg ON the neural field. If « is the current orientation of the animat, the animat rotation speed will
bew =2z = F(z.).
Fusion of several transition information depends on the distance between them. Indeed the neural field
equation allows cooperation for coherent inputs associated with spatially separated goals (for us different
angles proposed). If the inputs are spatially close, the dynamics give rise to a single attractor corresponding
to the average of them. Otherwise, if we progressively amplify the distance between inputs, a bifurcation
point appears for a critical distance, and the previous attractor becomes a repellor and two new attractors
emerge.
Oscillations between two possible directions are avoided by the hysteresis property of this input competi-
tion/cooperation mechanism. It is possible to adjust this distance to a correct value by calibrating the two
elements responsible for this effect: spatial filtering is obtained by convoluting the dirac like signal coming
from transition information with a Gaussian and taking it as the input to the system. This combined with
the lateral interactions allows the fusion of distinct input as a same attractor. The larger the curve, the more
fusion there will be.

7 Conclusion

Our model currently running on robots (Koala robots and Labo3 robots) has interesting properties in terms
of autonomous behavior. However, this autonomy has some drawbacks:

51

e we are not able to build a cartesian map of the environment because all location learned are robot
centered. However, the places in the cognitive map and the direction used give a squeletton of the
environment.

o we have no information about the exact size of the rooms or corridors. Again, the cognitive map only
gives a sketch of the environment.

e some parameters have to be set: the recognition threshold (section 3) and the diffusion size of the
interaction kernel of the neural field (section 6). The first one determines the density of build places.
The higher the threshold, the more places are created. The second parameter has to be tuned for each
robot depending on its size and on the position of the infra-red sensors for obstacle avoidance. For
instance, a too high diffusion value prevents the robot from going through the doors.

The transition used in this model may also be the elementary block of a sequence learning process.

Thus, we are able to propose a unified vision of the spatial (navigation) and temporal (memory) functions
of the hippocampus [4].

Acknowledgments This work is supported by two french ACI programs. The first one on the modeling of the interactions
between hippocampus, prefontal cortex and basal ganglia in collaboration with B. Poucet (CRNC, Marseille) JP. Banquet (INSERM
U483) and R. Chatila (LAAS, Toulouse). The second one (neurosciences intégratives et computationnelles) on the dynamics of
biologically plausible neural networks in collaboration with M. Samuelides (SupAéro, Toulouse), G. Beslon (INSA, Lyon), and E.
Daucé (Perception et mouvement, Marseille).

References

(1]

(2]

(3]

(4]

5]
(6]
[7]

(8]

9]

[10]

[11]

[12]

[13]

[14]

S. Amari. Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27:77—
87, 1977.

M. Arbib and I. Lieblich. Motivational learning of spatial behavior. In J. Metzler, editor, Systems Neuroscience,
pages 221-239. Academic Press, 1977.

I. Bachelder and A. Waxman. Mobile robot visual mapping and localization: A view-based neurocomputational
architecture that emulates hippocampal place learning. Neural Networks, 7(6/7):1083-1099, 1994.

J. Banquet, P. Gaussier, M. Quoy, A. Revel, and Y. Burnod. A hierarchy of associations in hippocampo-cortical
systems: cognitive maps and navigation strategies. Neural Computation, 17(6), 2005.

R. Bellman. On a routing problem. Quarterly of Applied Mathematics, 16:87-90, 1958.
V. Braitenberg. Vehicles : Experiments in Synthetic Psychology. Bradford Books, Cambridge, 1984.

N. Cuperlier, P. Laroque, M. Quoy, and P. Gaussier. Learning to plan and build experience via imitation in a
social environment. Marbella (spain), sept 1-3, 2004. Artificial Intelligence and Soft Computing, IASTED 2004.

J. Donnart and J. Meyer. Learning reactive and planning rules in a motivationnally autonomous animat. IEEE
Transactions on Systems, Man and Cybernetics-Part B, 26(3):381-395, 1996.

P. Gaussier, A. Revel, J. Banquet, and V. Babeau. From view cells and place cells to cognitive map learning:
processing stages of the hippocampal system. Biological Cybernetics, 86:15-28, 2002.

C. Joulain, P. Gaussier, and A. Revel. Learning to build categories from perception-action associations. In Inter-
national Conference on Intelligent Robots and Systems - IROS’97, pages 857-864, Grenoble, France, September
1997. IEEE/RSJ.

J. O’Keefe and N. Nadel. The hippocampus as a cognitive map. Clarendon Press, Oxford, 1978.

M. Quoy, P. Gaussier, S. Leprétre, A. Revel, C. Joulain, and J. Banquet. Lecture Notes in Artificial Intelligence
Series, 1812, chapter A planning map for mobile robots: speed control and paths finding in a changing environ-
ment, pages 103-119. Springer, ISBN 3-540-41162-3, 2000.

M. Quoy, S. Moga, and P. Gaussier. Dynamical neural networks for top-down robot control. IEEE transactions
on Man, Systems and Cybernetics, Part A, 33(4):523-532, 2003.

A. Revel, P. Gaussier, S. Leprétre, and J. Banquet. Planification versus sensory-motor conditioning: what are the
issues ? In From Animals to Animats : Simulation of Adaptive Behavior SAB’98, pages 129-138, 1998.

52

[15] G. Schéner, M. Dose, and C. Engels. Dynamics of behavior: theory and applications for autonomous robot
architectures. Robotics and Autonomous System, 16(2-4):213-245, December 1995.

[16] N. Tinbergen. The study of instinct. Oxford University Press, London, 1951.
[17] E. Tolman. Cognitive maps in rats and men. The Psychological Review, 55(4), 1948.

53

Real-Time Hierarchical POMDPs for Autonomous Robot Navigation

Amalia Foka Panos Trahanias

Institute of Computer Science
Foundation for Research and Technology — Hellas (FORTH)
P.O.Box 1385, Heraklion, 711 10 Crete, Greece
and
Department of Computer Science, University of Crete
P.O.Box 1470, Heraklion, 714 09 Crete, Greece
e-muai | : {foka, trahania}@cs.forth. gr

Abstract

This paper proposes a novel hierarchical representation of POMDPs that for the first time is amenable to real-time solution. It
will be referred to in this paper as the Robot Navigation - Hierarchical POMDP (RN-HPOMDP). The RN-HPOMDP is utilized
as a unified framework for autonomous robot navigation in dynamic environments. As such, it is used for localization, planning
and local obstacle avoidance. Hence, the RN-HPOMDP decides at each time step the actions the robot should execute, without
the intervention of any other external module. Our approach employs state space and action space hierarchy, and can effectively
model large environments at a fine resolution. Finally, the notion of the reference POMDP, that holds all the information re-
garding motion and sensor uncertainty is introduced, which makes our hierarchical structure memory efficient and enables fast
learning. The RN-HPOMDP has been tested extensively in a real-world environment.

1 Introduction

The autonomous robot navigation problem has been studied thoroughly by the robotics research community over the last years.
The navigation problem involves the three main tasks of mapping, localization and path planning. Incorporating uncertainty in
methods for navigation is crucial to their performance due to the the robot motion uncertainty and sensor uncertainty. Hence,
probabilistic methods dominate the proposed approaches present in the literature. However, probabilistic methods, that integrate
uncertainty, for motion planning have not been well studied until now in contrast to probabilistic methods for mapping and
localization. Contemporary methods for robot motion planning [6] do not take into account the involved uncertainty. The
probabilistic path planning methods present in the literature so far are dominated by methods based on Partially Observable
Markov Decision Processes (POMDPs) [8, 13, 16, 15, 10, 9, 14] but they are mainly utilized only as high level path planners due
to the computational complexity involved and require a lower level path planner, that most commonly is not probabilistic, to drive
the robot between intermediate points and also perform obstacle avoidance. In this paper a Hierarchical POMDP (HPOMDP)
is employed that facilitates probabilistic navigation where the probabilistic nature of POMDPs is exploited in all aspects of
navigation tasks. The proposed HPOMDP solves in a unified manner the navigation tasks of localization, path planning and
obstacle avoidance.

POMDPs provide the mathematical framework for probabilistic planning. POMDPs model the hidden state of the robot
that is not completely observable and maintain a belief distribution of the robot’s state. Planning with POMDPs is performed
according to the belief distribution. Therefore, actions dictated by a POMDP drive the robot to its goal but also implicitly reduce
the uncertainty of its belief.

Although POMDPs successfully meet their purpose of use, they are intractable to solve with exact methods when applied
to real-world environments modelled at a fine resolution. Many approximation methods for solving POMDPs are present in
the literature that have also been applied to robotics problems [1, 12, 4, 16, 9, 14]. The approximation methods presented in
the literature so far can only deal with problems where the size of the state space is limited to at most a few thousands states.
As a result, approximation methods known so far cannot model large real world environments at a fine resolution and hence
POMDPs are used as high level mission planners. Furthermore, even when POMDPs are able to model large environments [12]
they have to be amenable to real time solution to be applied as unified navigation model that can perform the navigation tasks of
localization, path planning and obstacle avoidance since the POMDP will have to be solved at each time step.

54

In this paper, we propose a hierarchical representation of POMDPs for autonomous robot navigation, termed as the Robot
Navigation-HPOMDP (RN-HPOMDP) that can efficiently model large real world environments at a fine resolution. The RN-
HPOMDP provides a representation that for the first time enables real-time POMDP solution even when the state space size
is extremely large. In effect, the RN-HPOMDP is solved on-line at each time step and decides the actual actions the robot
performs, without the intervention of any other external modules. Hence, the RN-HPOMDP is utilized as a unified framework
for the autonomous robot navigation problem, that integrates the modules for localization, planning and local obstacle avoidance.

Two other HPOMDP approaches are currently present in the literature that employ either state space hierarchy [15], applied
as a high level mission planner, or action and state space hierarchy [11], applied for high level robot control and dialogue
management. Independently and concurrently with these works we have come up with the RN-HPOMDP! that applies both state
space and action space hierarchy. It is specifically designed for the autonomous robot navigation problem and offers specific
advantages over the two approaches mentioned above. A comparison between the RN-HPOMDP and the mentioned approaches
can be found in Section 4.

Experimental results have shown the applicability of the RN-HPOMDP for autonomous robot navigation in large real world
and dynamic environments where humans and moving objects are effectively avoided and the robot follows optimal paths to
reach its destination.

2 Partially Observable Markov Decision Processes (POM DPs)

POMDPs are a model for planning under uncertainty [5]. A POMDP is a tuple M =(S, A, 7, R, Z,O), where S is a finite set
of states, A, is a finite set of actions, 7 is the state transition function, Z, is a finite set of observations, O is the observation
function and R is the reward function, giving the expected immediate reward gained by the agent for taking each action in each
state. The robot maintains a belief distribution at all times, b;, over the set of environment states, S.

Each state s represents the location (z,y) of the robot and its orientation 6, termed as the orientation angle. The set of
actions is composed of all possible rotation actions a from 0° to 360° that are termed as action angles. The set of observations is
instantiated in our approach as the output of the iterative dual correspondence (IDC) [7] algorithm for scan matching. Therefore,
the output of the IDC algorithm, that is the dzx, dy and df from the estimated location provided, is discretized and the observation
set if formed.

The RN-HPOMDP provides the actual actions that are executed by the robot and also carries out obstacle avoidance for
moving objects. Therefore, the reward function is built and updated at each time step according to two reward grid maps
(RGMs): a dtatic and a dynamic. The RGM is defined as a grid map of the environment in analogy with the OGM. Each of
the RGM cells corresponds to a specific area of the environment with the same discretization of the OGM, only that the value
associated with each cell in the RGM represents the reward that will be assigned to the robot for ending up in the specific cell.
The static RGM is built once by calculating the distance of each cell to the goal position and by incorporating information about
cells belonging to static obstacles. The dynamic RGM is responsible for incorporating into the model information on whether
there are objects moving within it or other unmapped objects. Superimposing the static and dynamic RGMs provides the reward
function that is updated at each time step. The use of the static and dynamic RGM alleviates the need for modelling moving
objects as observations.

3 TheRN-HPOMDP

The RN-HPOMDP is built through an automated procedure using as input a map of the environment and the desired discretiza-
tion of the state and action space. The map of the environment can be either a probabilistic grid map obtained at the desired
discretization or a CAD map.

The RN-HPOMDP structure is built by decomposing a POMDP with large state and action space into multiple POMDPs
with significantly smaller state and action spaces. The process of building the hierarchical structure is performed in a top-down
approach. The number of levels of the hierarchical structure is determined by the desired discretization of the action angles or
the orientation angles, since their discretization is the same in the RN-HPOMDP. Thus, if the desired discretization of the action
angles or the orientation angles is ¢, the number of levels of the RN-HPOMDP, L, will be L = log,(90°/¢) + 1.

The number of levels of the RN-HPOMDP in conjunction with the desired discretization of the state space affects the size of
the top-level POMDP and in effect the performance of the RN-HPOMDP regarding the time complexity of solving it.

!Preliminary versions of the RN-HPOMDP are presented in [2, 3]

55

Top Level State

.7{’ Orientation Angle
K -
ol

Discretization: 90°

Table 1: Properties of the RN-HPOMDP with L levels. el 1 POMDE

Top Level Intermediate .é.a- 7 Discretization: 45°
Leva !
No of POMDPs 1 AT [STT R Level 2 POMDPs
£Z ; a gficmaqungzlzcso
|S| |50 /22(L~1) 20 except when ! = L AT ’
where |S| =5 x (2 +7)2
0 and a range [0°,360°] (Op, ap) £ (90°/28-1)
6 and a resolution 90° 90° /2!~ Figure 1: State space hierarchy decomposition. Orientation an-
A 4 > gle range is denoted by the shaded region of the circles for each
POMDP.

The top level of the hierarchical structure is composed of a single POMDP with very coarse resolution so it can represent
the whole environment in a small number of states. The grid resolution of the top level states is equal to d x 2%~!, where d
is the desired discretization of the corresponding flat POMDP. The orientation angle of the robot and the action angles are also
discretized in a very coarse resolution of 90° and thus represent the basic four directions [0°, 90°, 180°, 270°].

To summarize, the top-level is always composed of a single POMDP with predefined discretization of the orientation and
action angles at 90°. The state space size of the top-level POMDP is variable and dependent on the discretization of the corre-
sponding flat POMDP and the number of levels of the hierarchical structure. Hence, the number of levels of the RN-HPOMDP,
L, should be such that it ensures that the size of the top-level POMDP remains small.

Subsequent levels of the RN-HPOMDP are composed of multiple POMDPs, each one representing a small area of the
environment and a specific range of orientation angles. The actions of an intermediate level POMDP are also a subset of the
actions of the corresponding flat POMDP.

In detail, each state of the top level POMDP corresponds to a POMDP at the immediate next level, as we go down the
hierarchical structure. A POMDP at an intermediate level [, has states that represent grid locations of the environment at a
resolution of d x 2(2=4 Thus, by going down the hierarchical structure the grid resolution of a level’s POMDPs is always twice
the resolution of the previous level. Therefore, when a top level state, that corresponds to a specific grid location, is decomposed
it will be represented in the immediate next level POMDP by an area of 2 x 2 cells with double grid resolution than the top level’s
grid resolution.

Going down the hierarchical structure, the resolution of the orientation angle is also doubled. Since the resolution of the
orientation angle is increased as we go down the hierarchical structure, the whole range of possible orientation angles, [0°, 360°],
cannot be represented in every intermediate level POMDPs. This would dramatically increase the size of the state space and
therefore we choose to have many POMDPs that represent the same grid location but with a different range of orientation angles.

The range of orientation angles that is represented within each intermediate level POMDP is expressed in terms of the
orientation angle,), of the previous level state that is decomposed, and is equal to [Qp + (90° / 21*2)] , where [is the current
intermediate level. By the above expression of the range of orientation angles, every intermediate level POMDP will always have
five distinct orientation angles. For example, if the state of the top level POMDP, [= 1, has orientation angle 6, = 90°, the
range of orientation angles at the next level, [= 2, will be equal to [0°,180°]. As mentioned earlier the angle resolution of the
top level is always equal to 90° and the next level will have double resolution, i.e. 45°. Therefore, the range of orientation angles
[0°, 180°] will be represented by five distinct orientation angles. Consequently, the size of the state space for every intermediate
level POMDRP is constant and equal to 20, since it always has five possible orientation angles and it represents a 2 x 2 area of
grid locations.

Action angles are decomposed from the top level POMDP to the next intermediate level in the same manner as with the
orientation angles. The resolution of the action angles at each level is the same as the resolution of the orientation angle. Hence,
it is equal to 90°/2!~1. As a result, a top level state is also decomposed into multiple POMDPs, each one with a different range
of orientation angles but also with a different range of action angles. The range of an action set is equal to [ap + (90° / 21*2)] ,
where a,, is the previous level action and [is the current intermediate level. The action angles set is also always composed of five
distinct actions according to the above expression.

The procedure described is used to built all intermediate levels of the hierarchical structure until the bottom level is reached.
Bottom level POMDPs’ state and action space is discretized at the desired resolution as a flat POMDP would be discretized. The
bottom level is composed of multiple POMDPs having the same properties as all other intermediate levels’” POMDPs, only that

56

while not reached the goal state
conpressTopBel i ef (top level)
ap =sol veTopLevel (top level)
foril=2to L
whichPOM DP = sel ect POVDP(l, ap)
conpr essBel i ef (I, which POM DP)
ap =sol veLevel (I, whichPOM DP)
end
execut eAct i on(ap)
z=get Cbservati on()
belieflywhichpo]\/[Dp = updat eBel i ef (I, whichPOMDP, ap, z)
updat eFul | Bel i ef (bdiefl,whichPOMDPy I, whichPOM D P)
end

Table 2: RN-HPOMDP planning.

the grid location the bottom level POMDPs represent is overlapping by a region r. Overlapping regions are required to be able
to solve the bottom level POMDPs for border location states.
The properties of the RN-HPOMDP are summarized in Table 1.

3.1 Planning with the RN-HPOMDP

Solving the RN-HPOMDP to obtain the action the robot should perform, involves solving a POMDP at each level. The intuition
of the RN-HPOMDP solution is to obtain at first a coarse path that the robot should follow to reach a goal position, and then refine
this path at each subsequent level in the area that the robot’s current position lies. In Table 2 the algorithm for the RN-HPOMDP
planning procedure is detailed.

During the RN-HPOMDP planning procedure the belief distribution of the corresponding flat POMDP is maintained at all
times. This distribution will be denoted as the full belief. Before solving any POMDP at a level, the full belief is compressed,
by the functions conpr essTopBel i ef () and conpr essBel i ef (), to obtain the belief distribution of the POMDP to be
solved. Belief compression is performed according to the state abstraction present at each level of the RN-HPOMDP structure.
Therefore, the belief assigned to an abstract state will correspond to the average belief of all the corresponding flat POMDP states
that has integrated. The belief distribution obtained for any POMDP is normalized before solving it.

The top level POMDP is solved, by the function sol veTopLevel (), at an infinite horizon, until the goal state is reached.
The immediate abstract action to be executed, a,,, as dictated by the top level POMDP solution determines which POMDP at the
immediate next level of the hierarchical structure will be solved to obtain a new refined abstract action.

The POMDP to be solved at the next level is determined by the function sel ect POVDP() . This function searches a level
[for the POMDP that satisfies the following two criteria:

e The zero moment of the full belief distribution over the area that is defined by the candidate POMDP states is maximum.

e The set of actions of the candidate POMDP contains an action that has minimum distance from the the previous level
solution’s action, a,,.

The structure of the RN-HPOMDP, as described in Section 3, ensures that when solving an intermediate level POMDP the ac-
tion obtained from the previous level will be refined to a new action since the action subset range is equal to [a, + (90°/2'72)].
Therefore the solution of an intermediate level POMDP is bounded according to the previous level solution.

The described procedure continues until the bottom level is reached where an abstract action will be refined to an actual
action, that is the action the robot will perform.

When the robot executes the action obtained by the bottom level POMDP solution, an observation, z, is obtained and the
belief distribution of this bottom level POMDP is updated by updat eBel i ef (). Bottom level POMDPs are composed of actual
states and actions, i.e. subsets of states and actions that compose the corresponding flat POMDP. Hence, updating the belief of
a bottom level POMDP amounts to updating a specific region of the full belief. Therefore, the belief distribution of the bottom
level POMDP that was solved is transferred to the full belief by the function updat eFul | Bel i ef ().

57

All POMDPs at all levels are solved in our current implementation using the Voting heuristic, that is an MDP-based approx-
imation method. However, this is not an inherent feature of the RN-HPOMDP structure, as any other POMDP solution method
can be used. Furthermore, the POMDP solution method used can also be different for each level of the hierarchical structure.

3.2 Complexity Analysis of the RN-HPOMDP Solution

In the complexity analysis that follows, computation time complexities are evaluated for the RN-HPOMDP solution using exact
methods and heuristics.

The flat POMDP solution has time complexity, for a single step, O (|S|?|.A|) when solved with the MLS or Voting heuristic.
Referring to Table 1, where the properties of the RN-HPOMDP structure are detailed, the solution of the top level POMDP

requires O ((\S |/ ZQ(L’l))Q) time, where L is the number of levels of the hierarchical structure.

The solution of all intermediate levels POMDPs requires O(C') time, since the size of the state space and action space is
constant and predefined. The bottom level POMDP solution is O(C5), since the state space and action space is again constant
and predefined. Therefore, the total time required to solve the RN-HPOMDP reduces to actually the complexity of the top level
POMDP. The top-level POMDP state and action space size can remain small regardless of the size of the whole environment by
increasing the number of levels, L, of the hierarchical structure.

When solving a flat POMDP exactly for a single step in time ¢, the time complexity is O (|S|?|.A|[T¢—1|/?!) , where [T';_1|
is the number of linear components required to represent the value function at time ¢ — 1. The size of I at any time ¢ is equal to
[Te] = |A[Tea 12,

The time complexity and size of the RN-HPOMDP when solved exactly is O (((|S|/22(L’1)))2 \Ft,1||z|) and |I';| =

IT;_1|!%!, respectively.

Apart from the notable reduction in computation time due to the reduced size of the state and action space, it should be noted
that the above mentioned times are for a single time step. The infinite horizon solution of a flat POMDP would require these
computations to be repeated for a number N of time steps until the goal point is reached, that is dependent on the number of
states of the flat POMDP, |S|. In the RN-HPOMDP case, only the top level POMDP is solved at an infinite horizon, and the
number(of ti)me steps N’ until the goal point is reached, is now dependent on the number of states of the top level POMDP,
(I8]/22(ED).

From this short complexity analysis, we may conclude that the particular POMDP formulation in our approach takes care of
the “curse of dimensionality” [5] and also the “curse of history” [9].

3.3 The Reference POMDP

The RN-HPOMDP described in the previous section, can cope with the computational time requirements but cannot address the
memory requirements. A flat POMDP would require to hold a transition matrix of size (|S|? x |.A|) and an observation matrix
of size (|S] x |A| x |Z]).

The RN-HPOMDP structure requires to hold the transition and observation matrices for all the POMDPs at all levels. As it
can be seen in Table 1 the number of POMDPs at each level is large and dependent on the size of action space and state space.
Consequently, even thought each POMDP’s observation and translation matrix is small the total memory requirements would be
extremely large. The RN-HPOMDP has larger memory requirements than the flat POMDP, although the flat POMDP memory
requirements are already very hard to manage for large environments. For this reason, the notion of the reference POMDP
(rPOMDP) is introduced.

The transition and observation matrices hold probabilities that carry information regarding the motion and sensor uncertainty.
In the formulation of the autonomous robot navigation problem with POMDPs, as described in Section 2, transition and obser-
vation probabilities for a given action, a, and an observation, z, depend actually only on the relative position and orientation
of the robot. This is due to the design choice to model the environment structure and state in the reward function instead of
the transition and observation matrices as commonly used in the POMDP literature. Therefore, the transition and observation
probabilities are dependent only on the robot motion model.

The transition probability of a robot from a state s to a new state s’, when it has performed an action « is only dependent on
the action a. Therefore when the robot is executing an action a, the transition probability will be the same for any state s when
the resulting state s is defined relatively to the initial state s.

The probability that the robot observes a feature z, when it is in a state s and performs an action a, can also be defined in the
same manner as with the transition probabilities, since the set of features Z has been defined in Section 2 to be the result of the
scan matching algorithm when feeded with a reference laser scan and the actual scan the robot perceived. Therefore, perceived
features are dependent on the motion of the robot, i.e. the action a it performed.

58

The rPOMDP is built by defining a very small state space, defined as an R x R square grid (in our implementation R = 7)
representing a subset of possible locations of the robot and all the orientation angles of the robot that would be assigned in the
flat POMDP. The size of the grid that defines the possible robot locations in the rPOMDP is established by determining the
largest possible location transition when a single action a is executed. This is due to the fact that the rPOMDP conveys the
transition and observation probabilities based only on the actual robot motion independently of the exact location of the robot in
the environment. The center location of the state space represents the invariant state s,. of the robot. The action and observation
spaces are defined in the same manner they would be defined for the original POMDP. This rPOMDP requires to hold transition
and observation matrices of size ((R x 22+t1)2 x |A|) and ((R x 22+L)2 x |A| x | Z|), respectively. The size of the matrices is
only dependent on the size of the set of actions and observations and the number of levels of hierarchy, L, since the number of
levels defines the discretization of the robot’s orientation angle.

Transition and observation probabilities for each POMDP in the hierarchical structure are obtained by translating and ro-
tating the reference transition and observation probability distributions over the current POMDP state space. The transfer of
probabilities is performed on-line while a POMDP is solved or the robot’s belief is updated.

The transition probability for any POMDP of the hierarchical structure, 7 (s, s’, a), is equivalent to the transition probability
of the IPOMDP, 7,.(s,, s.., a,-). The reference result state, s., is determined by the following equation:

xl, Xy —x
Yo | =1 v |+ V-y |
fr fr =1

where, the states s, s, s, and s/ are decomposed to the location and orientation triplets (z, vy, f), (z',v', f'), (z, Y», f-) and
(xl.,yl., f1), respectively. The reference action is determined by a, = a + f — f,.

In the same manner, the observation probability for any POMDP of the hierarchical structure, O(s, z, a), is equivalent to the
observation probability of the lPOMDP, O,.(s,., z,, a,.). The reference observation, z/., is now determined as:

s ~ps

dz, dcos(fr + a,)
dyr = dSin(fr + ar) y
df df

where the observations z and z, are decomposed into (dx, dy, df) and (dx.., dy,, df..), respectively, as observations are defined
as the position and angle difference between laser scans, and d is the distance d = \/dx? + dy?.

4 Comparison with other HPOMDPs

4.1 Comparison with the Theocharous approach

The Theocharous [15] approach uses a topological map of the environment where state abstraction in high levels of the HPOMDP,
has a physical meaning based on the environment. Thus, abstract states are manually defined such that they represent a corridor
or a junction.

The Theocharous HPOMDP has been used as a high-level planner where the POMDP is solved once to obtain the shortest
path to the goal position. As a result, the state space resolution is set to 2m? and the action space is discritized at a resolution of
90°.

The Theocharous approach, uses the MLS heuristic and has time complexity? between O(|S|7 N|.A|) and O(|S|2|.A|), based
on how well the HPOMDP was constructed. The time required to solve the proposed RN-HPOMDP, with the MLS heuristic,
is O((|S]/22(E=1))2), hence the complexity reduction of our approach is significantly greater and also is not dependent on any
quality measure of the hierarchical structure.

4.2 Comparison with the Pineau approach

In the Pineau HPOMDP approach [11], actions are grouped into abstract actions called subtasks. Subtasks are defined manually
and according to them state abstraction is performed automatically. States that have the same reward value for executing any
action that belongs to a predefined subtask are clustered. Observation abstraction is performed by eliminating the observations
that have zero probability over all state clusters for that actions belonging to a specific subtask.

2d is the depth of the tree and N is the maximum number of entry states for an abstract state.

59

Planning with the Pineau HPOMDP involves solving the POMDP defined for each action subtask, that are solved using the
exact POMDP solution method.

The HPOMDP proposed by Pineau does not have a guaranteed reduction of the action space and state space since it is
dependent on the action abstraction that is defined manually. The authors have performed experiments (real and simulated) only
for problems of high level behavior control. Hence it is not clear whether their approach of state abstraction could be applied to
the problem of the autonomous robot navigation in the context that we have defined or more importantly if it would perform as
well as the RN-HPOMDP does, since it has a guaranteed reduction of the state space that is equal to (\S |/22(L-1)) On the other
hand, the authors in [11] do not state how well their approach performs in terms of state space abstraction.

4.3 Approximation methods for solving flat POMDPs

Reference [4] presents a review of approximation methods for solving POMDPs. The complexity of the methods reviewed there
is in the best case polynomial to the POMDP size. Furthermore, one of the most recent methods for approximation is the Point
Based Value Iteration (PBVI) [9] method, where its complexity is again polynomial to the size of the POMDP.

All the above mentioned methods have been applied to problems where in the best case the POMDP comprised of a few
thousand states with an exception of the work in [12] where the POMDP is comprised of millions of states as with our approach
but it cannot be solved in real time. The problem we consider consists of many orders of magnitude larger state space. As
a result the reduction of the state space that the RN-HPOMDP offers and also the reduction of the action space is crucial to
its performance. Furthermore, since the proposed RN-HPOMDP is not restricted to a specific method for solving the underly-
ing POMDPs, a combination of an approximation method for solving a flat POMDP with the proposed hierarchical structure
improves dramatically its performance.

5 Experimental Results

In Table 3, the CPU time required to solve the proposed HPOMDP structure using the Voting heuristic for varying grid size
and number of levels is given, where as it can be observed with appropriate choice of the number of levels real time POMDP
solution is possible. It is evident from the results presented in Table 3 that the RN-HPOMDP is amenable to real-time solution
in problems with extremely large state and action spaces.

Table 3: Computation time required to solve the proposed HPOMDP.

No. of Grid POMDP size time No. of Grid POMDP size time

Levels size (sec) Levels size (sec)
5 5cm? |S| = 18,411,520 |A| =64 18.520 3 10em? |S| =1,150,720 |A|=16 201.210
5 10cm? |S| =4,602,880 |A|=64 00911 4 10em? |S] =2,301,440 |A| =32 16.986
5 15em? |S| =2,038,080 |A| =64 0426 5 10em? |S| =4,602,880 |A| =64 0911
5 20cm? |S|=1,150,720 |A| =64 0.257 6 10em? |S] =9,205,760 |A| =128 0.460
5 25cm? | S| = 734,976 |A| =64 0262 7 10em? |S| = 18,411,520 |A| = 256 0.411
5 30cm? |S| = 503,808 |Al =64 0251

The RN-HPOMDP has been tested extensively in a real world environment. The robot was set to operate for more than
70 hours in the FORTH main entrance hall shown in Figure 2. The environment was modeled with a RN-HPOMDP of size
|S| = 18,411,520, |A| = 256 and | Z| = 24, built with 7 levels. Experiments were performed in a dynamic environment where
people were moving within it. A sample path the robot followed to reach its goal and also performed local obstacle avoidance to
avoid a human is shown in Figure 2.

6 Conclusionsand Future Work

In this paper, a novel hierarchical representation of POMDPs for autonomous robot navigation has been proposed that can
be solved for the first time in real-time when an extremely large state space is involved and is memory efficient. Hence, the
RN-HPOMDP provides a unified framework for robot navigation that is able to provide the actual actions the robot executes
without the intervention of any other external modules. Our proposed hierarchical structure employs state space and action space

60

LR
i‘f:.::-rib—f‘*"“{t H wihd

(a) (b) (c)

Figure 2: The FORTH main entrance hall and avoiding a human to reach the goal position. The robot track is marked with the
black dots (e) and the human track is marked with the grey dots (e).

hierarchy. Memory efficiency is achieved by introducing the reference POMDP that holds all the information regarding motion
and sensor uncertainty. Our comparative experiments have indicated that our approach results in very efficient computation times
and manageable memory requirements for realistic environments. The RN-HPOMDP provides an approximate solution suited
for the robot navigation problem. Preliminary versions of the proposed RN-HPOMDP structure have already been applied for
predictive obstacle avoidance [2] and robot velocity control in dynamic environments [3]. Future work involves applying the
RN-HPOMDP into the multi-robot navigation problem.

References

(1]

(2]

(3]

(4]

(3]

(6]
(71

(8]
(9]

[10]

(1]

[12]

(13]

(14]

[15]

(16]

A. R. Cassandra, L. P. Kaelbling, and J. A. Kurien. Acting under uncertainty: Discrete bayesian models for mobile-robot navigation. In
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, 1996.

A. Foka and P. Trahanias. Predictive autonomous robot navigation. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots & Systems (IROS), 2002.

A. Foka and P. Trahanias. Predictive control of robot velocity to avoid obstacles in dynamic environments. In Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots & Systems (IROS), 2003.

M. Hauskrecht. Value function approximations for Partially Observable Markov Decision Processes. Journal of Artificial Intelligence
Research, 13:33-95, 2000.

L. P. Kaebling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable stochastic domains. Artificial Intelligence,
101(1-2):99-134, 1998.

J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

F. Lu and E. Milios. Robot pose estimation in unknown environments by matching 2d range scans. Journal of Intelligent and Robotic
Systems, 18:249-275, 1998.

I. Nourbakhsh, R. Powers, and S. Birchfield. Dervish an office-navigating robot. Al Magazine, 16(2):53-60, 1995.

J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for POMDPs. In Proc. Int. Joint Conf. on Artificial
Intelligence (1JCAI), 2003.

J. Pineau, N. Roy, and S. Thrun. A hierarchical approach to POMDP planning and execution. Workshop on Hierarchy and Memory in
Reinforcement Learning (ICML), 2001.

J. Pineau and S. Thrun. An integrated approach to hierarchy and abstraction for POMDPs. Technical Report CMU-RI-TR-02-21, Carnegie
Mellon University, 2002.

P. Poupart and C. Boutilier. VDCBPI: an approximate scalable algorithm for large scale POMDPs. In Neural Information Systems (NIPS),
2004.

R. Simmons, J. Fernandez, R. Goodwin, S. Koenig, and J. O’Sullivan. Xavier: An autonomous mobile robot on the web. Robotics and
Automation Magazine, 1999.

M. Spaan and N. Vlassis. A point-based POMDP algorithm for robot planning. In Proceedings of the IEEE International Conference on
Robotics & Automation (ICRA), 2004.

G. Theocharous. Hierarchical Learning and Planning in Partially Observable Markov Decision Processes. PhD thesis, Michigan State
University, 2002.

S. Thrun, M. Beetz, M. Bennewitz, W. Burgard, A. Cremers, F. Dellaert, D. Fox, D. Hahnel, C. Rosenberg, N. Roy, J. Schulte, and
D. Schulz. Probabilistic algorithms and the interactive musuem tour-guide robot minerva. International Journal of Robotics Research,
19(11):972-999, 2000.

61

IJCAI WorkshopReasoning with Uncertainty in Robotics, Edinburgh, Scotland, 30 July 2005

Speeding up Reinforcement Learning using Manifold
Representations: Preliminary Results

Robert Glaubius, Motoi Namihira, and William D. Smart

Department of Computer Science and Engineering
Washington University in St. Louis
St. Louis, MO 63130
United States
rlgl@cse.wustl.edu, mjnl@cec.wustl.edu, wds@cse.wustl.edu

Abstract

Reinforcement Learning (RL) has proven to be a useful set of techniques for planning under un-
certainty in robot systems. Effective RL algorithms for this domain need to be able to deal with large,
continuous state spaces, and must make efficient use of experience. In this paper, we present methods to
better leverage observed experience by reusing experience across parts of the problem state space that are
known to be similar. We present experimental results in a navigational, goal-based domain. We develop
an approach to identifying portions of the world that appear similar based on observed transition samples.

1 Introduction

Reinforcement Learning (RL) has proven to be a useful set of techniques for planning under uncertainty
in robot systems. Effective RL algorithms for this domain need to be able to deal with large, continuous
state spaces, and must make efficient use of experience. In previous work [5, 4] we have shown that a
value-function representation (VFA) scheme based on manifolds can effectively deal with continuous state
problems. In this paper, we briefly summarize this approach, and show how it can be used to make efficient
use of experience in large domains of the type typically encountered in robotics applications.

One particular hurdle in real-world domains in general, and robotics in particular, is the expense of
acquiring experience. Physical agents are subject to the cost of moving about in a real environment. These
experiences are also constrained to occur around the agent’s trajectory through the state space — the agent
may not arbitrarily sample the space without intervention.

However, one observation is that, particularly in navigation domains, much of the world behaves sim-
ilarly. Traveling down one corridor is much the same as traveling down another, and hitting a wall should
generalize between most walls. Continuous-state reinforcement learning does not handle these similarities
between topologically similar states, and the agent must learn a local policy from scratch for each.

In this paper, we use local features of the manifold representation to allow the reuse across many
states of experiences observed elsewhere during training. This extends our work on manifold-based value-
function approximation by incorporating synthesized experience into the training data. By “replaying”
experiences gained in one part of the world in other parts of the world that are similar, we expect to
approach a good policy more quickly, and to require fewer actual experiences.

2 Background

In the RL framework, an agent interacts with the environment by observing the current environment state
s, taking an actior, and observing the new state of the environm#mind a real-valued reward signal

The evolution of states is governed by the transition funciids,), which maps a state and action to a
distribution over possible next states.

62

One popular approach to solving RL problems is to estimatedvalue of each state-actidis, a)
pair. The optimal state-action value functiG)f (s, a) is the expected sum of rewards observed when
taking actiona from states and behaving optimally from then on. To obtain an optimal policy, the agent
simply chooses the action that maximizgsfor its current state.

The update equation shown in equation 1 is the Q-learning rule [17]. Iteratively applying this rule to an
initial estimate of the state action value function is guaranteed to converge to the optimal value function.
Each update is based on a samle:, r, s'), wheres is some initial statey is the action taken, andand
s’ are the observed reward and resulting state, respectively. The learninga@térols the contribution of
new experiences to the current estimate. The discount factoj0, 1] weights the effect of future rewards.

One interpretation of is that it is the prior probability of surviving to the next time step.

Qls,a) — (1=)Q(s, @) + alr + maxQ(s',)] &)

2.1 Related Work

Q-learning is guaranteed to converge only in the case of an exhaustive tabular representatio@ of the
function, making the application problems with continuous state a non-trivial problem. Many real-world
problems are most naturally modeled using a continuous state space; in this work we assume that the state
spacesS is a connected subset Rf.

Although VFA has is not guaranteed to converge in the general case [3], there have been several suc-
cessful applications reported, using a variety of function approximators. Tesauro used artificial neural
networks to represent the state value function for the game of backgammon, resulting in an expert level of
play [15]. Smart and Kaelbling used instance-based learning to represent the state-action value function
for robot control tasks [11]. Munos and Moore used an informed decomposition of the state space to ap-
proximate the state value function with a combination of simple function approximators [10]. Sutton has
successfully used tile coding approximators (often called CMACs [1]) in a variety of applications [12, 13].

Our VFA representation is most closely related to the tile coding approaches, in that it covers the
domain of the value function with overlapping patches, and learns a partial value function on each of them.
However, our approach takes the system dynamics into account when performing this covering, where tile
coding typically does not. The work by Munos and Moore is also similar, in that it divides up the domain
based on the system dynamics. They use non-overlapping states, however, and cannot make the strong
continuity guarantees that our manifold-based approach can make.

In previous work we have argued that a manifold representation is sufficiently general to describe
much of the existing corpus of methods for continuous-state value-function approximation in reinforcement
learning. In this paper we present a method for reusing experience in portions of the state space that are
similar, in the context of a manifold representation of the state space.

One way to view experience reuse is as a means to directly update the value of multiple states from one
experience. Boutilier and Dearden [2] aggregate states during the construction of decision tree represen-
tations of the value function. In this sense, two states are equivalent if they have the same, or nearly the
same, value. Our work differs in that it allows generalization between states where the system dynamics
are the same, but values may be different.

Other researchers’ work on exploiting the structure of the world has primarily focused on learning
temporally extended actions to speed up learning [16, 8]. Lane and Wilson [7] derived conditions under
which policies could be relocated in navigation tasks with relational domains. Our work differs in that
we exploit knowledge about parts of the world that behave in a similar fashion to more efficiently use the
experiences we have obtained.

2.2 Manifold Representations

In this section, we define precisely what we mean by “manifold”. Before giving the formal definition of

a manifold, we provide an intuition about the structure, and how it can be used constructively. Consider
an atlas of the world. Each page in the atlas has a partial map on it, usually a single country. Each of
these single-page maps can have a different scale, depending on the size of the country. This allows more

63

detail to be shown where it is necessary, without committing to representing the entire atlas at a particular
resolution.

The pages in the atlas also overlap with each other at the edges. For example, the map for France has
part of northern Spain on it. This provides a well-defined way of moving from one map page to another.
Notice that the maps may be at different scales, and may not line up perfectly. However, we can still
establish a correspondence between points in the overlap regions.

This method of using overlapping partial maps allows us to cover a complex surface (the surface of
the Earth) with a set of simpler surfaces (the individual maps). Each local map can be appropriate to the
local features, such as scale, and be topologically simpler than the global map. In the case of an atlas, we
are covering a sphere with a set of (topological) disks. We can define global features, such as distance, by
composing their local versions on each page, and dealing appropriately with the overlap regions.

We now make some definitions. Each map page in the above examptddstaThe collection of all
charts is thatlas The area shared by two adjacent pages istselap region The function on each chart
(for example, the elevation, or value function) is trebedding functian

Chart A homeomorphismpy from U C S to a disk inR?. A chart can be thought of as a local coordinate
system orlJ.

Atlas A set® of charts. The manifold is defined as the union of the chart domaitis; | J
In this work, ® will always be finite.

ped dOHl((p)

A manifold M is constructed by covering the state sp&cwith an atlas. Assuming that the chart do-
mains are selected appropriatelyt will represent the manifold structure of the state space. We refer the
reader to our previous work on methods used to construct a manifold representation given an RL problem
instance [5].

2.3 Manifolds for Value Function Approximation

The basic idea of using a manifold representation for value-function approximation (VFA) is to model
small, local value functions on each of the charts, then combine these local models into a larger global
model. This has a number of significant benefits, including the ability to explicitly model the topology of
the problem domain. Again, since VFA is not the focus of this paper, we will forego a detailed explanation
here, and refer the interested reader to our previous work [5] for more details.

It is important to note that our use of the term “manifold” is somewhat different from the one currently
in vogue in the machine learning community. Commonly in this literature, a “manifold” is the intrinsic
space that a collection of data points are drawn from. Usually this manifold has a lower dimension than
the space it's embedded in. Estimating the intrinsic dimension of the state space is not the focus of our
manifold representations. Our usage is similar to the application of manifolds to surface modeling in
computer graphics [6].

3 Speeding up Reinforcement Learning

The most relevant aspect of our value-function approximation scheme is the construction of a manifold
representation. This models the problem state space as a set of smaller, overlapping chart domains. A local
model, i.e., a function approximator, is embedded on each chart, and these local models are combined to
give a global representation of the value function.

We can use this manifold structure to make more efficient use of the experiences gathered during
training. Each of the charts covers an area of the state space that is locally self-similar. For many problem
domains, these charts will form equivalence classes, where members of the class cover parts of the state
space that are similar. For example, consider an empty room, with the robot state represented @s its
position. If we cover this domain with relatively small (compared to the size of the room) charts, there will
be intuitively three equivalence classes: “open space”, “wall”’, and “corner”. Each chart is a member of
exactly one of these classes.

64

goal

start

Figure 1: The experimental navigation domain.

We can define these equivalence classes according to the RL transition function over the charts. Two
chartsp; andy; are equivalent if the RL transition function, in their local coordinate frames, is “the same”
in both. What do we mean when we say that the transition function is the same across two charts? We
mean that the result of taking any actiondiom(;) moves the agent in the same direction, and the same
distance, as that same actiondp If we define equivalence in this way, we can reuse experience gathered
in one chart in any chart that is equivalent to it.

Chart equivalence with respect to the transition function alone does ignore one important detail. In
goal-based reinforcement learning, the reward function is tied to a region, or a set of regions. Any chart
domain intersecting one of these regions can not be equivalent to one that is not, since generalizing a
reward-bearing experience to a part of the domain that does not supply such a reward alters the problem
that we are trying to solve. In the rest of this work, it is assumed that each chart intersecting a goal region
is in its own singleton equivalence class.

Given this definition of equivalence does mean we have to revise our empty room example to include
more equivalence classes. Charts that do not overlap a wall may still be close enough to a wall that an agent
taking an action from inside that neighborhood may still strike a wall. This differentiates that particular
chart from, say, an “open space” chart that is farther from walls. For now, we can work around this issue by
restricting reuse only to experiencgsa, r, s’), wheres ands’ have at least one chart domain in common,

i.e., if there exists a charp such thats and s’ are both indom(yp), then that experience generalizes to
charts equivalent tg.

If we assume that all charts are the same size, and that there is a single source of non-default reward, ex-
perience reuse is straightforward. Suppose we observe the expgrieace s'), wheres, s’ € dom(p;).
Suppose that we also have a function that maps experiences frafiom ;) to dom(yp;) (in the case of
our uniform-sized charts, this is just a translation). Then, for each ghatjuivalent top;, we synthesize
the experience);; (s, a, r, s’), and update the local approximator naccording to the synthesized expe-
rience. If there are many charts in a particular equivalence class, this will lead to a dramatic increase in
learning speed.

4 Results

In this section, we present some experimental results to show the effectiveness of the techniques described
above. Our experiments were performed in a simple navigation domain. The agent starts in the lower right
corner of the world, and gets a reward of +10 for reaching the upper right corner, as shown in Figure 4. The
agent can move in the four cardinal directions, with a reward of -1 on every step that does not end at the
goal state. The state space of the problem is continuous, with two dimensions corresponding to the agent’s
(z,y) position.

In these experiments, the world is(@, 1) room with a wall with vertical width 0.05 dividing the
center.0.05 x 0.05 charts were placed uniformly across the environment, with adjacent charts overlapping
by 0.02. The local model on each chart is a single scalar value for each action. This chart allocation is
similar to a tabular discretization, except that adjacent cells overlap.

The chart equivalence classes are precomputed; in the next section we will discuss methods for com-
puting equivalence classes online. The only class of charts we consider equivalent in these experiments are

65

500 a00

T —+—No R

eo TR Wl b

E r‘Nw—ﬁw—mN,‘.‘.NN ﬁ)

a 400 g 400

i, ﬁ madll T . IR
200 \I b 200 "“ -
-'“'""ﬂllmmrmwrrrrrm|mwmmr H {ﬂ‘ et m%w HTHWHTHH
D T T I e T 000 a Hitasee LG

3:Tﬂria?5ﬂf:fﬂﬁ:zﬁﬁ "““"““””“ECTﬁrlalﬂlfﬁtieﬁnﬁﬂﬁ

Figure 2: Comparison of performance with and without experience reuse on 2-d (left) and 3-d (right)
navigation domains. Results are the mean of fifty experiments; 95% confidence intervals are shown.

the open space charts, i.e., charts that do not intersect any walls. There were 1225 total charts in the atlas,
979 of which were “open space” charts.

Experiments consist of a series of 250 trials. Each trial is terminated once the agent reached the goal
or after 1000 steps. The agent starts each trial from a random point in a small disc, as shown in Figure 4.
We compare the performance of an agent using experience reuse to one which does not. Value backups
for experiences observed along the agent’s trajectory were performed according to the SARSA update
rule [14], while synthesized experiences were backed up using the Q-learning update from Equation 1.

Figure 4 provides the results of our experiments. Experience reuse results in significantly better perfor-
mance than is observed when experiences are not reused. Two of the experiments with experience reuse
never found the goal; with these two outliers removed the performance in later trials improves from about
60 steps to to about 20 steps to reach the goal. In the no-reuse case, performance reached an expected 316
steps to goal about trial 250; 15 experiments without experience reuse failed to learn a good policy.

In our next set of experiments we increase the complexity of the navigational domain by incorporating
the robot pose into the world state. The agent can drive forward or backward, or turn left ofraghtd
radians then drive forward. The robot moves a maximum distance of 0.03 on each time step. The goal and
start positions are changed in order to increase the chance that the agent will find the goal. The goal region
is centered about = 0.5, y = 0.8, and starting points are selected from a disc alfo@t 0.2, %i).

The world is covered witl).08 x 0.08 x ?—g charts. Adjacent charts overlap by an extent of 0.04 in
thex andy directions, and7, radians along thé-axis. The total number of charts in the covering is 5013,

3437 of which do not overlap walls.

In these experiments we restrict ourselves again to experience reuse by translation of sample endpoints
only. Since two charts open space with disjofnintervals will not observe transitions with the same
orientation between initial and end point, we limited experience reuse to open space charts with the same
0 interval. We could clearly enhance the amount of reuse by taking into account that some charts many
charts in this domain are related by rotation as well as translation.

As the results in Figure 4 show, even this relatively naive implementation of reuse continues to signif-
icantly outperform the no-reuse case. The performance of each is much closer in the later trials in these
experiments. It is likely that admitting more extensive reuse would increase this margin.

5 Detecting similar charts

The results with experience reuse shown in the previous section illustrates the merit of this approach.
However, in practice it is unreasonable to expect that the agent has access to enough information about the
world to determine equivalence classegriori. The desired solution is to determine these equivalence
classes based on the agent’s interaction with the environment. In order to achieve this goal, we present a
chart similarity measure based on comparison of vector fields. In deterministic domains with continuous

66

090000000000000

00600000

°
500 00

006009000000009:
0 900900006009

400009
400009

5900 oo

o

So000s o
2338

Figure 3: Automatically detected charts similar to a selected chart. Left: the collection of stored samples’
initial points, and the selected chart. Center: Charts similar to the selected chart. Right: Charts dissimilar
to the selected chart.

dynamics, the transition functidfi(s, a) for any choice ot: induces a vector field off.

Recall that the divergenc® F'(x) for vector field F'(x) is Zle agg)_ Based on this notion, one
measure of difference between chapisand y; related byy;; is the squared difference in divergences,
whereA is the set of actions:

/ / [VT(s,a) — VT (1i;(s),a)]*dsda 2
a€A Jsedom(p;)

This gives us a measure that is rotation invariant. If we were to consider a more realistic version of the
navigation environment in the previous section, the robot might have available actions “turn right”, “turn
left”, and “go forward”, and state will be the pope= (z,y, #). In this case, two open space charts may be
related by a rotation as well as translation. For now we restrict ourselves to similar charts that are related

by translation, so we must amend our similarity measure to avoid rotational invariance.

/ / (V[T (s,a) — T(1ij(s),a)])*dsda 3
acA Jsedom(yp;)

In practice we do not have access to the system dynamics. We do have a set of transition samples
Ep = {€ = (s¢,a¢,7¢, 8¢) + s € dom(p)}. At each sample transitigh= (s¢, ae, ¢, s¢), we can compute
the divergencd’(s, a¢) directly in terms ofs; — s¢. Recasting Equation 3 for the sampled case, we get

D(gi, ;) = Y (VI[T(se, a¢) — T(tij(se),ae))® + > (VIT(W;; (se), ae) — T(se, ae)))* (4)

§EE,; §EE¢_7

This does present one problem, however; if we have a sagngle=,,, it is likely that we do not
have a sample rooted di;; (s¢), much less with the same actieg. In this case, some approximation
is needed; for this paper we use the samplec =, such thatae: = a¢ that minimizes the distance
d(se,¥i;(ser)). More sophisticated approximations than this nearest neighbor approach are possible, but
this straightforward approach appears to be sufficient in practice.

Figure 5 shows the set of charts similar to a selected chart in a manifold constructed from randomly-
placed fixed-size charts. The sample sets used for each chart were obtained by executing 30 800-step
random walks from a fixed starting point. In order to obtain an unbiased sample, the resulting sample sets
were subsampled on each chart by generating a set of 30 points uniformly at random on each; the nearest

sample to each point was retained. This was performed once for each action on each charty,Gimakts

. L D(pi, ok
¢, were considered similar b (p;, p;) < w

The figure demonstrates that, when the charts are well-sampled, the set of similar charts closely matches
our intuition. However, errors may occur when charts are under-sampled. For instance, in Figure fig:equivs,

67

-+ Correct —+ Correct
—=-False Positive —=- False Positive

seesEEsd
x‘ilglililliiii‘ !!‘!!;;;;gitlitttt‘l

i i sas¥

os 1+ False Negative §§§;§§!! o8 11— False Negatw; Eﬁ;;;uzz

o iﬂg‘fi 0 §ti§£;§

13 +

05 §§‘ii o s
o |* 1§ o it
o 54 -3 30
mos 1 mos T
e |t e th

r Y x
0.3 K:I‘.I 0.3 x
K“xt LY
0.2 LT 0.2 Ixt

T
Iy
01 A EEakggya,, S
Eﬁﬁ*! [T LTI LE L T T T T
0

nn
mm

Figure 4: Classification performance on two example chart classes with respect to a hand-coded algorithm.
Chart classes are open space (left) and bounded on the left by a wall (right).

we apply our similarity measure to an open space chart. However, some charts overlapping the upper wall
are found to be similar. This may be due to the fact that any observed samples with action “up” were from
an initial state near the bottom of the chart. Since such an action would not carry the agent all of the way
to the wall, the chart appears to be open based on the observed samples. As more samples are collected,
these misclassification errors should become less frequent.

Figure 5 compares the classification performance of this similarity metric against a hand-coded algo-
rithm for determining equivalence classes. Performance is shown for two chart types in the 2-dimensional
navigation domain — open space charts, and charts bounded on the left by a wall. Samples were collected
by running a series of random walk trials. In each trial, the agent is initially placed in a small disc in the
lower right-hand corner. The agent then performs a 1000-step random walk by selecting random actions.
At the end of each trial, the sample set on each chart was subsampled as described above, so that as many
as thirty samples per chart per action are retained.

The hand-coded algorithm for selecting equivalence classes groups charts that overlap a wall in the
same way, i.e., do not intersect a wall, or all charts that are bounded on the left and above by walls, etc.
This gives defines all of the obvious equivalence classes under translation. We do not expect the divergence-
based similarity measure to achieve perfect accuracy with respect to the hand-coded equivalence measure,
however. As was mentioned above, two charts that do not overlap a wall are still not necessarily equivalent
with respect to the transition function, as it may be possible to take an action that results in the agent hitting
a wall from one of the charts but not the other. The divergence measure is sensitive to this distinction, while
the hand-coded policy is not.

6 Conclusions

The results shown in Section 4 demonstrate that a substantial increase in learning speed can be obtained
from even a straightforward approach to experience reuse. Admitting a richer set of equivalence classes,
such as “wall” and “corner” classes would present more opportunities for experience synthesis. Of course,
as more charts are eligible for reuse, the cost of reuse increases. We have not discussed this cost up to this
point, as we expect the largest expense to be acquisition of the training data from the world.

A potential improvement that we have not considered in this work is the order in which chart models
are updated based on synthesized experiences. In the context of goal-based reinforcement learning, there
is a natural extension to the manifold representation that will allow appropriate ordering. By constructing
a graph with vertices corresponding to charts, with edges between overlapping charts, we can perform
updates on synthesized data backwards from the goal in a breadth-first fashion. This should speed up the
propagation of value back from charts containing the goal, and is similar to prioritized sweeping [9].

One limitation in our current experiments was the requirement that experience reuse only occurs for
samples whose start and endpoint share a chart. In Section 5 we described one approach to determining

68

more robust chart similarity that will allow the reuse of samples that do not satisfy this constraint. By
admitting a more complex relationship between samples on charts, we are likely to further increase the
potential for experience reuse, but will likely require a more complex similarity measure.

Finally, we have alluded to the possibility of allowing more general sample transformations between
charts. Thus far we have limited reuse to charts that are related by translation. We have seen a domain,
the 3-dimensional navigation domain, charts are naturally related by rotation. Extending our methods to
handle more general transforms will lead to more efficient reuse of experiences.

References

[1] J. S. Albus. A new approach to manipulator control: The cerebellar model articulation controller (CMAC).
Journal of Dynamic Systems, Measurement and Cqrgegjes 220-227, 1975.

[2] C. Boutilier, R. Dearden, and M. Goldszmidt. Stochastic dynamic programming with factored representations.
Artificial Intelligence 121(1-2):49-107, 2000.

[3] J. A. Boyan and A. W. Moore. Generalization in reinforcement learning: Safely approximating the value func-
tion. In G. Tesauro, D. S. Touretzky, and T. Leen, editdidyances in Neural Information Processing Systems
volume 7, pages 369-376, 1995.

[4] R. Glaubius and W. D. Smart. Manifold representations for value-function approximatiMiorking Notes of
the Workshop on Markov Decision Processes, AAAI 284 Jose, California, USA, 2004.

[5] R. Glaubius and W. D. Smart. Manifold representations for continuous-state reinforcement learning. Tech-
nical Report WUCSE-2005-19, Department of Computer Science and Engineering, Washington University in
St. Louis, 2005.

[6] C. M. Grimm and J. F. Hughes. Modeling surfaces of arbitrary topology using manifGoisiputer Graphics
29(2), 1995. Proceedings of SIGGRAPH '95.

[7] T. Lane and A. Wilson. Toward a topological theory of relational reinforcement learning for navigation tasks.
In Proceedings of the Eighteenth International Florida Artificial Intelligence Research Society Conference
(FLAIRS-2005)2005.

[8] A. McGovern, D. Precup, B. Ravindran, S. Singh, and R. S. Sutton. Hierarchical optimal control of MDPs. In
Proceedings of the Tenth Yale Workshop on Adaptive and Learning Sypeagas 186—-191, 1998.

[9] A. Moore and C. Atkeson. Prioritized sweeping: Reinforcement learning with less data and less real time.
Machine Learning13:103-130, 1993.

[10] R. Munos and A. Moore. Variable resolution discretization for high-accuracy solutions of optimal control prob-
lems. InProceedings of the Sixteenth International Joint Conference on Atrtificial Intelligence (IJCAP&§@s
1348-1355, 1999.

[11] W. D. Smart and L. P. Kaelbling. Practical reinforcement learning in continuous spacBsockedings of the
Seventeenth International Conference on Machine Learning (ICML-208@ks 903—-910, 2000.

[12] P.Stone and R. S. Sutton. Scaling reinforcement learning toward robocup so€recdrdings of the Eighteenth
International Conference on Machine Learning (ICML-2002001.

[13] R.S. Sutton. Generalization in reinforcement learning: Successful examples using sparse coarse coding. InD. S.
Touretzky, M. C. Mozer, and M. E. Hasselmo, editofglvances in Neural Information Processing Systems
volume 8, pages 1038-1044, 1996.

[14] R. S. Sutton and A. G. BartdReinforcement Learning: An Introductiodaptive Computations and Machine
Learning. The MIT Press, Cambridge, MA, 1998.

[15] G.J. Tesauro. Practical issues in temporal difference learMiaghine Learning8(3/4):257—-277, 1992.

[16] S. Thrun and A. Schwartz. Finding structure in reinforcement learningAdivaences in Neural Information
Processing SystemsMIT Press., 1995.

[17] C.J.C. H. Watkins and P. Dayan. Q-learnifgachine Learning8:279-292, 1992.

69

Symbolic Focused Dynamic Programming for Planning under
Uncertainty

P. Fabiani and F. Teichteil-Ko6nigsbuch
ONERA /DCSD, 2 Avenue Edouard-Belin 31055 Toulouse, FRANCE
(patrick.fabiani,florent.teichteil)@Qcert.fr

Abstract

This research addresses decision-theoretic plan-
ning with structured MDPs for the ReSSAC
autonomous exploration rotorcraft. We devel-
opped symbolic dynamic programming algo-
rithms for planning in large state spaces. The
requirements are to control the optimization
process, to enable reasoning at a higher level
of abstraction and to deal with both uncer-
tainty and non-Markovian historic dependent
rewards or goals. Decomposition and factoriza-
tion techniques are applied to exploration-like
Markov Decision Processes (MDPs), which are
structured in two components. A graph of enu-
merated states represents the navigation com-
ponent of the problem, as in gridworld MDPs.
A set of state variables describes, in a com-
pact and implicit way, the other features of the
problem, including the intermediate goals to be
achieved in sequence. A family of such prob-
lems, of small and large sizes, is used to com-
pare Heuristic Search Dynamic Programming
algorithms. The solution of an academic grid-
world exploration instance is explained. We
propose an original Symbolic Focused Dynamic
Programming scheme SFDP in which the opti-
mization time and the solution quality are con-
trolled by planning for a partial subset of se-
lected planning goals. Experimental results are
presented and optimality issues discussed.

1

This paper deals with planning under uncertainty for
the ReSSAC (http://www.cert.fr/dcsd/RESSAC) au-
tonomous exploration rotorcraft. A number of prelim-
inary computations are necessary before addressing the
planning problem. First the aircraft must be able of au-
tonomous flight and navigation. Next, navigation way-
points must be automatically generated from an a pri-
ori map like on Figure 1.a. Crests and valleys can be
computed on the a priori numerical terrain model, thus
leading to a partition into interest regions. Waypoints
are remarquable nodes of this partition.

Introduction

70

Transition trajectories between the way-points are
computed, optimizing time, energy consumption or per-
ception capabilities, between the way-points. A stochas-
tic exploration mission comprises both a problem of nav-
igation (a navigation graph and regions as in Figure 1) in
a partially known environment, and a problem of online
information acquisition.

Our algorithms are developped for planning in large
state spaces, with repeated- or single-achievement goals,
history-dependent rewards and costs. Several final, al-
ternative or intermediate goals may be given to the
agent. Some final goals, such as landing in a safe area,
must be achieved in all possible plans. Some goals, such
as exploring or searching a region, are the pre-conditions
to be achieved before seeking to realize further goals.
Some goals can only be achieved once, and other rewards
can be claimed repeatedly (e.g. refueling actions). A set
of ordering constraints between the goals O; < O;r can
be imposed: e.g. the agent must take information in
region R;, and transmit it to its ground control center
before proceeding with its navigation to the neighbour-
ing regions. Goals may be optional: the agent may reach
its final goal Oy either via the prior achievement of Oy,
or via O2. Some state transition probabilities, rewards
and goals are history-dependent: for instance the energy
consumption of a rotorcraft never pauses during flight
and its energy level A decreases over time.

An insufficient energy level can force the aircraft to
Abort its mission and return to its base, or to land on
an emergency or security crash base, which is associ-
ated with some possible penalties. Other features of the
probleme are partially observable, such as the true ter-
rain elevation map, or the wind : for instance, an es-
timation of both the ground relative height and speed
must be made during the approach phase and memo-
rized for a safe transition from cruise flight to landing.
This can be dealt with thanks to additional variables,
as it is well-known that taking into account part of the
state history can compensate for partial observability.
Such non-Markovian problems are commonly encoun-
tered for instance in autonomous robotic applications,
but not only. Planning in non-Markovian domains is
addressed in [1] by using a temporal logic in order to
generate the required additional variables.

Ry)

Figure 1: Navigation graph (a), navigation component of
the planning problem (b) and its corresponding abstract
decomposed MDP (c)

In the following, we propose an original Symbolic Fo-
cused Dynamic Programming (SFDP) heuristic search
dynamic programming scheme. We first give a brief
sketch of how our approach is related to recent work
in the domain. We then describe our approach, starting
with the combination of MDP decomposition and fac-
torization techniques. We propose different algorithms
implementing the SFDP scheme, some sub-optimal and
some optimal. We present our current results of com-
parisons with other algorithms, and discuss optimality
issues. Gridworld exploration MDPs are used for com-
parisons because they make it easier to generate large
scale problems as in [3]. Simple problems are used in
order to explain the approach and more complex ones in
order to demonstrate the scalability.

2 Sketch of our approach

Our work more generally applies to Decision-Theoretic
planning in large discrete state spaces, with repeated- or
single-achievement goals, history-dependent rewards and
costs. Such problems are generally described in factored
form by using Dynamic Bayes Nets (DBNs) [6], for the
description of probabilistic dependences between state

71

variables as shown in Figure 2. For instance, our ap-
proach and algorithms are applicable to all the PDDL 2
problems of the probabilistic track of ICAPS’04 planning
competition in which we participated. The efficiency of
factored representations is well-known [5]: in order to
reason at a higher level of abstraction as in [8], to deal
with non-Markovian processes as in [1] or to introduce a
state space hierarchical decomposition into sub-regions
as in [7]. Otherwise, classical Markov Decision Processes
(MDPs) [15] solution algorithms are based on an explic-
itly enumerated and unstructured state space. The size
of the state space is an exponential function of the num-
ber of features that describe the problem. The state enu-
meration itself may rapidly become untractable for real-
istic problems. More generally [4] provide an extensive
discussion on complexity and modeling issues. Other im-
portant contributions, such as the SPUDD library [13],
have improved the efficiency of factored MDP solution
algorithms, using decision diagrams, borrowed from the
Model Checking community. The influence of the mod-
eling structure in stochastic planning , and especially
the combination of both MDP decomposition and fac-
torization techniques has been thoroughly studied and
is presented with more details in [16].

R R
\ £
o) \ o)
0, O,
o8 o8
t t+1

Figure 2: Action networks and transitions of the abstract
MDP with the local policies of the region R;

We furthermore propose, for autonomous robotic ap-
plications, an original way of controlling the planning op-
timization process, by enforcing or relaxing constraints
on the specific mission goals to be achieved by the agent,
thus making it possible to reach different trade-offs be-
tween a better solution quality or a better optimiza-
tion time. SFDP borrows ideas from both symbolic
sLAO* [9] and sRTDP [10] algorithms, but adds the
original way of controlling the optimization process by
goal enforcement or relaxation. Otherwise, SFDP con-
forms, like sLA O*, with a two-phased scheme of planning
space expansion-and-optimization. This is not to be con-
fused with the general FIND-and-REVISE programming
scheme proposed in [2]. The planning space expansion is
based on a reachability analysis using the current pol-
icy and a set of planning goals. This expansion phase is
an deterministic implementation of the policy execution
step applied in sRTDP [10]. It can be implemented ex-
actly or approximately, for efficiency gains. In the exact
implementation, every trajectory ends on a goal state.

In the approximate reachibility analysis, an earlier and
easier stopping condition is added, thus leading to a sub-
optimal algorithm. The optimization stage is a dynamic
programming phase applied whithin the previously ex-
panded planning space: it is the expansion phase that
actually enables to focus more or less the search and
thus to control the optimization process.

3 Decomposition

The decomposition of an MDP is based on a state space
partition IT into non empty distinct regions. Enumer-
ated states are thus grouped into weakly coupled regions,
i.e. with fewer transitions between the exit and entrance
states of the regions. An abstract MDP [7] is then con-
structed, on the basis of macro-states resulting from the
decomposition into regions. For each region r, Sper(r)
is the set of the exit states of the region r :

={seS—-r/3ser,Jac A, T(s a,s)#0}

We found two main possible options for the definition
of macro-states. In [12], macro-states are proposed to
be the exit states of the regions, i.e. the state space
of the abstract MDP is U, Sper(r). In [7], macro-
states are the aggregate states of the regions. The first
model leads to possibly sub-optimal policies, because it
only considers strategies leading from a macro-state to a
different macro-state. This model does not allow a local
strategy to try and reach a local sub-goal by staying
within the same macro-states (absorbing macro-states
are not possible). This aspect of the problem lead us
to choose the second model for our exploration problem
(like in Figure 1). More generally, an abstract MDP [7] is
atuple (S, A', 7', R'). The actions of the abstract MDP
are then the local policies generated in each region and
the transitions in the abstract MDP are computed from
these local policies:

Sper(r

[] SI = U 1"’
rell
o A= U {nf,.. 7,),

o T’(T,W],r)and R'(r, %, 7'

) depend on a discounted
macro-transition modei

Though our decomposition model is borrowed from [7],
our decomposition algorithm is based on the techniques
proposed by [12] because they are more adapted to fac-
tored resolution algorithms. As a result, in our imple-
mentation, the macro- probability of transition and the
macro- reward from r to r’ applying macro-action 7} are
as follows:

° T(r,w}f,r') = m

> T(s,mj,s")

8’ €Sper(r)nr’ sET
1

L4 R(T77T;77'I) =17 ET(57W;731)'R(377§7$’)
|’f‘| s'€Sper(r)Nr! s€r
T(s,n7},s') and R(s,7,s') are iteratively computed via
a Gauss-Seidel value iteration algorithm [16]. As a re-
sult, the optimality theorems in [12] still apply in our
case with respect to local policies. Our local MDPs

(8", A", T", R"YMsespertr) are defined as follows:

72

S' = ruSper(r)U{a}, where a is an absorbing state,
[] A’ = A)

o T(s.a.s) = T(s,a,s') if(s,s') €r x (rUSper(r))
T(s,a,5) { 1 if (s, 5') € (Sper(r) U {a}) x {a}
R(s,a,s') if(s,s') € r x (rU Sper(r))
e R(s,a,s') = { A(s) if(s, s') € Sper(r) x {a}
0 if(s,s') € {a}?

For each combination of peripheral values, there is an
optimal local policy. However, a same local policy can
be optimal with different combinations of peripheral val-
ues. For each local MDP we generate the minimal set
of useful local policies, in the sense that at least one lo-
cal policy per region should match the global optimal
policy restricted to this region. The decomposition

R probability tree Reward tree
()

Rl/?z\ea 1 0
} /

Q 010 001 0 @
1 0 1 0

p(1-p)0 100 Vr(R) 0

Figure 3: R'™! probability and reward trees (from R;)

of the problem is motivated by optimization time con-
cerns. Work by [16] propose to factorize such problems
through a hierarchical decomposition into an abstract
factored MDP, and show the benefits of it in terms of
efficiency. [12] or [14] have proposed two candidate algo-
rithms for the computation of local policies during the
MDP decomposition step. According to [16] the latter
approach (LP by [14]) based on linear programming, is
the one that offers the better performances and flexibil-
ity. In order to take into account the fact that rewards
can only be obtained once, we have to adapt R. Parr
[14] algorithm to our problem. We need to optimize the
regions local policies conditionally to the status of the
goals of the region: in practice this limits greatly the
number of cases since the combinatorics is splitted into
the regions. In our simple example, we only have one
goal per region, which leads to optimize 2! sets of con-
ditional local policies per region : one if the local goal
has not been achieved yet by the agent, and one if it has
already been. The direct benefit driven from decompo-
sition comes from the fact that if there are k£ regions and
one goal per region, only 2k local policies are computed.
Without decomposition 2* global policies should be op-
timized. After the decomposition phase, the navigation
graph component of the gridworld exploration problem
is splitted into macro-states, each one corresponding to a
sub-region (see Figure 1.c), and combined with the other
orthogonal state variables. The resulting abstract MDP
isin a factored form and may be represented by Dynamic
Bayes Nets as in Figure 2. The state variable R stands
for the region, O;, Os and O3 stand for the goals, and A
for the agent energy level. For simplicity, we assumed a
binary energy level with constant consumption over the

regions, the function f giving the probability of “loos-
ing the minimal energy level” between two time steps:
f(R;, R;j,m) =[0.650.35] for all ¢,j and .

4 The good use of Decision Diagrams

Oi“ probability tree

O

Ry Ry R;

4
@ 01 01 10
1 0 R, Ry
A

p(l-p) 01 f(Ry, Ryym) f(Ry, Rpym)

AT probability tree

10

Figure 4: O'™' and A**! probability trees (from R;)

Our concern about encoding efficiency is related to
the optimization time issue in our research context. In
DBNs, the transition probabilities and rewards are rep-
resented by Conditional Probability Tables, i.e. large
matrices, one for every post-action variables. However,
these probability and reward tables are sparse in most
problems and can be encoded in “decision trees” as in [5],
or as “algebraic decision diagrams” (ADDs) as in [13].
Figures 3 and 4 respectively show instances of transition
probability trees (vectors at the leafs) and transition re-
wards trees for the macro-actions of our instance of ab-
stract MDP. For each post-action variable state, every
leaf of the probability tree stores a list containing the
probabilities to obtain every possible value x§+1 of this
variable, knowing the values of the other variables z7, z%,

2/t along the path oA (Ajz; (zf A 2%t)) from the root
of the tree to the considered leaf. The Figure 3 expresses
the fact that, in order to obtain the reward associated
with a given goal, this goal must not be already achieved
and the agent must first reach the corresponding region
with a sufficient energy level. Goals in the other regions
cannot be achieved from “outside” and the correspond-
ing decision tree is equivalent to a NO-OP. ADDs offer
the additional advantage that nodes of a same value are
merged, thus leading to a graph (see Figure 5) instead of
a tree. After testing and comparing Decision Trees and
ADDs implementations of our policy and value iteration
algorithms, the conclusion was that ADDs offer a much
more efficient encoding, even if they are limited to use
binary conditions: some state or action variables may
have to be splitted into several binary variables to fit
in the model. As a matter of fact, state variables with
large range of values considerably increase the compu-
tation time necessary in order to solve factored MDPs.
This is either due to the width of the corresponding trees
when using Decision Trees, or otherwise due to the num-
ber of binary variables required when using ADDs. It is
moreover noticeable that position or navigation variables
typically take a large number of possible values. This is
another way of getting convinced that it is a good idea to

73

decompose the navigation component in our exploration
problem into fewer more abstract aggregate regions.

\\ ///
Figure 5: Optimal policy ADD (MDP of Figure 2)

Solution algorithms for factored MDPs using ADDs
are based on simple algebraic and logical operations such
as AND, OR, PRODUCT, SUM, etc. Some technical-
ities specific to ADDs are explained in [13], especially
with respect to the implementation of value iteration in
SPUDD, on which our own value iteration algorithms are
based. The development of the policy iteration versions
of the compared algorithms demanded to apply some
similar technicalities: in order to improve the efficiency
of our algorithms, we apply for each action a mask BDD
on the complete action diagram ADD and the reward
ADD of the action, representing the states where the ac-
tion can be applied. Furthermore, BDDs and ADDs are
restricted to the current reachable state space in order
to save memory and to speed up the ADD operations.

Init

Ry < Reachable(I, A, G)

IIp < ShortestStochasticPath(Ro — G)

So + FilterStates(Ro, P(s) < € - P(I))
- (Ho, So)

k<0

repeat
Sk+1 < Reachable(Sk, i, 1 step lookahead)
PolicyIteration(Ilx, Sk+1)
k+k+1

until convergence over Sy

Figure 6: sLAO* Policy Iteration

5 Symbolic Heuristic Search Dynamic
Programming

The sLAO* algorithm [9] is the symbolic version of
LAO*[11]. We implemented the sLAO* policy iteration
algorithm shown in Figure 6, where the generic function
Reachable is applied from S}, at each iteration, using ac-
tions from the current policy I, with 1 step lookahead.

Note that Sy in sLAO* is always supposed to grow,
which in that context gives sLAO* the same guaran-
tee of optimality as sLAO* [11] : when the algorithm
converges, every trajectory followed in S; by applying
the current policy is ending on a goal state. Symbolic
heuristic search dynamic programming algorithms seem
to conform to a common two-phased scheme, shown in
Figure 7:

e a first planning space expansion and heuristic
computation phase,

e a subsequent dynamic programming phase.

It constitutes our common algorithmic basis for devel-
opment, testing and comparison of different heuristic
search dynamic programming algorithms that conform
to it such as sLAO*[9] and sRTDP [10].

Init

Ry < Reachable(I, A, Q)

Iy < ShortestStochasticPath(Ro — G)

So + FilterStates(Ro, P(s) < € P(I))
S (Ho, Vo, So)

k<0

repeat
Sk+1 < Reachable(I, Sk, i, G)
DynamicProgramming(Ilg, Vi, Sk+1)
k+—k+1

until convergence over Sy

Figure T7:
Scheme

Heuristic Search Dynamic Programming

One strong idea is simply that the algorithm cannot
apply dynamic programming on the full state space be-
cause this is untractable. The working space is thus care-
fully extended at each iteration, keeping it small but still
sweeping the full state space. Heuristic computations,
such as the proposed shortest stochastic path analysis in-
tervene in this first phase, essentially to provide an ad-
missible estimation of the value function or equivalently,
a default policy on the border of the planning space. The
“planning space expansion” phase enables to control the
optimization process. sLAO¥*incrementally augments its
working space until the expanded state spaces and the
policy converge. We call Reachable(I,1I 4, Stop) a func-
tion that takes as inputs the sets of initial and goal states
I and G, uses the set of applicable actions T4 C A (IT4
can be a policy or A itself) and computes the set Ry of
all the states that are reachable from I with successive
applications of deterministic actions in 4 in an iterative
loop that stops as soon as the Stop condition is reached
: e.g. Stop can be G C Ry or 1steplookahead. The
actions are made deterministic by setting the maximum
transition probability to 1 and the other one to 0, which
enables us to convert the ADDs into BDDs (Binary De-
cision Diagrams) that are more efficient. The idea here
is that the planning space expansion is controlled via
the Stop condition, linked to the achievement of specific
planning goals.

74

At this stage, we can at the same time compute an
initial heuristic policy (or value function) and reduce
— if possible — the initial reachable state space. We
call ShortestStochasticPath(Ry — G) a function that
takes Ry and G as inputs and computes a shortest
stochastic path from every state in Ry, using stochas-
tic actions from A without their rewards. Better sim-
plification schemes should certainly be studied, but
this heuristic seems efficient in many problems, such
as navigation grid MDPs in [11] and in [3]. We call
FilterStates(Ro, P(s) < € - P(I)) a filtering function
that filters the states that have a very low probability
of reachability when the non-deterministic actions are
applied along the shortest path trajectories. Low proba-
bility of reachability is assessed compared to the proba-
bility of the initial states. Stochastic reachability filter-
ing seems very comparable in its results, with the effect
of random sampling in LRTDP [3].

During that stage the solution of the MDP is op-
timized on the current reachable state space . The
expansion of the current reachable state space results
from the function Reachable, applied either from I
(RTDP) or from the previous reachable state space
(sLAO%*). The DynamicProgramming function of the
main algorithm (see Figure 7) can be Valuelteration or
Policylteration. We used the latter during the compe-
tition since it seems to be more original and sometimes
more efficient than the former.

6 SFDP and sLAO*

Init

Ry < Reachable(I, A, G)

Il « ShortestStochasticPath(Ro — G)

So + FilterStates(Ro, P(s) < €- P(I))
E (Ho, So)

k<0

repeat
Sk+1 < Reachable(I,1Ix, G)
Policylteration(Ily, Sk+1)
k<—k+1

until convergence over Sy

Figure 8: SFDP Policy Iteration

SEFDP Policy Iteration is implemented by the algo-
rithm shown in Figure 8: the generic function Reachable
is applied from the initial state set I at each iteration,
using actions from the current policy I, until G is
reached. As a matter of fact, the working space S}, of
SFDP is absolutely not guaranteed to grow : on the con-
trary, SFDP has been designed to focus on coherent parts
of the state space. As a consequence, SFDP will not give
the optimal solution to the problem, rather the “short-
est solution”, unless SFDP is compelled to visit all the
rewards of the state space because all the rewards of the
problem have been given as planning goals constraints
prior to the optimization.

7 Experimentations

We conducted our experiments on gridworld exploration
problems inspired from the example shown in figure
1.b. The number of nodes of the navigation graph is
45x45=2025 and the total number of states grows ex-
ponentially in the number of additional state variables
grows with the number of goals, regions in the problem
(+1 for the energy level).

We present a comparison of six algorithms that have
been implemented on the basis of the SPUDD/VT value
iteration algorithm: 1.SPUDD/VI - 2.SPUDD/PI -
3.sLAO/VI - 4sLAO/PI - 5.SFDP/VI — 6.SFDP/PL
Note that the algorithm number 4 participated in the
ICAPS’04 competition but it was not as mature as today.
We present results obtained with stochastic exploration-
like problems because they are closer to our research
projects than the competition problems. Yet, the com-
plexity of such exploration problems is comparable with
the ICAPS’04 probabilistic track competition problems.
We have compared the solution quality of SFDP poli-

35y B B o a

0 1 2 5 8 9
Number of goals to achieve (diagonal trip)

Figure 9: SFDP Solution quality (Value at starting
point) compared with sLAQ* while increasing the num-
ber of planning goals to achieve

cies when a growing number of constraints are imposed
on both algorithms concerning the planning goals. It
appears that SFDP appears as much more sensitive to
goal constraints than sLAO* Imposing on SFDP to
achieve ALL the goals leads the algorithm to behave
like sLAO¥*, continuously extending its planning space
without focusing, as long as the corresponding problems
remains tractable. On the contrary, sLAO* tends to try
and reach all the rewards and goals of the problem even
when it is not asked so. The corresponding computation
time grows in proportions with the number of combina-
tions of alternatives.

We have similarly compared the computation time for
sLAO* and SFDP on problems of growing complexity
(varying the starting and goal points). The conclusion
is that SFDP, still finds quite quickly (sub-optimal) so-
lutions for the most complex problems that we could de-
compose in reasonable time (248s) and without swapping
, which corresponds to the diagonal trip. By contrast,
sLAO* cannot give any answer after more than one hour
on the fourth problem. Such comparison should be ana-

75

10000 4

B B —a— &
@ SPUDDNVI
o SPUDD/PI
v SFLAONVI
A SFLAO/PI
» SFDPNVI

< SFDP/PI

1000+

100 4

:

.4

Elapsed time (in seconds)

9s/r,9r, % d.t.
9s/r,9r,d.t A
81s/r,9r,d.t
sin 17 % d.t. o
9sfr, 171, d.t. o
81 s/, 17 r,d.t. -

81s/r,9r % dt o
98/ 171, % dt. o
9s/r 171, % d.t. o
81s/r, 171, % d.t. q
81s/r17r, % d.t. 4
81s/r,17r, % d.t.

o

Number of states per region, Number of regions, length of trip (d.t. = diagonal trip)

Figure 10: SFDP Solution time compared with sLAQO*
and SPUDD for different starting points

lyzed carefully: SFDP cannot be considered as “better”
nor “preferable” on the basis of this comparison. On the
other hand, Figure 9 shows that it is possible to estab-
lish a quality response profile for SFDP on some classes
of problems. The quick answer given by this algorithm
could be reused in order to initiate an admissible heuris-
tic policy, or value function for another algorithm.

8 Faster solution, weaker value

Following the previous ideas, another version of the fo-
cused dynamic programming scheme was developed by
weakening the stopping condition of the Reachable func-
tion. The new stopping condition holds as soon as at
least one state is reached where the required goal
conditions are achieved. This new stopping condi-
tion is obviously weaker and the new algorithms, called
sfDP and sfLAQO still follow the schemes respectively pre-
sented in Figure 8 and 6, but with the new Reachable
function. The sfDP and sfLAQ algorithms are not opti-
mal with the present stopping condition that is applied.
They however show interesting properties in terms of in-
cremental behavior, as shown in Figures 11 and 12.

1000

100+

@ SPUDDVI
* SPUDD/PI
v sfLAO/VI
4 sfLAO/PI
» sfDP/VI
< sfDP/PI

Elapsed times (in seconds)

0.1

T T T T |
9s/r,9r 81s/r,9r 9s/r17r 81s/r 171 9s/r, 251 81s/r,251

Number of states per region / Number of regions (diagonal trip)

Figure 11: sfDP and sfLAO optimization time while in-
creasing the problem size

Experimental results presented in Figure 13 show that
sfLAO finds better solution than sfDP, with similar com-
putation times. Interestingly enough, sfLAO still shows

N

< SILAO (%s)
— » siDP (%s)
v SILAO (%1)
a sfDP (%)

Percentage of reachable states

<75 — B S

— =
—a

el I

—

-100
9s/r,9r

T T T T +
81sir,9r 9s/r 171 81sir, 171 9sir, 251 81s/r,251
Number of states per region / Number of regions (diagonal trip)

Figure 12: Percentage (%s) of explored reachable states
and variation (%r) for sfDP and sfLAO

35
32,54
 SILAO/PI
309 * sIDP/PI
27,5 AN
254 O
2254 N N
20 N IS
17,54
154 >
12,54 \\\\
104 .
75 -
5
2,5

Value of the initial region

T T T T |
815,91 9sin 171 81sir 171 9sir, 251 81sir, 251
Number of states per region / Number of regions (diagonal trip)

0
9sir,9r

Figure 13: sfDP and sfLAO Solution Quality (Value at
starting point) while increasing the problem size

the same behavior exhibited with SFDP: the solution
quality grows with the number of goal conditions im-
posed up to the optimal solution. As a consequence, the
computation time required in order to obtain the opti-
mal solution is also a growing function and reaches the
elapsed time obtained with sLAO*, as shown in Figure
11. As a matter of fact, we used this idea to develop an
incremental version of both sfDP and sfLAO algorithms,
with respectively the IsfDP and IsfLAO algorithms that
are described in Figures 14 and 15. Experimentations

L,y <— List of subgoals to achieve
So +— I
n +— 1
while L,; non empty do
I, «— Snh_1
Gn <— head of Ly
Sp «— SFDP(I,,Gnr)
remove head of L,
n+<—n+1
end while

Figure 14: ISFDP algorithm for on-line planning

shown in Figures 16 and 17 show that IsfDP clearly out-
performs IsfLAQ. Previous comparisons [16] between
LAO*-like algorithms and RTDP-like algorithms have
shown that LAO* would be better when the problem
topology is “open” and RTDP-like algorithms would be

76

Whole state space

Whole state space

L

Reachable state

Reachable state space
sLAO” SRTDP
Whole state space Whole state space
Reachable state space Reachable state space

sfDP

IsfDP

Figure 15: Reachable state spaces of sLAO*, sRTDP,
sfDP and IsfDP

1000

0 SPUDD/PI (reference)
< sfLAO/PI

» sfDP/PI

v ISFLAO/PI

4 ISfDP/PI

100

Elapsed time (in seconds)

Number of goals to achieve (diagonal trip)

Figure 16: sfDP, IsfDP, sfLAO and IsfLAO optimiza-
tion time compared with SPUDD while increasing the
number of planning goals to achieve

more efficient in “corridors”. Both heuristic schemes lead
to limit the size of the explored state space before con-
vergence. SFDP algorithms can combine both, as shown
in figure 15 and rapidly improve the quality of the solu-
tion but does generally not lead to an optimal solution
because of the earlier stopping condition in the reachabil-
ity analysis. However, the proof of optimality of LAO*
[11] would still apply to SFDP if and only if : the termi-
nal states of every trajectory in the state space resulting
from the expansion phase ends in a goal state. This is
verified if and only if we apply the stopping condition
of sfLAQ in the last expansion phases of the algorithm,
which show that a true optimal algorithm can be derived
from IsfDP with the following condition: the expansion
phase stops when the reachable state stabilizes, indepen-
dently of the reached or unreached goals.

9 Conclusion

We have presented our approach for planning under un-
certainty for autonomous rotorcaft. From the point of
view of real robotics implementations, we will also con-
sider the influence of the initial phase of building of the
navigation graph, since it is also possible to directly gen-
erate some of the local policies during this phase. This
option could lead to efficiency gains.

We have proposed an original algorithmic scheme

o r = >4 4
34+
S 331
k=)
0 324
© 314
< 30
) 1) SPUDD/PI (reference)
< 294 « sfLAO/PI
= > SfDP/PI
o 284 y v ISfLAO/PI
g 277’ A IsfDP/PI
©
> 26
25
24 - T T !
1 2 5 8 9
Number of goals to achieve (diagonal trip)
Figure 17: sfDP, IsfDP, sfLAO and IsfLAO Solution

Quality (Value at starting point) compared with SPUDD
while increasing the number of planning goals to achieve

SFDP for which the optimization time and the solution
quality can be controlled through the definition of plan-
ning goals constraints. The design of SFDP, and the
principles of the proposed underlying focused dynamic
programming scheme, meet the challenges of planning
under uncertainty in large state spaces for autonomous
systems that rather need a current solution quite rapidly,
and an optimal one if possible. Goal conditions can
be adapted off-line or on-line, thus opening interesting
directions for future work on decision under time and
ressources constraints. This is particularly interesting
in our application perspectives on autonomous aircraft.
Among possible perspectives, we will consider carefully
deriving an on-line version OSFDP that would adjust
on-line the number of goal constraints to satisfy in re-
sponse to the available time for finding a solution to the
problem. We will also consider the coupling of SFDP
with a higher level optimization controller in order to
reuse the sub-optimal solution obtained with SFDP in a
higher level optimization process. This was shown in the
development of the incremental IsfDP algorithm, based
on sfDP, an even faster, but weaker, version sfDP of the
focused dynamic programming scheme. sfDP presented
that quickly finds solution in larger problems. The incre-
mental version IsfDP incrementally improves the current
solution thanks to iterative calls of sfDP with an increas-
ing list of planning subgoals to be taken into account. We
have compared all these algorithms on a set of problems
of different sizes. We will now develop an optimal ver-
sion of the focused dynamic programming scheme, that
would provide rapidly a current solution even on large
state space problems, but would improve it up to the
optimal solution as time is available.

References

[1] Fahiem Bacchus, Craig Boutilier, and Adam Grove.
Structured solution methods for non-markovian de-
cision processes. In Proceedings 1/th AAAI pages

112-117, Providence, RI, 1997.

Blai Bonet and Hector Geffner. Faster heuristic
search algorithms for planning with uncertainty and

[2]

77

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

full feedback. In IJCAI pages 1233-1238, Acapulco,
Mexico, 2003.

Blai Bonet and Hector Geffner. Labeled rtdp: Im-
proving the convergence of real-time dynamic pro-
gramming. In Proceedings 13th ICAPS 2003, pages
12-21, Trento, Italy, 2003.

Craig Boutilier, Thomas Dean, and Steve Hanks.
Decision-theoretic planning: Structural assump-
tions and computational leverage. J.A.LR., 11:1-
94, 1999.

Craig Boutilier, Richard Dearden, and Moises Gold-
szmidt. Stochastic dynamic programming with fac-
tored representations. Artificial Intelligence, 121(1-
2):49-107, 2000.

Thomas Dean and Keiji Kanazawamodel for reason-

ing about persistence and causation.Computational
Intelligence,5(3): 142-150, 1989.

Thomas Dean and Shieu-Hong Lin. Decomposi-
tion techniques for planning in stochastic domains.
In Proceedings 14th IJCAI pages 1121-1129, San
Francisco, CA, 1995.

R. Dearden and C. Boutilier. Abstraction and ap-
proximate decision-theoretic planning. Artificial In-
telligence, 89:219-283, January 1997.

Zhengzhu Feng and Eric Hansen. Symbolic heuristic
search for factored markov decision processes. In
Proceedings 18th AAAI pages 455-460, Edmonton,
Alberta, Canada, 2002.

Zhengzhu Feng, Eric A. Hansen, and Schlomo Zil-
berstein. Symbolic generalization for on-line plan-
ning. In Proceedings 19th UAI, pages 209-216, Aca-
pulco, Mexico, 2003.

Eric A. Hansen and Zilberstein Shlomo. Lao*: A
heuristic search algorithm that finds solutions with
loops. Artificial Intelligence, 129:35-62, 2001.

Milos Hauskrecht, Nicolas Meuleau, Leslie Pack
Kaelbling, Thomas L. Dean, and Craig Boutilier.
Hierarchical solution of markov decision processes
using macro-actions. In Proceedings 14th UAI
pages 220229, San Francisco, CA, 1998.

Jesse Hoey, Robert St-Aubin, Alan Hu, and Craig
Boutilier. Optimal and approximate stochastic
planning using decision diagrams. Technical Re-
port TR-2000-05, University of British Columbia,
10 2000.

Ron Parr. Flexible decomposition algorithms for
weakly coupled markov decision problems. In Pro-
ceedings 14th UAI, pages 422-430, San Francisco,
CA, 1998.

Martin L. Puterman. Markov Decision Processes.
John Wiley & Sons, INC, 1994.

Florent Teichteil-Konigsbuch and Patrick Fabiani.
Influence of modeling structure in probabilistic se-
quential decision problems. RAIRO Operations Re-
search, to appear, 2005.

	Binder3.pdf
	Binder3.pdf
	4-kaupp_rur05.pdf
	4-kaupp_rur05.pdf
	Introduction
	Operators in Sensor Networks
	Offline Creation of the Human Sensor Model
	Calibration Experiment
	Probabilistic Human Sensor Model

	Online Usage of the Human Sensor Model
	Online Learning Algorithm
	Parameter Learning for a Gaussian Density
	Efficient Adaptation
	Model Adaptation of the HSM for Range

	Conclusions and Future Work

