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Building Adaptive Dialogue Systems Via

Bayes-Adaptive POMDPs
Shaowei Png, Joelle Pineau, and Brahim Chaib-draa

Abstract—Recent research has shown that effective dialogue
management can be achieved through the Partially Observable
Markov Decision Process (POMDP) framework. However past
research on POMDP-based dialogue systems usually assumed the
parameters of the decision process were known a priori. The main
contribution of this paper is to present a Bayesian reinforcement
learning framework for learning the POMDP parameters online
from data, in a decision-theoretic manner. We discuss various
approximations and assumptions which can be leveraged to
ensure computational tractability, and apply these techniques to
learning observation models for several simulated spoken dialogue
domains.

Index Terms—Dialogue management, reinforcement learning,
Markov decision process (MDP), partially observable Markov
decision process (POMDP), Bayesian inference.

I. INTRODUCTION

I N a world where computer workstations, digital assistants,
phone lines, and many other devices, can be controlled by

the simple use of voice commands, the importance of dialogue
systems is no longer in question [1]. Yet there are many sit-
uations where using a speech-based interface can be a frus-
trating experience. Whether it is due to a person’s speech pat-
tern, poorly tuned speech-recognition software, ambient noise,
or a poorly designed conversation protocol, speech interfaces
are often problematic to use in real-world situations.
Dialogue systems have been modeled effectively using Par-

tially Observable Markov decision processes (POMDPs), but
past research on POMDP-based dialogue systems typically as-
sumes that the model parameters are known a priori [2]–[4].
The primary contribution of this paper is to present a robust
framework for joint learning and decision-making of observa-
tion models in POMDP-based dialogue management systems1.
Our approach uses the Bayes-Adaptive POMDP (BAPOMDP)
framework [6], [7] to define a Bayesian learning process over
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the uncertain parameters. While this provides an elegant de-
cision-theoretic framework for the problem of robust dialogue
management, it presents several limitations in terms of data and
computational complexity. In this paper, we present algorithmic
approaches to overcome these limitations, including the use of
structural assumptions to reduce the data requirements, and the
use of online POMDP search methods to reduce the inference
time. We present empirical results with several simulated di-
alogue domains, including a dialogue manager based on the
SACTI1 corpus, and two dialogue domains motivated by de-
ployment of speech-controlled assistive technology devices.

II. TECHNICAL BACKGROUND

A. Dialogue Systems
A standard architecture for a spoken dialogue system in-

cludes: speech recognizer, parser/interpreter, dialogue manager,
response generator, speech synthesizer [8]. As our main focus
is on the development of the dialogue manager, we assume
standard public or commercial components for the speech
recognizer and speech synthesizer, and simple script-like com-
ponents for the parser/interpreter and response generator. The
role of the dialogue manager is to find a good mapping from
parsed input text, to output utterances. For computational rea-
sons, we usually assume discrete input and output sets. These
sets can correspond to simple indexed strings, or structured
logical forms [9].
One of the main challenges in building a good dialogue man-

ager consists in finding a mapping from input to output which
is robust to noise and missing data in the input. In practice,
this corresponds to errors in the speech recognition and parsing
steps. Another challenge is in handling the sequential aspect of
the conversation, meaning that the choice of response must de-
pend not only on the latest utterance, but also on previous in-
teractions. To address these challenges, much of the recent re-
search on developing dialogue managers has focused on proba-
bilistic methods for sequential decision-making.
The early work using probabilistic methods has primarily

adopted the Markov Decision Process (MDP) for the dialogue
management, in which case the current state of the dialogue is
assumed completely observable (known) throughout the inter-
action [10]–[16]. However this model is inadequate to capture
the uncertainty introduced by errors in speech recognition and
language understanding. This has led to more recent research ef-
forts towards the Partially ObservableMarkov Decision Process
(POMDP) where the state of dialogue is considered partially
observable, thus allowing partial or uncertain observations to
be considered by the dialogue manager. POMDPs have been
shown to be well suited for computing the optimal dialogue
strategy under unreliable automatic speech recognition (ASR)
[2]–[4], [17], [18].

1932-4553/$31.00 © 2012 IEEE
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B. Partially Observable Markov Decision Processes
Formally, a discrete POMDP is specified as a tuple

, where is a set of states, is a set
of actions, and is a set of observations [19]–[21]. Throughout
this paper, we assume that and are discrete sets, which
are specified by the dialogue designer. The states, , capture
features of the dialogue task, the actions correspond to the
possible outputs of the dialogue managers (answers to queries,
requests for clarification, etc.), and the observations, , are
defined by the input to the dialogue manager (e.g., parsed
strings, logical structures.)
At each time step, the agent is in some state and

when it takes an action , it moves to state . Un-
certainty in the effect of the action is characterized by the
transition probability function

. While the state is not always observable, the agent
receives an observation , which provides information
about the state, as defined by the observation probability func-
tion . The agent’s
behavior, or choice of actions, is further characterized by the re-
ward function, , defining the reward received for taking
action in state . The agent’s objective is to choose actions
such as to maximize the expected cumulative sum of rewards
over a given planning horizon . In the case of infinite planning
horizon, we usually consider the discounted sum of rewards,
with discount factor . For finite planning horizons ,
we have , whereas for infinite horizon, we use the expected
discounted total reward: , where and
denote the agent’s state and action at time .
Since the state is typically not fully observable, the agent can

track the information state, which captures all experiences up
to the current time step. This can be tracked in the form of the
history, denoted by . The history
quickly grows in size, and is usually replaced by a sufficient
statistic, called the belief [19]:

(1)

(2)

(3)

Thus, the belief state can be updated to the successor belief
given an action and an observation according to Bayes

theorem (as reflected by previous (3)), which we denote by
such that

(4)

where is a normalizing constant denoting . Equa-
tion (4) shows that the belief is a probability distribution over
states, which can be updated online every time the agent ac-
quires a new action/observation.
We now consider three different inference processes per-

taining to POMDPs. First, there is the question of efficiently
tracking the belief; for discrete spaces with known transition,
observation and reward models, this can be done in polyno-
mial time using (4) above [21]. Second, there is the planning
problem which consists in finding a sequence of actions that

optimizes the expected cumulative reward; this is discussed in
the following subsection (assuming again that
are known a priori). Third, there is the problem of learning the
transition, observation and reward parameters from data. This
is crucial for domains where the dynamic models (transition
and observation parameters) are difficult to characterize ana-
lytically, such as in dialogue systems. The main contribution
of this paper is a Bayesian learning framework for simultane-
ously tackling the planning and learning problems in dialogue
systems.

C. Planning in POMDPs
The POMDP planning solution is usually expressed in the

form of a policy, , a mapping from beliefs to action
choices. We can define the expected value of a given policy as

follows: , where is the reward re-
ceived at timestep is the discount factor, and is the initial
belief at time . The optimal policy for a POMDP is one that
chooses an action maximizing the expected future discounted

cumulative reward: ,
with associated value function:

(5)

Computing the optimal policy is computationally challenging
due to the nature of the belief. In a problem with physical
states, the corresponding belief space has dimensionality .
The number of reachable beliefs at time , typically grows ex-
ponentially with the planning horizon [20], [21]. Most dialogue
managers modeled in the POMDP framework are not amenable
to exact solutions. However in the case where the model pa-
rameters (transitions, observations and rewards) are known a
priori, dialogue managers can often be solved with more recent
point-based approximations [22]–[24], even for fairly large-size
dialogue domains.
In cases where the parameters are not known in advance, a

better option is to consider online POMDPmethods, which have
the ability to re-plan incrementally, as information is acquired
about the model’s parameters. Online POMDP planners reduce
the complexity of the problem by planning online for only the
current information state [25]–[27]. They typically apply for-
ward search, from the current belief state, and form a local ap-
proximation to the optimal value function by considering only
a short receding horizon of possible scenarios.
The Bayes-Adaptive POMDP framework presented in

the next section incorporates Real Time Belief State Search
(RTBSS) [28], [29] to perform online POMDP solving. Other
online approaches are available in the literature (for a review
see [25], and more recently [30]), however RTBSS is partic-
ularly simple to implement, and sufficiently efficient for our
purposes. RTBSS is a forward branch and bound search in the
belief space. The top node corresponds to the current belief,
and branches are generated for possible action/observations
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pairs from that belief. To maintain tractability, RTBSS cuts
down redundant sub-trees by pruning away some actions. To
decide which branch to prune, RTBSS maintains an upper and
lower bound at each node, sorts the actions (l.5 of Algorithm 1)
according to those that are most likely to return higher values
(this can be approximated by comparing the immediate reward
of the actions), and prunes those actions that are unlikely to
improve the maximum returned value found so far.
The algorithm is described in Algorithm 1. In line 9, the upper

bound is computed as the sum of the current reward and
the heuristic value . The current reward is
defined by:

(6)

At line 10, if the upper bound value is less than the max-
imum value, the action is then pruned and the subtree is not
expanded, reducing the time taken. When the depth is 0,
we simply compute the immediate return of the belief state.
This is defined by . The heuristic
value has to be an upper bound on the
value function at belief . Ideally, the heuristic value has to be
the maximal value that any algorithm can find if it searches
the tree to the maximal depth . This ensures that we do not
prune the wrong actions. The heuristic can be selected using
domain-knowledge. For example, for problems where only
the terminal state receives a positive reward, a good heuristic
might be to consider that we will always reach the terminal
state from any belief state, therefore setting the upper bound to
the reward one gets by doing an action that reaches the terminal
state. In the absence of any domain knowledge, one can always
use , although setting the upper bound to
this value will generally yield no pruning. Further details about
RTBSS can be found in [28], [29].

Algorithm 1 The RTBSS algorithm [28], [29].

1: Function RTBSS returns the estimated value
of
Inputs: : the current belief state;
: the current depth
Statics: : the maximal search depth;
action: the best action

2: if then
3: return
4: end if
5:
6:
7: for all do
8:
9:
10: if then
11: for all do
12:
13: end for
14: if then
15:
16: if then
17:
18: end if
19: end if
20: end if
21: end for
22: return

D. Learning in POMDPs

The POMDP planning approaches cited above generally rely
on having known transition, observation and reward parameters.
Such models may be well-known in some domains, for example
robotics, or resource management problems. However this is
highly impractical in most dialogue domains, where statistical
characterization of the uncertainty cannot easily be achieved an-
alytically. Machine learning techniques can be applied to over-
come this limitation.
There are many approaches for learning from data in

POMDPs. The first, supervised learning (or model-based
reinforcement learning), requires large amounts of annotated
data to achieve good performance [31], [32] this is particularly
challenging in dialogue-type tasks, because the annotations
need to convey the underlying state of the system, which in
many applications may depend on a user’s intent which is
definitely not an easy annotation to make on a large dataset.
An alternative approach is to use reinforcement learning to
jointly learn the model policy using gradient methods [33],
[34], which can be useful when there is a good prior on the
policy class. The data requirements of supervised and rein-
forcement learning methods can be alleviated somewhat by
using off-policy learning [35].
Other researchers have advocated the use of unsupervised

learning approaches which generally use Expectation-Maxi-
mization (EM), to infer parameters from an un-annotated con-
versational dataset [36], [37]. While the EM approach is well-
established for estimating the parameters of Hidden Markov
Models (HMMs) used for speech recognition, it also suffers
from well-known local minima problems. The issue is exac-
erbated in the POMDP context, where parameters are further
conditioned on action choices (i.e., they depend on the explo-
ration policy). More recently, an alternative representation was
proposed, called predictive-state representation (PSR) [38],
which offers the expressiveness of POMDPs without explicit
specification of hidden states. The framework appears more in-
tuitive from a learning perspective. However current algorithms
seem to require large amounts of data, even for small domains,
thus making such a framework impractical, at this stage, for rich
dialogue domains. On the other hand, Bayesian reinforcement
learning provides a more scalable paradigm, since it can in-
corporate domain knowledge (in the form of a prior) to guide
and constrain the learning process. It is also easily amenable
to an online formulation. The main limitation is that most re-
cent Bayesian reinforcement learning approaches deal with the
fully observable case. In the next section, we present the Bayes-
Adaptive POMDP (BAPOMDP) framework, which can handle
the partially observable case.

III. BAYES-ADAPTIVE POMDPS FOR DIALOGUES

The aim of Bayesian reinforcement learning (BRL) is to

maintain a posterior distribution over possible models parame-

ters and to compute an action selection policy which is optimal

with respect to this posterior [39]. A general formulation for

Bayesian RL is shown in Algorithm 2. Initially, distributions

are initialized over the unknown parameters of the models.

Thus, using the current information about those parameters, an

action is selected. After the action is executed, the agent takes



920 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 6, NO. 8, DECEMBER 2012

the resulting information about the environment and updates

the distributions over the parameters.

Algorithm 2 A general framework describing Bayesian
reinforcement learning. Various approaches address the
challenges in each step through different techniques.

Initialize distributions over unknown parameters
loop
Select action based on distributions
Execute action
Observe resulting reward and observation
Update posterior of unknown parameters based on
observations
end loop

A. Bayesian Inference in Partially Observable Domains

For Bayesian Reinforcement learning in fully observable

Markov Decision Processes [39]–[41], the key idea is to

maintain a posterior distribution over the unknown model

parameters, and to apply planning over the full posterior

(rather than over only the maximum likelihood parameters). In

discrete domains, a convenient way of representing the poste-

rior is by using Dirichlet distributions, which are probability

distributions over the parameters of multinomial distribu-

tions. Given , the frequency at which event occurs over

trials, the probabilities of each event has a Dirichlet

distribution, i.e., .

If the counts are observed over trials

, the distribution represents the probability

of a discrete random variable according to the probability

distribution . The probability density func-

tion is , where is

the multinomial beta function. The expected value of is

.

Applying this to a fully observable Markov decision process,

we can define counts of the number of times the transition

is observed for each action , starting from prior .

The next state, , becomes a combination of the physical state,

, with the information state, . In this case, describes

a probability of update from , that is from

hyperstate to hyperstate when performing action

. Planning is applied to this extended model, using a joint state

space (where is the set of ) and the extended transition

function .

In a POMDP, besides having the counts , we also have

the observation counts, , representing instances of seeing

at after doing action . The state is defined over ,

and the decision problem is defined over the joint space
(where is the set of ). One of the main challenges

in solving such a system is how to update the Dirichlet count

parameters, and , when the state is a hidden variable. At

each time step, is not observable, and neither are and ,

since without knowing the state, we cannot know which count

parameter to update. Thus we need to maintain a belief over the

joint space, . The objective is to learn an optimal policy,

such that actions are chosen to maximize reward with respect to

the posterior captured by the Dirichlet distribution.

The Bayes-Adaptive POMDP (BAPOMDP) framework al-

lows belief inference, planning, and learning in POMDPs, under

these assumptions [6]. Through the remainder of the paper, we

focus on the case where only is unknown, and as-

sume that are known. This is done simply

because the observation parameters are most relevant for prac-

tical dialogue systems, and to simplify exposition. In general,

the BAPOMDP can solve problems when

are also unknown without substantial complications [6].

Recall that uncertainty on the distribution is

captured by the counts , representing the number

of times observation was made in state after doing

action , with the vector of all the observation counts.

The expected transition probability for is

. The state space

of the BAPOMDP is therefore defined as where

.

It has been shown that the BAPOMDP is an instance of a

POMDP [6], and as such, we need to track the belief state .

The belief state of the BAPOMDP represents a distribution over

both states and count values, that is . If is the initial

belief state of the unknown POMDP, and the count vector

represents the prior knowledge on this POMDP, then the initial

belief of the BAPOMDP is: , if ; 0,

otherwise. The exact belief update for the BAPOMDP is given

in Algorithm 3. To maintain tractability over longer horizons,

we only keep the most probable belief states in the new belief

, and re-normalize accordingly. The algorithm is linear in

the number of actions/observations, and quadratic in the number

of states. Exact tracking is achieved as long as fewer than

state-count pairs are possible.

Algorithmic 3 Exact Belief Update in BAPOMDP

Let be the current belief, the set of hyper-states in
a fn incrementing by 1 in the set of

counts.
Initialize as a 0 vector.
for all do
for all do

end for
end for
return normalized

B. Planning With RTBSS in BAPOMDPs

The planning portion of the initial BAPOMDP algorithm

uses a simple forward search, as described in [6]. When ap-

plying BAPOMDPs to dialogue systems, we have modified this
component to use the RTBSS algorithm. This allows us to cut

down redundant sub-trees, thus reducing the time for the online

search. In the above RTBSS, the heuristic value described in

Line 9 of Algorithm 1 has to be an admissible heuristic (in the

A* sense), so in our case, an upper bound on the value function.

Ideally, the heuristic value has to be the maximal value that any

algorithm can find if it searches the tree to the maximal depth
. This ensures that we do not prune the wrong actions.

Now we should adapt RTBSS so that we can take into con-

sideration BAPOMDP, combining thus learning and planning.

First, we use RTBSS with ,

where is the depth of the search and is the discount factor.

is the maximal reward for all states and all actions of the
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underlying MDP. Another important modification is that we
need to interleave updates to the observation counts within the

planning algorithm, this is embedded in line 12 of the RTBSS

algorithm above, where we apply the belief update operator

. Recall that in the case of BAPOMDP, is expressed

over the joint state (or hyperstate) and consequently

as reflected by (6) (and line 8 of Algorithm 1), be-
comes in BAPOMDP: .

The belief update operation is an integral component of any

POMDP planning. In the case of RTBSS for BAPOMDPs, the

belief update operation over the joint state is applied using a

particle filter, maintaining the most probably belief states,

as follows: . It is ap-

plied just after line 11 in Algorithm 1.

C. Defining Priors in BAPOMDPs for Dialogue Systems
An important requirement of the BAPOMDP framework is

the need to specify a prior distribution over model parameters,

in this case the observation counts . Earlier applications of

BAPOMDPs assumed a low uniform count value, and then al-

lowed each to vary independently. This affords substantial

freedom to the posterior, but may requiremore data than is avail-

able.When applying BAPOMDPs to dialogue systems, it can be

preferable to consider a more constrained prior. In particular, in

a typical dialogue system, many parameters are likely to be sim-

ilar, either because the observations correspond to acoustically

related inputs, and thus the noise level is similar, or because the

observations correspond to semantically related inputs, and thus

the meaning is similar. We can use the knowledge that certain

observation parameters have similar values to introduce con-

straints on the learning problem via the prior. We do this by im-

posing symmetry constraints (parameter tying) on the Dirichlet

parameters, whereby sets of parameters are constrained to have

the same posterior. Practically speaking, counts corresponding

to the parameters that have been constrained to have the same

value are all updated simultaneously whenever any of the obser-

vations in the set are observed. This can dramatically reduce the

number of parameters to learn. In dialogue systems, this could

involve assuming that the recognition error rate is independent

of state information (e.g., command type or user location).

D. A Procedure for Applying BAPOMDP in Dialogues
We summarize the steps in applying BAPOMDPs to dialogue

systems as follows:

1) Represent the dialogue system as a POMDP.
a) Represent the state space as a set of the user inten-

tions and dialogue information.

b) Represent the action space as a set of the possible

responses by the dialogue system.

c) Represent the observation space as a set of the pos-

sible percepts.

d) Define the transition probabilities
based on domain knowledge and previous data.

e) Define the observation probabilities
based on domain knowledge and previous data. Label

the observation probabilities that are unknown.

f) Define the reward function based on domain

knowledge and previously collected data.

2) Represent the dialogue system as a BAPOMDP.
a) For the unknown observation parameters, define
Dirichlet counts with prior knowledge. If there is no

prior knowledge, assume uniform initial priors.

3) Using domain knowledge, look for symmetry in the ob-
servation parameters that are unknown.
a) Label the similar parameters.

b) Write simple routines to perform parameter tying for

the similar parameters. Whenever a parameter count

is updated, the corresponding parameters (tied to it)

should also be updated.

4) Solve the BAPOMDP and learn the unknown observa-
tion parameters.
a) Whenever an action associated with the unknown

observation parameters is picked, increment the

Dirichlet counts accordingly.

b) Perform belief tracking by choosing the most prob-

able belief states and normalizing them.

c) Pick the best action to perform based on the new pos-

terior, and repeat step 4.

IV. EMPIRICAL EVALUATION

Our primary empirical goal is to show that by exploiting

certain known components of the dialogue system, such as

knowledge of symmetrical properties, and an approximate

online planning algorithm (RTBSS), we are able to apply

Bayesian RL on several simulated spoken dialogue system

domains. We consider four different experimental domains:

(1) a small synthetic data case, where we illustrate several

properties of the approach; (2) a dialogue manager based on

the well-known SACTI1 corpus; (3) a large dialogue manager

aimed at assisting patients with dementia achieve effective

hand washing, (4) a real-world dialogue manager designed to

help patients to operate a wheelchair. Throughout, we discuss

practical issues faced with using these techniques.

A. Empirical Methodology
In this empirical evaluation, each BAPOMDP simulation

consists of 100 episodes, during which the agent must select

actions and can use observations to improve its estimate of the

model parameters. Each episode is a short dialogue sequence

trial, which may be terminated by a specific action or when a
prefixed number of actions is taken. At this point, the POMDP
state (the user’s intent) is reset, but the posterior distribution

over the observation count vector is carried over to the next

episode for the purposes of learning.

We measure the empirical returns of the policy, which cor-

responds to the total rewards achieved by the system under a

test trajectory. We also consider the L1-distance, measured by

, as an indication of the accuracy of the

estimated model. The smaller the distance between the real

belief and the estimated belief, the more accurate the model

is. We also measure the Observations-L1-distance, measured

by , as an indication of the

accuracy of the learnt observation parameters. The smaller

the distance between the real observation parameters and the

learnt observation parameters, the more accurate the model

is. As both the L1-distance and the Observations-L1-distance
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vary depending on the episode, we take the maximum distance

among all the episodes as the distance for the simulation. Each

experiment is repeated for 1000 trials to assess the empirical

mean of the estimates. For all the graphs reporting the empirical

return, the standard errors were very large due to variance in

the reward functions, so we do not show them. For all the

graphs reporting the L1 error (on the model or on the belief),

the standard errors over the 1000 trials were very small, and

not visible on the plot.

We run most experiments using two different ways of up-

dating the counts for estimating the observation probability

parameters. The first is the usual way of updating each param-
eter independently. The second approach makes use of sym-

metry with the parameters, as described in Section III.C.

B. Small Synthetic Dialogue Domain

This problem was introduced in [42] and it consists in a

human operator instructing an assistive robot to move to one of

two locations, bedroom or bathroom. Even though the human

intent (the state) is one of these goals, the observation received
by the robot through a speech recognizer is not accurate. The

robot has the option to ask again to ensure the goal was un-

derstood correctly. In this model, we assume the probability of

a wrong observation is 0.15. The reward is 10 for correctly

identifying the goal, 100 for identifying the wrong goal, and

1 for asking again. This model is modeled on the classic Tiger

problem [43], the main difference is that here we consider a

finite horizon.
In the dialogue illustrating an human operator instructing

an assistive robot, there are four unknown parameters

to learn.

Since and , we can make use of

symmetry in this model to perform parameter tying. Whenever

the count for is updated, is also updated, and vice

versa. Similarly, whenever the count for is updated,

is also updated, and vice versa.

We allow planning time of 1 second per action, and at most

20 actions per episode. We consider two different priors, cor-

responding to . Experimental

results are shown in Figs. 1 and 2. For the returns, as shown

in Fig. 1, using a prior of 0.80 gives better returns than a prior

of 0.65 at the beginning, but returns converge after about 10

episodes regardless of prior. We also note that using symmetry

leads to faster convergence no matter whether we use a prior of

0.65 or 0.80. In Fig. 2, the L1-distance is smaller when we use a

prior of 0.80, as compared to a prior of 0.65, but the L1-distance

also converges after about 10 episodes. These empirical results

confirm that using symmetry in the model leads to more effi-
cient learning of the model parameters, even if the initial priors

are more noisy. This suggests that for learning in a dialogue

Fig. 1. Small POMDPDialogueManager: Returns against different priors with
and without symmetry. The empirical return for the optimal policy is 1. 72. The
empirical return when planning with the 0.65 prior and without further learning
is 3.86. The empirical return when planning with the 0. 8 prior and without
further learning is 0. 19. Standard errors for all lines in the plot are very large
due to the high variance in the reward function.

Fig. 2. Small POMDP Dialogue Manager: Belief L1-distance against different
priors with and without symmetry. Standard errors for all lines in the plot are
too small to be visible.

system, it might be more effective to look for symmetry in the

model than to come up with more accurate initial priors.

C. SACTI Dialogue Domain

This second domain is drawn from the dialogue literature [44]

and is based on real-world dialogue recordings. It contains 144

dialogues between 36 users and 12 experts (who have the role

of a dialogue manager), covering 24 tasks2 The utterances from

users to human experts are first confused using a speech recog-
nition error simulator. Hidden Topic Markov Models (HTMM)

was used to design the dialogue POMDP [45]. The generated

POMDP contains 5 states, 14 actions, and 5 meta observations

drawn by the HTMM using 817 primitive observations (words).

In this model, users can have 3 different intentions. They repre-

sent the machine states: transportation, visiting area, and food.
There are also 2 other states: success and failure, depending on
whether the dialogue finished successfully or not. The reward is
50 if the conversation terminates in the success state and 50

if the conversation ends in failure; reward for other states is .

2http://mi.eng.cam.ac.uk/projects/sacti/corpora
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Fig. 3. Sacti1: Returns against different depths. The empirical return for the
optimal policy is . The empirical return for the prior, without
further learning appears at the point. The standard error on all lines is
very large due to the variance in the reward.

The 14 actions include inform, request, greeting farewell, re-
quest repeat, and others. We assume that we do not know the ob-
servation parameters for the action inform, and we want to learn
them. For this problem, we have a planning time of 1 second per

action, and a maximum of 20 actions per episode.

Our objective here is to investigate the effects of the depth of

the online search on the returns obtained. In solving a POMDP,

we usually obtain better returns as we increase the depth of

RTBSS. Increasing depth leads to better actions being chosen

because we take into account further actions in the future. How-

ever, in a BAPOMDPmodel, our search tree is a lot larger than a

similar POMDP problem because the BAPOMDP model takes

into account the Dirichlet counts. Solving a BAPOMDP exactly

for all belief states is impossible in most domains due to the di-

mensionality of the state space. In theory, the number of pos-

sible Dirichlet count vectors can grow exponentially with the

planning horizon. In practice, we maintain a constant size by

keeping only the most probably beliefs. It is interesting for

us to observe if increasing the depth of the online search will

lead to better returns in a BAPOMDP.

In our experiments, we consider a depth of 1 to 3; at depth 4

and beyond, the computations are too time-consuming. We note

some interesting experimental results. In Fig. 3 we observe that

using an online search of depth 2 and 3 seems to gives slightly

better returns than using depth 1. Increasing the search beyond

depth 2 does not give any obvious improvements. This suggests

that this particular problem can be solved with a relatively short

planning horizon.

In Fig. 4, we observe that for the L1-distance, using an on-

line search of depth 1 gives drastically poorer results as com-

pared to using depth 2 or 3. This difference is actually due to

the actions selected by the search with depth 1. When we use

an online search of depth 1, our search always returns action in-
form, which is the action with observation parameters we want
to learn. Due to the noise in these parameters, the L1-distance

on the belief increases drastically if we perform action inform
right at the beginning. As we take the maximum L1-distance on

the belief among all the episodes, the error observed at the very

beginning dominates. However, when we perform a search of

depth 2 or depth 3, the search tends to give us actions other than

inform. Since these actions yield observations with little noise,
our L1-distance on the belief decreases, and they do not in-

Fig. 4. Sacti1: Belief L1-distance against different depths. The standard error
on all lines is too small to be visible on this plot.

Fig. 5. Sacti1: Observations-L1-distance against different depths.

Fig. 6. Sacti1: Number of times “inform” action was performed against dif-
ferent depths.

crease much after that. This results in the large disparity shown

in Fig. 4.

It is also interesting to note that even though using a search of

depth 1 gives us poor returns and L1-distance on the belief, it ac-

tually gives better Observations-L1-distance as seen in Fig. 5.

Upon further investigations, we realise this is also due to the

number of times the inform action is performed. As observed in
Fig. 6, using an online search of depth 1 leads to performing the

inform action many more times than using depth 2 and depth 3.
These results are consistent because performing the inform ac-
tion more times will lead to better learning of its observation pa-

rameters. In Fig. 7, we show how the Observation-L1-distance
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Fig. 7. Sacti1: Observation-L1-distance against the number of times the “in-
form” action was performed.

varies according to the number of times the inform action was
performed. These results suggest that using the Belief L1-dis-

tance is a better way to judge how well we learn a model than

using the Observations-L1-distance. The improvements in Be-

lief L1-distance correspond to the improvements in the returns,

as the results indicate that depth 2 and depth 3 give better re-

turns than depth 1. Improvements in Observations-L1-distance,

however, are mainly due to the action (with observation param-

eters we want to learn) being chosen more frequently.

D. Handwashing Dialogue Domain

This problem was introduced in [46] and consists of assisting

a user suffering from dementia through tasks of daily living via

the help of a dialogue manager. The POMDP parameterization

(hand-coded by experts) can be found online3. The domain has

180 states, 6 observations, and 6 actions. The reward function

is complicated and detailed in the link.

The goal of the dialogue manager is to offer assistance to

the user in the form of task guidance such as prompts or re-

minders when he attempts a HandWashing task. There are 6

actions, which correspond to instructions to be provided to the

user: nothing, wet hand, turn on water, turn off water, use soap,
dry hands . The user’s state can be factored into state variables,
including the plan’s step, the user’s responsiveness and aware-

ness levels, and what the user has just done. The 6 observations

correspond to the position of the user’s hand (away, sink, water,
tap, soap, towel). There are a total of obser-

vation parameters to learn. However even though there are a

larger number of observation parameters, many of them are ac-

tually similar. This number has been reduced to 16 parameters,

using symmetry (see [47] for more detail on the structure of the

symmetry constraints).

In this domain we assume no knowledge of the initial obser-

vation parameters in this domain. We generate numbers from

a random number generator for each of the 1080 observation

parameters. For each row of observation parameters, we then

normalise them so that they sum up to 1. Then, we compare the

effects of using symmetry to update the counts. We fixed the
search depth to , we also capped the planning time at 6

seconds per action. We allowed 20 actions per episode.

The first result, presented in Table I, is a rather unexpected
one: when we measure the return of the learnt model, we

find that the return does not improve with more training data,
3http://www.cs.uwaterloo.ca/~ppoupart/software/symbolicPerseus/prob-

lems/handwashing/cppo3.txt

TABLE I
COMPARING RETURNS OF THE ACTUALMODELWITH DIFFERENT OBSERVATION

PARAMETERS. C.I., MEANS CONFIDENTIAL INTERVAL

Fig. 8. HandWashing: Observations-L1-distance against models with and
without symmetry.

whether or not we use parameter tying (symmetry) to accel-

erate learning. Upon further investigation, we discovered that

solving the correct model as a POMDP does not give us higher

returns than solving the same model but replacing the original

observation parameters with randomly generated probabilities.

This suggests that the observation parameters do not change

the optimal policy, and so the improvement in return is not an

useful metric for our learning algorithm.

Considering instead the Observations-L1-Distance, we see

in Fig. 8 that error decreases somewhat when using parameter

tying (symmetry), but not without. This suggests two things.

First, parameter tying, as expected, can improve learning in

terms of parameter error rate. Second, since there’s no benefit
to be gained in terms of the return, the learning algorithm does

not need to expend resources to learn a better model. As such,

this is an interesting case for showcasing the advantages of deci-

sion-theoretical/reinforcement learning approaches for param-

eter learning in dialogue managers.

E. SmartWheeler Dialogue Domain
The SmartWheeler dialogue domain is a POMDPmodel used

onboard a smart wheelchair for dialogue management between

the user and the onboard computer [48]. Input voice commands,

acquired via a commercial speech recognition system, are pro-

cessed through basic semantic parsing, and then handled as ob-

servations by the dialogue manager. Responses from the dia-

logue manager are presented through either a visual interface or

text-to-speech system.

The domain considered here is a modification of the POMDP
model described in [49]. The precise problem description can be

downloaded online4. In this domain, the user has an unknown

intent, and the robot has to execute an action based on its guess

of the user’s intent. When it has identified the user’s intent, the
4http://www.cs.mcgill.ca/~smartwheeler/data/wheelchairdialogue25.

POMDP
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Fig. 9. SmartWheeler: Returns against different priors with and without sym-
metry. The empirical return for planning with the correct parameters is 0.25.
The empirical return for planning with the prior at 0. 6 is 4.553. The empirical
return for planning with the prior at 0. 8 is 4.195.

robot can execute a command action, receiving a positive re-

ward if correct, and zero reward otherwise. There are 25 states,

29 actions, and 25 observations. Each state corresponds to a

possible user intent, such as “drive one meter forward” or “set
speed to fast”. There is one observation corresponding to each
state, however observations are not fully accurate, and are at

best an indication of the user’s intent. Observations are handled

dynamically when received. If the phrase was parsed success-

fully by the semantic parser, the belief state is updated using

statistics based on the semantic assignment. If parsing failed,

the phrase is treated as a bag-of-words [50]. The observation

parameters for the simulator were obtained through manual la-

belling of trials with real users.

In a typical dialogue system, many parameters are likely to

be similar. For instance, the phrase “drive slowly backward”
is similar to “drive slowly forward”, but is very different from
“avoid obstacle”. Using the knowledge that certain parame-
ters have similar values, we can learn the parameters in a faster

manner. There are unknown observation pa-

rameters to learn. After reducing this number via symmetry, we

focused on estimating only 6 hyper-parameters [47].

For each state, there is a corresponding “correct” action that

can be executed by the wheelchair. Additionally, there are four

query actions. There is a general query action that requests a

phrase to be repeated, and three other action-specific queries
which request clarification for a particular set of actions. The
reward is 0. 1 when executing the correct action, 0.3 for se-

lecting a clarification question, and 0.9 for picking another

action that does not match the user’s intent.

Our experiment aims to evaluate the performance of the

BAPOMDP approach under different conditions in the context

of SmartWheeler. To this end, we fixed the search depth to
, capped the planning time at 3 seconds per action, and

the horizon at 20 actions per episode. First, we investigate the

effects of having different priors for the observation parameters.

Then, we measure the impact of using symmetry to update the

counts. More specifically, we consider different priors ranging
from 0.5 to 0.9, knowing that the observation parameter has the

true value .

First we consider the empirical return, shown in Fig. 9, using

a prior of 0.60 vs 0.80.We do notice that using the more accurate

Fig. 10. SmartWheeler: L1-distance against different priors with symmetry.

Fig. 11. SmartWheeler: L1-distance against different priors without symmetry.

prior gives better returns (initially when using sym-

metry, and through the experiment when not using symmetry).

As expected, using symmetry leads to faster convergence no

matter whether we use a prior of 0.60 or 0.80. Using an inaccu-

rate prior of 0.60 with symmetry actually leads to a faster con-

vergence than using a more accurate prior of 0.80 without sym-

metry. We note however that it seems that we have not achieved

full learning, since the empirical return for the known parame-

ters is much better than with learning, and lines in Fig. 9 have

not converged.

Using symmetry to update the observation counts also re-

sults in a faster convergence to the correct model as shown in

Figs. 10–12. In Figs. 10 and 11, the initial L1-distance is smaller

as the prior is closer to the true value of 0.97, but the L1-distance

converges faster if we use symmetry in the model. In Fig. 12,

we observe that using symmetry leads to a faster convergence

no matter which priors are used. These empirical results sug-

gest that prior information on the structure of the observation
parameters is more important than having accurate information

about the specific values. Nonetheless we note that evidence of
learning is observed even without symmetry, when there are 625

parameters to estimate.

V. DISCUSSION

In this paper, we described a Bayes-adaptive POMDP

framework for simultaneous learning and planning for robust

dialogue management. The framework is mathematically

sound, and the algorithms are tractable on realistic domains,

especially when leveraging structural information about the do-

main, and using fast online planning techniques. Even though

knowledge engineering in terms of defining the states, actions,
priors and rewards, is still a challenge, this may be applicable
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Fig. 12. SmartWheeler: Belief L1-distance against different priors with and
without symmetry.

in many practical domains. We demonstrated the benefits of
our approach on four different simulated dialogue systems,

including two human-robot interaction tasks.

In Section IV.C, we noted that the depth of the search may not

affect the returns. We should further investigate this point and

see what is really the impact of the depth (of RTBSS) on the

returns. We also found, in some domains, that using the Belief

L1-distance is a better way to judge how well we learn a model

than using the Observations-L1-distance.

In addition, in Sections IV.C and IV.E, we showed that using

symmetry in the model is very efficient in terms of learning
the model parameters. Even when initial priors are more noisy,

using parameters tying leads: (i) to a faster convergence of the

model parameters and, (ii) to a faster convergence in both the

returns and the L1-distance. For learning in a dialogue system,

it might be more effective to look for symmetry in the model

than to come up with more accurate initial priors. It is worth

noting that symmetry can in fact be interpreted as a structural

prior on the domain. There has been some work showing that

learning the structural prior can be an effective way of acceler-

ating learning [51]. Extension of these results to problems of di-

alogue management could lead to interesting solutions for large

structured dialogues.

One limitation of our analysis is the lack of comparison to

other learning frameworks for dialogue systems (e.g., those

referenced in Section II.D). Comparing to algorithms that make

different assumptions (e.g., EM, supervised learning) would

yield an unfair comparison, which is why we did not provide

this analysis. In terms of the online planning component, an

extensive evaluation of the performance and computation time

of such algorithms is provided in [7].

Another limitation of our analysis is the fact that all the results

presented above applied the BAPOMDP framework on simu-

lated models, instead of real deployed dialogue systems. There

are practical issues which need to be further investigated. For

example, the planning time in our experiments is on the order

of a few seconds per action, which is possibly too slow for most

real systems. But with current development of technology, we

expect the BAPOMDPmodel to be computationally fast enough

for deployment on realistic dialogue systems in the very near

future. In the mean time, user studies with small to mid-size do-

mains should be pursued.
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