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Abstract— Partially Observable Markov Decision Processes previous work on applying POMDPs for robot localization
(POMDPs) offer a powerful mathematical framework for — and navigation [18], however, this work did not leverage
making optimal action choices in noisy and/or uncertain en- hage recent POMDP solution methods. For these tasks, the

vironments, in particular, allowing us to merge localization del i ted by di tizi environment man. Two
and decision-making for mobile robots. While advancements model IS created Dy discretizing an env p. Tw

in POMDP techniques have allowed the use of much larger Popular methods used for map discretization are topolbgica
models, POMDPs for robot navigation are still limited by maps and metric maps [4]. For a POMDP model, the decision
large state space requirements for even small maps. In this to use either a topological or a metric map is crucial, since
work, we propose a method to automatically generate a ne map decomposition will strongly affect the quality oé th
POMDRP representation of an environment. By using variable . . . . .
resolution decomposition techniques, we can take advantage of solutlpn and the reqmred planning tlme. Topologlg:al maps
characteristics of the environment to minimize the number of ~are high level abstractions of an environment, which allow
states required, while maintaining the level of detail required navigation with a compact model. Metric maps discretize the
to find a robust and efficient policy. This is accomplished by environment spatially, using a set pattern such as a fixed gri
automatically adjusting the level of detail required for planning The primary contribution of this paper is the application
at a given region, with few states representing large open - . " -
areas, and many smaller states near objects. We validate this Pf variable resolution decomppsmon techniques to autema
algorithm in POMDP simulations, a robot simulator as well as ically produce a POMDP which can be solved to achieve
an autonomous robot. a robust solution to the robot navigation task. By using a
variable resolution decomposition, the spatial discaifin
I. INTRODUCTION of a given map can be generated automatically, and this
Autonomous mobile robots are increasingly ubiquitousvill work with any sensor-built map. The variable resolutio
in society. Two of the major challenges in robotics arelgorithm presented here has the advantages of both topo-
localization and navigation. Localization is the proce$s dogical maps and metric maps. It is able to take advantage
estimating the robot pose from sensor readings. While locadf the regular structure of indoor environments. This is
ization algorithms are becoming increasingly sophistidat done by identifying open spaces and abstracting them into a
the task can still be challenging due to noise from sensorsmall number of states which represent large areas such as
actuators and the environment. The robot navigation taskoms and corridors. Conversely, areas near objects os wall
is to determine a path from one robot pose to anotheget represented with a higher number of states. These are
Navigation techniques often assume the pose of the robiypically areas which require more detailed plans. Overall
is known and do not take the localization uncertainty intehis results in a smaller model with low resolution in large
account. Such systems use heuristics to ignore the uncempty spaces and high resolution in dense spaces. The
tainty, such as simply assuming the robot is located at thresulting POMDP model is superior for robot navigation.
most likely pose [26], or using voting techniques [24]. ThusThe high resolution discretization gives the robot higher
many robot navigation algorithms will disregard poteryial precision near objects, giving the robot the ability to gate
useful localization information. By taking such localizet effectively. Additionally, the reduced state space sizi cut
uncertainty into account, a robot might take more usefudown the planning time dramatically, requiring the robot to
long-term actions. For example, in cases of high uncestainttake less time to construct plans, or improved plans for a
the robot may choose to behave more pessimistically dixed amount of planning time.
possibly choose to take information gathering actions. To
achieve this, one popular model is the Partially Observable
Markov Decision Process (POMDP). Having robust and accurate robot navigation algorithms is
POMDPs are probabilistic models for decision-making crucial element of a fully autonomous robotic system, and
in stochastic domains. In recent years, a number of motes been a long term goal for robotics [8], [9]. One algorithm
efficient approximate algorithms have been developed wf note is the D* [23] algorithm, which focuses on creating
solve POMDP problems [13], [16], [19], [22]. There has beemwptimal plans when the environment is only partially known.

Il. RELATED WORK



Related algorithms have become more refined to work in I11. BACKGROUND
more difficult environments [28]. However, in a real robotics  overview of POMDPs

system, applying a classical navigation technique in tgola The POMDP framework is a generalized model for
is not enough, due to uncertainty in robot pose and noisg

motion dvnamics. For robust naviaation. localization m lanning under uncertainty [20], and is the partially
otion dynamics. -or robust navigation, locallzatio US8bservable analogue of the Markov Decision Process

be applied. rT%MDP) [2]. A POMDP can be represented as a tuple

in Tgﬁgia?resse\éerrzl colaslsaersf:rljn_rlob;tklj%(;?]|zae:_tcl)onna?lg0cr)ir;h %‘, A,0,T,Q, R,v,by), whereS is a (finite) set of discrete
Iusgs KaImL;n .filtersp[S?u[G] Whli)(ih estimZtelthe gosteriorStateS’A 's a (finite) set of actions, and is a (finite) set
distribution of robot pos,e us,ing Gaussians Anothepr pcrpulacl)f observations, which provide incomplete or noisy state
class of algorithms are particle filters [3], [27]. Partifileers, information. The POMDP is further parameterized by:
or Monte Carlo Localization, represent the belief about the ) )

robot's pose through a set of weighted samples, or particles ~ 7'(s;a,s") = P(si11=5'[s; = s,a; = a),

The particles are drawn from the posterior distributionhef t Qo,5',a) = P(ogy1 = o|si11 =5, a; = a),
robot's pose. Some_ adv_ant_age_s of particle f||te_zr§ are tieat tvvhereT(&a, ') is the transition model, which describes the
shape of the posterior distribution has no restrictiony e

A ) . 2 probability of transitioning tos’ when the agent is in state
flexible in handling a variety of sensor characteristicisao ; ; . .
s and undergoes actiom, and(o, s’, a) is the observation

and movement dyn_amlcs, and they are casy 0 |mlplement. odel which describes the probability of receiving the ob-
POMDPs are an ideal model for representing enwronmengg

for robot navigation due to their ability to represent thé ervationo after taking actioms and ending in state’.
or robot navigation gue fo their abiiity 1o represent tesgo —— pq functionR(s,a) € R is the reward for taking action
motion dynamics and noisy sensors. POMDP navigation was

: ) . : @ in states, v € [0, 1] is the discount factor, antl, denotes
implemented on the Xavier robot [7], [17]. While this Worka distribution over start states.

was able to successfully use the POMDP model to localize Under the POMDP framework, the agent has no direct
the robot, heuristics were used to handle the nav'gat'oﬂnowledge of the current state. Instead, it must rely on

due to the size of the model. In this case, topological MalShservations for decision making. For the agent to make
were used, where the states represented rooms and sectlg ect decisions, it summarizes its history into a belief

of corridors. Roy and Thrun [14] did not use a POMDPstateb, whereb is a probability distribution ovelrS which

directly, put appr.o>.<|mated it by using an augmen.ted Staﬁ%presents the agent's spatial belief:
space which explicitly represents positional uncertaagtyan

extra dimension, and used this model to reduce uncertainty i be = P(51]b0s @0, 01, s dr—1,02). 1)

a navigation task. Theocharous et al. [25] used hierarthica . . N ,
POMDPs for navigation in topological maps. In this work, The belief state is updated after every transition by Bayes
POMDPs are used to learn the environment dynamics. FB#l€:

action_selection, heuristics such as mo_st Iikel)_/ state seelu bi(s") = nQ(o, s, a) Z T(s,a,s)bs_1(s), ()
Tomatis et al. [11] used a hybrid hierarchical approach, ses

with a lower level composed of local metric maps. In [21], The goal of a POMDP solver is to determine a policy,

Spaan and Vlassis use a point-based POMDP solver for rolghich is a mapping from belief space to action space.
planning in an environment with a large set of pre-specified

state locations. This work leveraged the newest POMDP T:b— A ()

approximation techniques, however, it assumed a knowa stat

space which might not scale well to large environments. ) .
pVariable reso?ution decomposition tgchniques for magefmed as the sum of discounted future rewards.

discretization have been long established. The Quadtgee al o0

rithm [15] is a common technique for spatial representation V(b) = E; Ztht

in robotics, and have been used in navigation algorithmk [29 t=0

A binary space partitioning (BSP) tree [4] is a hierarchicalvhere R, is the reward received at timestepV (b) is the

structure that can be used for spatial representation. lArcel value of the executing the policy starting at belief state,

a BSP is either a leaf, or is recursively subdivided via a lin€Z,; is the expectation under policy and~ € [0,1] is the

parallel to the edges of the environment. Another approadiscount factor.

is the exact method [4], which splits the space into non- In this work, we will take advantage of some of the

overlapping regions via lines. Moore and Atkeson used amcent advancements in POMDP solving, notably the work

idea similar to Quadtree for a reinforcement learning tasik the point-based approximations [13], [16], [19], [22].

[1]. Zhou and Hansen [30] also used a variable resolutiohhese methods can solve POMDPs an order of magnitude

state space to reduce the size of a POMDP. However, tfaster than competing techniques, and are used in this work

decomposition of this work is based on the value functiodue to the large POMDPs required to represent real-world

itself rather than characteristics of the environment. navigation domains.

The policy attempts to maximize the value function,

: (4)




B. Map Representations results in a very effective policy, since the belief state is

For a robot to be able to efficiently navigate to a specifirécise due to each state being physically small. However,
goal location in an environment, it is required for the rotsot the resulting POMDP has a large state space. Wisens
keep an internal representation of the environment, usirall large, the POMDP is much more difficult to solve since
the form of a map. To create a POMDP model for navigatiof'e Point-based POMDP solution techniques reqGitgs|?) -
tasks, a mapping from the environment map to the state spdé®€- Therefore, we would like to construct a POMDP which
is required. Two popular choices of state space selection f#/ll result in a usable policy while minimizing the size of
navigating with POMDPs are metric maps and topologicdl® State space. To achieve this, we propose our variable
maps. resolution decomposition algorithm (Algorithm 1).
Metric maps are map representations which decompose— - -
the map spatially such as in a fixed grid. In each subcﬁTgor'thm 1 Variable Resolution
of the map representation, it will measure if there is an if 3 Space in sectioof-mapand
obstacle or space, creating an occupancy grid. An important3 oPstacle in sectionf.mapand - .
advantage of metric maps is their generality. They make Sectionof. mapis larger than minimumsizethen
no assumptions on what kind of environment the robot is ~ SPlit sectionof. map along longer half into sectiom
working with. Therefore the transformation from the map ~ @nd sectiob _
to representation can be completely automatic. A further ~Variable Resolution(sectioa)
advantage of a fixed grid metric map is that they can be made Variable Resolution(sectioh)
to be very precise, since they require working with a fine €lse
resolution for robust navigation. However, a disadvantaige stop
fixed grid metric maps is the steep model size requirements.&nd if
This disadvantage is amplified when we use the model
for POMDP planning, since the modern POMDP planning Algorithm 1 can be seen as a modified version of the
algorithms are polynomial inS|. Quadtree algorithm. The input to this algorithm is the
Another popular map representation employed frequentccupancy grid of the environment map. At each step of
for robot navigation are topological maps. A topologicathe recursion, it checks if the current section has both
map explicitly represents the environment's connectivitpPace and obstacle by checking each cell of the section in
information, e.g. in the form of a graph. A typical topolog-the occupancy grid. If the section has both, then it splits
ical description of an indoor environment represents largéto halves by cutting along the longer edge. Otherwise,
abstract areas, such as rooms, as single states. Corridé}@ section becomes a state in the resulting state space.
are typically represented as a few states, which serve {@'mination can also occur if the section is smaller than
connect the rooms in the topological graph. An advantage §PMe minimum threshold size. If the minimum size threshold
using a topological map is that they provide much smalldf reached for a section, then the resulting state can be
models than metric maps. Additionally, they provide a humagonsidered to be occupied. This parameter can be used to
readable decomposition of the environment. However, usirgpntrol the size of the state space based on the requirements
a topological representation can result in very coarse mag¥ the robot. In comparison to Quadtree, we cut only in half
which may not be suitable for very precise planning. to keep the resulting state space as small as possible. This
The Quadtree [15] algorithm creates a metric map digdlgorithm has a running time ab(V log(XN)) where N is
cretization of an environment. Quadtree makes up for tH&e number of cells of size minimusize in the occupancy
shortcomings of the fixed grid representation by givingrid of the environment map.
different resolutions for different areas in the map. The The goal of this technique is to reduce the size of the state
algorithm recursively subdivides a region in four equallysPace while keeping the model effective for robot navigatio
sized quadrants until some stopping condition is reactred. This latter goal can be accomplished by decomposing the
the case of robotic navigation, usually the stopping céomiit Map with the following two design aims: to group together
is when a cell is fully occupied by an obstacle, or fullyareas of the map where precise navigation is not critical,
empty space. This method can be used for environmer@d to discretize areas near objects where navigation needs
with varying levels of detail, for example, an environment© be more precise with smaller resolution cells. These aims
with many large empty rooms but with some very narrowpoth relate to the key idea of grouping large areas of space

corridors. and large areas of obstacle together. The outlined algorith
accomplishes this by recursively splitting up the map, and
IV. VARIABLE RESOLUTION DECOMPOSITIONSTATE stopping when the current state is atomic (all space or
SPACE object). Using the output of this algorithm as the state epac

Using POMDPs for robot navigation has been historicalljor the POMDP model can greatly reduce the size of the
difficult due to the high cost of finding a policy for a modelmodel. An example of this algorithm’s output can be seen
with a large state space [14]. The most common approachiis Figure 1.
to use a fixed grid metric map representation, where eachFrom this figure, we can see that the algorithm assigns
grid cell is a separate state in the POMDP model. Thikrger cells in larger spaces, where precision in navigaso



p’. This noise is added to make a simple approximation of the
noisy motion dynamics. Next, the straight line path between
p and p’ is verified to check that it does not pass through
any obstacle state. This is required so the agent does not
think an action can teleport the robot over an obstacle.df th
straight line path is possible, then we find the stdtsuch
that p’ € ¢/, and incrementC(s’). This is done for many
sampled pointy, and thenC(s) is normalized to become
T(s,a,s’). A primary advantage of building the transition
model through sampling is that it makes no assumptions on
either the environment or the type of spatial decomposition
used.

B. Observations & Observation Model

As with the actions and transitions, the observation model
is very robot dependent. While any reasonable observation
model can be used, we present the model used in the
experiments below. We choose an observation space which
is an abstraction of information received from proximity
sensors. We parameteri@eby the resulting state’ only, and
not the actioru which resulted in the agent ending in state
Fig. 1. A simple navigation task. We see the robot in the staration in .. Vac (0,5, a) = Qo S/)' The observation is based on
the bottom left, and the goal in the top left. We can also seevriable Whether the adjacent states «fare obstacle states or open
cell decomposition output shown with the lines. space states. An edge of the state has a probability of being
considered “filled” based on the proportion of that wall tisat

. ) ] _adjacent to obstacle states. This probability is pertusbittl
not as important, and assigns smaller cells in the cormidofg)ise. The resulting model has sixteen observations, ased

and near objects, as intended. A critical assumption of thig| yossible combinations of the four walls being “filled” or
technlque_ is that_ all p0|_nts within a single state_ have th%pen”, where the probability of a single observation is the
same optimal policy. While degenerate cases of single statgg,qct of the probabilities of the four walls being in their
which require multiple actions can occur, these typicadlyé 5g5ociated configuration. An advantage of this observation

a weak effect on overall performance due to the ability of thg,,qe| is that it has only a small discrete number of possible
POMDP to recover from such mistakes. Since the algorithiyservations, but it still provides observational infotioa

decomposes the map to axis-aligned rectangles, the &gorit yhjich will help the robot localize. However, a disadvantage
does best in rectilinear environments. However, we Will segs this model is that it uses only a very local measurement
the algorithm is still able to drastically reduce the sizel®  gince only the immediate vicinity affects the observation.
state space in a variety of environments. It should be noted that this model is only used for policy

V. DESCRIPTION OF THEPOMDP MODEL building, and is not necessarily used for the navigation. On

a real robot platform, the sensors are able to produce much
While the state space of the POMDP is automatically commore detailed observations.

puted by the variable resolution decomposition algorittira,
remaining parameters of the POMDP must now be define&- Rewards

As per typical models for navigation tasks, the robot
receives a fixed positive reward for reaching the designated

For the POMDP, a set of high level actions must beoal states, and no reward otherwise. This leads to a policy
selected. For example, in robot navigation tasks this can beéhich will get the agent to the goal as quickly as possible,
defined as displacements in the four cardinal directions. presuming we are using discounting.

The actions and transitions are very robot dependent.
While these could be constructed through domain knowl-
edge, this is sometimes infeasible. An alternate methdtkist To validate our technique, a series of experiments were
use of sampling techniques to approximate these parametarsnducted on a variety of domains. The purpose of these
We now describe the sampling method used in this paper. Végperiments is to test the resulting quality of the produced
build the next state distribution for executing actiom state policy based off POMDPs generated using the variable
s. First we initialize count¥,C(s) = 0. We randomly draw a resolution techniques. Validation occurred in both sirtiata
starting pointp from within states. We then apply the action as well as on a robot platform. The test machine for these
a translation orp, and then add a small amount of Gaussiaexperiments was a dual core Xeon at 2.66Ghz with 4G of
noise proportional to the length afto the destination point RAM.

A. Actions & Transition Model

VI. EXPERIMENTS
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Fig. 2. Measuring the required planning time to complete tmplE  Fig. 3. Measuring the average number of steps to the goal isithple

navigation task. navigation task.

A. POMDP simulation we maintain our belief over the fixed grid states. Maintagnin

The goal of using the variable resolution state spac®@e actual state as a fixed grid cell provides a much more
decomposition algorithm is to reduce the size of the staf@alistic experiment. Then at each step, we convert our fixed
space, and thereby reduce the required time for producingdéid belief state into a variable resolution belief statéisT
policy for a domain. A series of experiments were conductel§ done by accumulating the belief of all fixed cells within
to evaluate the performance of the policy produced by the variable resolution cell as the belief for that variable
variable resolution POMDP. At set time intervals, the pplic resolution cell. Then the solved (variable resolution)igol
was evaluated by POMDP simulation. For comparison, th@pplied on the variable resolution belief state, is usedeto g
same experiment was conducted on a fixed grid POMDP. the next action.

Figure 1 shows the original environment as well as the Because the POMDP solver has a randomized component,
resulting decomposition. The fixed grid decomposition is nonultiple policies were generated for evaluation. For these
shown, but the size of the fixed grid cells is the size of thexperiments, five policies were generated with 25 trials
smallest cells in Figure 1. The number of states in the fixeger policy. If an execution took more than 100 steps to
and variable resolution POMDPs can be seen in Fig 4. complete, that trial was deemed a failure. The results from

The dimensions of the fixed grid cell as well as théghe simulations can be seen in Figures 2 and 3.
minimum.size parameter of Algorithm 1 is 10cm by 10cm. Figure 2 shows completion rate vs. planning time, where
The actions for this domain are specified as the four cardinabmpletion rate is the proportion of successful trials. We
directions, with two possible distances of 20cm and 80cm fagee that both methods are able to achieve the same success
each, giving us eight total actions. The transition noise is rate in the long term, since in this domain both methods
GaussianN (0, .4|distance|+.1). The discount factoty was are successful. Hence, even though the variable resolution
set t0.95. algorithm loses precision with larger states this doesrens

A point-based approximate POMDP solver was used tw hurt performance. We also see that it takes much less time
solve both the fixed and variable resolution POMDPs. to have a reasonably good policy in the variable resolution

For these results, we ran traces through the POMDEase. At roughly 600 seconds, the variable resolution yolic
state space. Running the simulation for the fixed grid wasas a high rate of success in the task, while the fixed policy
straightforward, however, it should be noted that runnimg t agent is not able to complete the task at all until 2400
simulation for the variable resolution grid cells was a bitseconds.
more complicated. In the variable resolution POMDP the Figure 3 shows the average number of steps vs planning
state space grid cells are larger, so simply keeping track time. This measure is the average number of steps taken in
the agent’s actual state is not reliable enough. Instead, wely the successful trials. We see that the average number
consider traces through the fixed grid cells’ state spac#, anf steps to the goal does not vary as the planning time



increases. This means that even preliminary policies geovi are many small obstacles throughout the map. This causes
near-optimal plans. Note that the number of steps to goal fthe algorithm to produce many small grid cells next to the
the fixed policy is only shown after 2400 seconds. This isbstacles. This fits with our design, since these are latsitio
because the fixed grid POMDP policy was not able to findvhere the robot requires extra precision (e.g. near walls,
the goal in any trial until 2400 seconds of planning time. doors). These results are encouraging, since even with a
state space reduction factor of five, the resulting POMDP
should experience a 25-fold reduction in planning time.
In the previous section, we show that variable resolutiomhis reduction allows policies to be found for previously
decomposition is able to reduce the required state spaceit@actable POMDPs.
model the environment of a toy domain, but still provide a

practical policy. In this section we investigate the st@i@c® . Test on SmartWheeler Robotic Wheelchair
reduction capabilities on a set of maps generated by robots

B. Environment Map Survey

using sensor data. The maps freiburg, longwood,legal 3 For further verification of the method, we tested the
and thickwean are available with the CARMEN software?lgorithm on SmartWheeler [12] the robotic wheelchair,
package [10]. The results are shown in Figure 4. shown in Figure 6.

Map Name|| #Fixed | #Variable | Reduction Factor

Simple 3990 | 316 12.627
McConnell || 29638 | 2035 14.56
freiburg 19226 | 3429 5.607
longwood | 82595 | 8743 9.447
nshlevel3 || 57003 | 5690 10.018
thickwean | 14048 | 1488 9.441

Fig. 4. Comparing the number of grid cell for both a fixed grid
decomposition and a variable resolution cell decomposifldre reduction

. # Fized
factor is Fariable

Fig. 6. The SmartWheeler Robotic Wheelchair

SmartWheeler is an electric wheelchair fitted with an
onboard computer, motor actuators, SICK laser scanners
and a touchscreen. The long-term goal of the SmartWheeler
project is to increase the safety and autonomy of indivisiual
with severe mobility impairments by designing a robotic
wheelchair that can adapt to the user’'s needs and the con-
straints of the environment. We use CARMEN [10], the
CMU Robot Navigation Toolkit, for basic robot control such
as motor control and obstacle avoidance. Actions selegted b
the policy are passed to CARMEN, which translates them to
motor commands that are sent to the robot. We also utilize
the built-in obstacle avoidance of the CARMEN robot control
system, since the POMDP planner does not account for
dynamic obstacles. If the high level POMDP planner directs
the robot towards objects not in the pre-computed plan, then
Fig. 5. The variable resolution decomposition algorithm liggpto the CARMEN will navigate the robot around obstacles.
freiburg map, released with the CARMEN. To take advantage of the SICK laser rangefinders, we use

the built-in CARMEN patrticle filter for updating the belief.

These results show that the performance increase with tHi €ach step, the new belief is computed by using the current
method is highly map dependant, however all maps sho@gt of particles as follows:

a sizable state space reduction. In a very wide open map
like the simple envirqnment, the reduqtion factor is large. b(s) =17 Z w(p) (5)
On the other hand, in the freiburg (Figure 5) map, there pEP,




where P; is the set of particles that fall within state s,robots. Therefore, we expect this approach to work on a
w(p) is the weight of a particle from the CARMEN particle variety of platforms.
filter andn is a normalizing factor.

In these experiments, we do not use the robot's orientation VIl. CONCLUSION

as part of its state space. However, the method extends|y this work, we present a variable resolution technique
readily to incorporate the orientation, as does the planningy ropot navigation using POMDPs. This technique reduces
phase. In our implementation, we use the CARMEN particlghe state space of the POMDP by automatically adjusting
filter to estimate the orientation, and the noise from theghe size of the states in the grid based on features of the
orientation is folded into the transition probabilities. environment map. This allows us to gain the advantages of

EXperimentS were conducted in the McConnell buildingopo|ogica| maps, such as reduced Comp|exity/state space,
at McGill University, according to the map shown in Figurewhile still maintaining the level of detail of fixed grid métr
7. Information concerning the state space can be seen diaps. This method allows us to apply POMDP navigation
Figure 4. The parameters in this domain are as in the POMOR domains which would otherwise have been infeasible. We
simulation experiments, with the size of the fixed grid cellalidated this algorithm in a series of experiments inaigdi
and the minimunsize of the variable resolution algorithm a POMDP-based simulation of a navigation environment, a
being 10cm by 10cm, action distances of 20cm and 80cRgalistic robot simulator and an autonomous robot. These
and the transitional noiseV (0, .4|distance| + .1). experiments demonstrate the feasibility of the method in a

A policy was found by running the point-based POMDRyariety of complex navigation tasks.
solver on the model for two hours. It is worth noting that The partitioning heuristic used in this method considers
the fixed grid decomposition for this map was unable t@nly local information when considering the decomposition
be solved due to to memory constraints. Only the variablg more sophisticated partitioning mechanism could produce
resolution model was usable for this task on this p|atf0rm.improved po]icies with smaller state spaces. Another advan
tage of using a more global partitioning scheme is that it
might better avoid the issue of states which require matipl
actions as previously discussed.

The transition and observation models used for the
POMDP model can be further refined. While the parameters
in the sampling algorithms presented here were capable of
providing good policies, better approximations to the moti
dynamics and of the proximity sensors parameters will only
improve the quality of the resulting policy. These models
could be improved through learning, this is the subject on
ongoing work.

While the results presented here are limited to wheeled
mobile robots, we expect the technique to be applicable
for robots with more degrees of freedom. These cases are
particularly subject to an explosion in the size of the state
space, when using fixed resolution, and thus stand to benefit
substantially from the methods presented in this paper.
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Fig. 7. The McConnell Navigation Task. The dark circle is dual state,

and we can see the square robot navigating through the enwvinat.
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