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Abstract

Recent advances in the area of compressed sensing sug-
gest that it is possible to reconstruct high-dimensional
sparse signals from a small number of random projec-
tions. Domains in which the sparsity assumption is ap-
plicable also offer many interesting large-scale machine
learning prediction tasks. It is therefore important to
study the effect of random projections as a dimensional-
ity reduction method under such sparsity assumptions.
In this paper we develop the bias–variance analysis of a
least-squares regression estimator in compressed spaces
when random projections are applied on sparse input
signals. Leveraging the sparsity assumption, we are able
to work with arbitrary non i.i.d. sampling strategies and
derive a worst-case bound on the entire space. Empirical
results on synthetic and real-world datasets shows how
the choice of the projection size affects the performance
of regression on compressed spaces, and highlights a
range of problems where the method is useful.

Modern machine learning methods have to deal with over-
whelmingly large datasets, e.g. for text, sound, image and
video processing, as well as for time series prediction and
analysis. Much of this data contains very high numbers of
features or attributes, sometimes exceeding the number of
labelled instances available for training. Even though learn-
ing from such data may seem hopeless, in reality, the data
often contains structure which can facilitate the develop-
ment of learning algorithms. In this paper, we focus on a
very common type of structure, in which the instances are
sparse, in the sense that a very small percentage of the fea-
tures in each instance is non-zero. For example, a text may
be encoded as a very large feature vector (millions of dimen-
sions) with each feature being 1 if a corresponding dictio-
nary word is present in the text, and zero otherwise. Hence,
in each document, a very small number of features will be
non-zero.

Several algorithms have been designed to deal with this
setting (which we discuss in detail at the end of the pa-
per). Here, we focus on a new class of methods for learn-
ing in large, sparse feature sets: random projections (Daven-
port, Wakin, and Baraniuk 2006; Baraniuk and Wakin 2009).
Random projections have originated recently in the signal
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processing literature (Candès and Tao 2006; Candès and
Wakin 2008). The idea was motivated by the need to sample
and store very efficiently large datasets (such as images and
video). The basic idea is that if the signal is generated as a
linear combination of a small set of functions (chosen from
a much larger set), then it can be reconstructed very well
from a small, fixed number of randomized measurements.
A solid theoretical foundation has been established for com-
pressed sensing methods, showing that as the number of ran-
dom measurements increases, the error in the reconstruction
decreases at a nearly-optimal rate (Donoho 2006).

Compressed sampling has been studied in the context of
machine learning from two points of view. One idea is to use
random projections to compress the dataset, by combining
training instances using random projections (see e.g. Zhou,
Lafferty, and Wasserman (2007)). Such methods are useful,
for instance, when the training set is too large or one has
to handle privacy issues. Another idea is to project each in-
put vector into a lower dimensional space, and then train
a predictor in the new compressed space (compression on
the feature space). As is typical of dimensionality reduction
techniques, this will reduce the variance of most predictors
at the expense of introducing some bias. Random projections
on the feature space, along with least-squares predictors are
studied in Maillard and Munos (2009), and their analysis
shows a bias–variance trade-off with respect to on-sample
error bounds, which is further extended to bounds on the
sampling measure, assuming an i.i.d. sampling strategy.

In this paper, we provide a bias–variance analysis of ordi-
nary least-squares (OLS) regression in compressed spaces,
referred to as COLS, when random projections are applied
on sparse input feature vectors. We show that the sparsity as-
sumption allows us to work with arbitrary non i.i.d. sampling
strategies and we derive a worst-case bound on the entire
space. The fact that we can work with non-i.i.d. data makes
our results applicable to a large range of problems, includ-
ing video, sound processing, music and time series data. The
results allow us to make predictions about the generalization
power of the random projection method, outside of the train-
ing data. The bound can be used to select the optimal size of
the projection, such as to minimize the sum of expected ap-
proximation (bias) and estimation (variance) errors. It also
provides the means to compare the error of linear predictors
in the original and compressed spaces.



Notations and Sparsity Assumption
Throughout this paper, column vectors are represented by
lower case bold letters, and matrices are represented by
bold capital letters. |.| denotes the size of a set, and ‖.‖0
is Donoho’s zero “norm” indicating the number of non-zero
elements in a vector. ‖.‖ denotes theL2 norm for vectors and
the operator norm for matrices: ‖M‖ = supv ‖Mv‖/‖v‖.
Also, we denote the Moore-Penrose pseudo-inverse of a ma-
trix M with M† and the smallest singular value of M by
σ

(M)
min .
We will be working in sparse input spaces for our pre-

diction task. Our input is represented by a vector x ∈ X
of D features, having ‖x‖ ≤ 1. We assume that x is k-
sparse in some known or unknown basis Ψ, implying that
X , {Ψz, s.t. ‖z‖0 ≤ k and ‖z‖ ≤ 1}. For a concrete ex-
ample, the signals can be natural images and Ψ can represent
these signals in the frequency domain (e.g., see Olshausen,
Sallee, and Lewicki (2001)).

The on-sample error of a regressor is the expected error
when the input is drawn from the empirical distribution (the
expected error when the input is chosen uniformly from the
training set), and the off-sample error is the error on a mea-
sure other than the empirical one.

Random Projections and Inner Product
It is well known that random projections of appropriate sizes
preserve enough information for exact reconstruction with
high probability (see e.g. Davenport, Wakin, and Baraniuk
(2006), Candès and Wakin (2008)). In this section, we show
that a function (almost-)linear in the original space is almost
linear in the projected space, when we have random projec-
tions of appropriate sizes.

There are several types of random projection matrices that
can be used. In this work, we assume that each entry in a
projection ΦD×d is an i.i.d. sample from a Gaussian 1:

φi,j = N (0, 1/d). (1)

We build our work on the following (based on theorem 4.1
from Davenport, Wakin, and Baraniuk (2006)), which shows
that for a finite set of points, inner product with a fixed vector
is almost preserved after a random projection.

Theorem 1. (Davenport, Wakin, and Baraniuk (2006)) Let
ΦD×d be a random projection according to Eqn 1. Let S be
a finite set of points in RD. Then for any fixed w ∈ RD and
ε > 0:

∀s ∈ S :
∣∣〈ΦTw,ΦT s〉 − 〈w, s〉

∣∣ ≤ ε‖w‖‖s‖, (2)

fails with probability less than (4|S|+ 2)e−dε
2/48.

We derive the corresponding theorem for sparse feature
spaces.

1The elements of the projection are typically taken to be dis-
tributed withN (0, 1/D), but we scale them by

√
D/d, so that we

avoid scaling the projected values (see e.g. Davenport, Wakin, and
Baraniuk (2006)).

Theorem 2. Let ΦD×d be a random projection according
to Eqn 1. Let X be a D-dimensional k-sparse space. Then
for any fixed w and ε > 0:

∀x ∈ X :
∣∣〈ΦTw,ΦTx〉 − 〈w,x〉

∣∣ ≤ ε‖w‖‖x‖, (3)

fails with probability less than:

(eD/k)k[4(12/ε)k + 2]e−dε
2/192 ≤

ek log(12eD/εk)−dε2/192+log 5.

The proof is attached in the appendix.
Note that the above theorem does not require w to be in

the sparse space, and thus is different from guarantees on the
preservation of the inner product between vectors in a sparse
space.

Bias–Variance Analysis of Ordinary
Least-Squares

In this section, we analyze the worst case prediction error
of the OLS solution. Then, we proceed to the main result of
this paper, which is the bias–variance analysis of OLS in the
projected space.
We seek to predict a signal f that is assumed to be a (near-)
linear function of x ∈ X :

f(x) = xTw + bf (x), where |bf (x)| ≤ εf , (4)

for some εf > 0, where we assume ‖w‖ ≤ 1. We are given a
training set of n input–output pairs, consisting of a full-rank
input matrix Xn×D, along with noisy observations of f :

y = Xw + bf + η, (5)

where for the additive bias term (overloading the notation)
bf,i = bf (xi); and we assume a homoscedastic noise term
η to be a vector of i.i.d. random variables distributed as
N (0, σ2

η).
Given the above, we seek to find a predictor that for any

query x ∈ X predicts the target signal f(x). The following
lemma provides a bound on the worst-case error of the ordi-
nary least-squares predictor. This lemma is partly a classical
result in linear prediction theory and given here with a proof
mainly for completeness.
Lemma 3. Let wols be the OLS solution of Eqn 5 with ad-
ditive bias bounded by εf and i.i.d. noise with variance σ2

η .
Then for any 0 < δvar ≤

√
2/eπ, for any x ∈ X , with prob-

ability no less than 1 − δvar the error in the OLS prediction
follows this bound:

|f(x)− xTwols| ≤ (6)

‖x‖‖X†‖
(
εf
√
n+ ση

√
log(2/πδ2

var)
)

+ εf .

The proof is attached in the appendix.

Compressed Ordinary Least-Squares
We are now ready to derive an upper bound for the worst-
case error of the OLS predictor in a compressed space. In
this setting, we will first project the inputs into a lower di-
mensional space using random projections, then use the OLS
estimator on the compressed input signals.



Theorem 4. Let ΦD×d be a random projection according
to Eqn 1 and w

(Φ)
ols be the OLS solution in the compressed

space induced by the projection. Assume an additive bias in
the original space bounded by some εf > 0 and i.i.d. noise
with variance σ2

η . Choose any 0 < δprj < 1 and 0 < δvar ≤√
2/eπ . Then, with probability no less than 1−δprj, we have

for any x ∈ X with probability no less than 1− δvar:

|f(x)− xTΦw
(Φ)
ols | ≤

‖xTΦ‖‖(XΦ)†‖
(

(εf + εprj)
√
n+ ση

√
log(2/πδ2

var)
)

+ εf + εprj, (7)

where,

εprj = c

√
k log d log(12eD/kδprj)

d
.

The proof is included in the appendix.
Note that because we use random projections of the type

defined in Eqn 1, the norm of Φ can be bounded using the
bound discussed in (Candès and Tao 2006); we have with
probability 1− δΦ:

‖Φ‖ ≤
√
D/d+

√
(2 log(2/δΦ))/d+ 1 and

‖Φ†‖ ≤
[√

D/d−
√

(2 log(2/δΦ))/d− 1
]−1

.

Similarly, when n > D, and the observed features are
distributed as N (0, 1/

√
D), we have that ‖X†‖ is of or-

der Õ(
√
D/n). Thus ‖(XΦ)†‖ is of order Õ(

√
d/n). In

a more general case, when the training samples are suffi-
ciently spread out, and even when the sample size is small
(d < n < D), we expect the same behavior for the ‖(XΦ)†‖
term2. Assuming that εf = 0 (for simplification), and ignor-
ing the terms constant in d, we can rewrite the bound on the
error up to logarithmic terms as:

Õ

(√
k log(D/k)

1√
d

)
+ Õ

(
ση√
n

√
d

)
.

The first Õ term is a part of the bias due to the projec-
tion (excess approximation error). The second Õ term is
the variance term that shrinks with larger training sets (esti-
mation error). We clearly observe the trade-off with respect
to the compressed dimension d. With the assumptions dis-
cussed above, the optimal projection size is thus of order
Õ(
√
kn), which resembles the suggested size of Õ(

√
n) for

on-measure error minimization discussed in Maillard and
Munos (2009).

Empirical Analysis
In this section, we aim to elucidate the conditions under
which random projections are useful in sparse regression
problems. We start with synthetic regression datasets, in
which the input vectors are sampled from a (D = 1000)-
dimensional feature space, and at most 5% of the features

2This behavior is observed empirically in different experiments.
The technical proof is a subject of future work.

are non-zero in any particular instance (k = 50). The target
function is linear in the input features. The weight vector w
of the target function is generated randomly from a normal
distribution with diagonal covariance matrix.

Bias–Variance Trade-off
In order to be faithful to the theoretical analysis, we study the
bias–variance trade-off using the maximum squared-error on
the training set (on-sample error) and testing set (off-sample
error), as a function of the projection size, in different noise
settings. To do so, we generate weight vectors for the tar-
get function, w, in which each component is drawn inde-
pendently from a normal distribution. Ten of the weights are
generated using a larger variance, such that 80% of the norm
of w is on those elements. This relatively sparse choice of w
helps to illustrate the trade-off, as we discuss later. The fea-
tures of the training and testing instances are also indepen-
dently normally distributed on k randomly chosen elements
and are 0 elsewhere. Both the input values and the weight
vector are of norm ' 1.

We consider two settings. In the first setting, the training
set is smaller than number of original dimensions (n < D),
while in the second, there are more training examples than
the number of dimensions (n > D). In each setting, we
generate different levels of noise, quantified by the ratio be-
tween the standard deviation of the noise and that of the tar-
get function on the training set (similar to the concept of
signal-to-noise ratio from signal processing). We plot the
maximum squared error as a function of the dataset size.

Figure 1 summarizes the trade-off, averaged over 100
runs, when the training and testing sets are of size n = 800.
Even though OLS is not well defined in the original space
when n < D, we can still use the pseudo-inverse of the
input matrix to find the linear fit, among many possible so-
lutions, that has the smallest norm for the weight vector (for
convenience, we call this the OLS solution here). Because
we are using a relatively sparse w, we might get a fit that
is better than the baseline constant predictor (i.e. projection
of size 0). Figure 2 shows a similar analysis for training sets
slightly larger than the number of dimensions (n = 2000).

For small noise levels, OLS in the original space works
well and the plot shows a constant decrease in the error of
the COLS predictor as we use larger random projections.
In these cases, one should use as many features as possible
(depending on the computational cost) for regression. As we
increase the noise level (middle panel of Figure 1 and Fig-
ure 2), the bias–variance trade-off becomes apparent. Here
we see that it is better to use random projections of inter-
mediate size to optimize the trade-off. Finding the optimal
projection size is a challenge. Error bounds such as the ones
presented in this paper give clues on the existence and val-
ues of such optimal sizes; or, one can use cross-validation to
find the optimal projection size, as illustrated in these exper-
iments. Higher noise levels, presented in the right panel of
Figure 1 and Figure 2, make the prediction problem impossi-
ble to solve, in which case the best regression is the constant
baseline predictor. Note that the OLS solution in this case is
significantly worse, so we do not plot it in order to keep the
panels on the same scale.
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Figure 1: Error vs. projection size when n = 800 is less than D = 1000.
The noise ratio is (0.3), (1.1) and (3.0) from left to right. The OLS error for the right-most plot is ' 0.29.
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Figure 2: Error vs. projection size when n = 2000 is greater than D = 1000.
The noise ratio is (1.1), (2.4) and (5.0) from left to right. The OLS error for the right-most plot is ' 0.40.

We can conclude from this experiment that when the
problem is not too easy (almost noiseless), or too difficult
(large noise), random projections of sizes smaller than the
number of dimensions provide the optimal worst-case error
rates. Even in the noiseless setting, if D is very large, we
might still want to use random projection as a form of fea-
ture selection/extraction, instead of L1 regularization meth-
ods, which are significantly more expensive computationally
(Efron et al. 2004).

Sparsity of Linear Coefficients
Next, we analyze the effect of the sparsity of the linear
weight vector (rather than the sparsity of the inputs) on the
worst-case prediction error. In this experiment, we fix the
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Figure 3: Error vs. projection size for different concentration
ofw, when n = 2000,D = 1000 and the noise ratio is (2.4).

noise ratio and observe the bias–variance trade-off as we
change the level of sparsity in the linear coefficients. We use
a similar setting as described in the previous experiment. We
generate a w by sampling from a Gaussian distribution with
mean zero and unit diagonal covariance matrix, and then
scale 10 of its elements such that they account for 50%, 70%
and 90% of the norm of w. The trade-off on the worst-case
testing error and the error of the OLS predictor on the origi-
nal and compressed space are shown in Figure 3.

The results indicate that the trade-off is present even when
we use less concentrated weight vectors. However, random
projections seem to have higher effectiveness in the reduc-
tion of prediction error for highly concentrated weight vec-
tors. This could be due to the fact that in the current setup,
the inner-product between w and points in a sparse space is
better preserved when w is sparse itself. Nevertheless, for
a problem having large enough number of samples and fea-
tures, the trade-off is expected to be apparent even for non-
concentrated weight vectors, as the theory suggests.

Music Similarity Prediction
To assess the effectiveness of random projections as means
of feature extraction for regression in high-dimensional
spaces, we experiment with a music dataset for a simi-
larity prediction task. The task is to predict the similar-
ity between tracks of classical music using audio analysis.
Last.fm (2012) provides a similarity measure between dif-
ferent tracks in its music database, which is calculated us-
ing the listening patterns from the users and the co-presence
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Figure 4: Error vs. number of features used for random pro-
jection and naive feature selection on the music dataset.

of tracks in playlists. For newly added songs, however, this
value is unknown, and thus a predictor might be very useful
for music recommendation or automatic playlist generation.

The regression problem is constructed as follows. We an-
alyze 30 second audio samples of music tracks and apply
frequency analysis on each 200ms segment. Scanning the
entire dataset, we extract the top 50 common chords3. Using
those chords, we then extract the top 1000 common chord
progressions4 of up to 8 segments. Having this set, we can
check whether or not each of these progressions is present
in a music track.

Our training set consists of pairs of music tracks along
with a similarity score between 0 and 1 which is provided
by Last.fm. For each pair of tracks in our training set, we
construct a set of binary features corresponding to the si-
multaneous presence of a certain progression in track one,
and another progression in track two. Therefore, there are
1 million features for each training example. Using random
projections, we reduce the dimension and apply OLS in the
compressed space. We compare this with a naive baseline
which randomly chooses features from the original 1 million
dimensional space and applies OLS on the chosen features.

Figure 4 compares the mean squared-error of the dis-
cussed methods for the training and testing sets, using ten-
fold cross-validation on 2000 training samples. We use the
average here instead of max, as we do not have access to the
true target value and the worst case error contains a noise
term.

The random projection method significantly outperforms
the naive feature selection method, even with relatively
small projection sizes. We expect the error of the naive OLS
predictor to get minimized with a much larger number of
selected features; however, solving the OLS for these larger
problems would become computationally intractable.

This experiment shows that random projections can be
useful in real world prediction tasks with very large feature
spaces, while incurring relatively small computational cost.
However, a more thorough analysis is required to compare
this approach with other commonly used feature extraction
methods.

3Combinations of notes present in each segment.
4Patterns of chords happening in a sequence.

Discussion
In this work, we analyze the worst-case prediction error of
the OLS estimator built on the space induced by random pro-
jections from sparse spaces. We prove that random projec-
tions preserve the inner-product between sparse features and
any fixed vector. This shows that near-linearity is preserved
after the projection into smaller spaces, even for points that
are never observed in the training set.

Leveraging the sparsity assumption in the input space, un-
like previous analysis of random projection for regression
tasks (Maillard and Munos 2009), we provide worst-case
bounds that hold regardless of the distribution of the train-
ing or testing sets. Most noticeably, we do not require i.i.d.
sampling or similarity between the training and testing sets.
This is particularly useful when the regressor is expected to
perform well on data that is not sampled from the same dis-
tribution as the one on which it is trained (e.g. time series
analysis and domain adaptation settings).

Under mild assumptions on the distribution of the training
data, our bound reduces to a bias–variance trade-off on the
prediction error, as a function of the projection size. Increas-
ing the number of projected features reduces the approxima-
tion error of the OLS estimator on the induced space, but at
the same time introduces some estimation error as the num-
ber of learning parameters increases.

The optimal choice for the error trade-off depends on the
structure of the target function (sparsity of w), and the noise
level. Our analysis suggests an optimal projection size of
Õ(
√
nk) for worst-case error minimization, resembling the

suggested size of Õ(
√
n) for on-measure error minimization

(Maillard and Munos 2009). Depending on the noise level,
the minimizer of expected error might be out of the feasible
range of 1 ≤ d ≤ D. This is manifested in our empiri-
cal evaluation of the method. With small noise, it is some-
times better to apply OLS on the original space (or if not
possible, use projections as large as computationally feasi-
ble). For large noise levels and relatively small sample sizes,
we are often in a situation where the best predictor is a con-
stant one. Nevertheless, there is an important range of prob-
lems for which OLS prediction based on random projections
vastly outperforms the prediction in the original space.

Our theoretical and empirical analysis of compressed
OLS estimators provides some level of understanding of the
usefulness of random projections in regression problems.
This work focuses on sparse input space, which are typical
in many fields of machine learning. There are many areas of
future work in this domain. While L1 regularized regression
is not applicable in domains with large feature spaces due to
its computational complexity, other types of linear estima-
tors (e.g. L2 regularized regression) should be analyzed in
the settings we examine.

Since linear predictors are the building blocks of many
learning algorithms, we expect random projections to be
effective means of feature extraction when working with
high dimensional data in many other fields of machine
learning. These include the use of random projections
in audio, video and time-series analysis, or with LSTD-
type algorithms for high-dimensional reinforcement learn-



ing (Lazaric, Ghavamzadeh, and Munos 2010). These re-
main interesting subjects of future work.

Appendix
Proof of Theorem 2. The proof follows the steps of the
proof of theorem 5.2 from Baraniuk et al. (2007). Because Φ
is a linear transformation, we only need to prove the theorem
when ‖w‖ = ‖x‖ = 1.

Denote Ψ to be the basis with respect to which X
is sparse. Let T ⊂ {1, 2, . . . , D} be any set of k in-
dices. For each set of indices T , we define a k-dimensional
hyperplane in the D-dimensional input space: XT ,
{Ψz, s.t. z is zero outside T and ‖z‖ ≤ 1}. By definition
we have X = ∪TXT . We first show that Eqn 3 holds for
each XT and then use the union bound to prove the theorem.

For any given T , we choose a set S ⊂ XT such that we
have:

∀x ∈ XT : min
s∈S
‖x− s‖ ≤ ε/4. (8)

It is easy to prove (see e.g. Chapter 13 of Lorentz, von
Golitschek, and Makovoz (1996)) that these conditions can
be satisfied by choosing a grid of size |S| ≤ (12/ε)k, since
XT is a k-dimensional hyperplane in Rn (S fills up the space
within ε/4 distance). Now applying Theorem 1, and with
‖w‖ = 1 we have that:

∀s ∈ S :
∣∣〈ΦTw,ΦT s〉 − 〈w, s〉

∣∣ ≤ ε

2
‖s‖, (9)

fails with probability less than (4(12/ε)k + 2)e−dε
2/192.

Let a be the smallest number such that:

∀x ∈ XT :
∣∣〈ΦTw,ΦTx〉 − 〈w,x〉

∣∣ ≤ a‖x‖, (10)

holds when Eqn 9 holds. The goal is to show that a ≤ ε.
For any given x ∈ XT , we choose an s ∈ S for which
‖x− s‖ ≤ ε/4. Therefore we have:∣∣〈ΦTw,ΦTx〉 − 〈w,x〉

∣∣ ≤∣∣〈ΦTw,ΦTx〉 − 〈ΦTw,ΦT s〉 − 〈w,x〉+ 〈w, s〉
∣∣+∣∣〈ΦTw,ΦT s〉 − 〈w, s〉

∣∣
≤
∣∣〈ΦTw,ΦT (x− s)〉 − 〈w, (x− s)〉

∣∣+∣∣〈ΦTw,ΦT s〉 − 〈w, s〉
∣∣

≤ aε/4 + ε/2.

The last line is by the definition of a, and by applying Eqn 9
(with high probability). Because of the definition of a, there
is an x ∈ XT (and by scaling, one with size 1), for which
Eqn 10 is tight. Therefore we have a ≤ aε/4 + ε/2, which
proves a ≤ ε for any choice of ε < 1.

Note that there are
(
D
k

)
possible sets T . Since

(
D
k

)
≤

(eD/k)k and X = ∪TXT , the union bound gives
us that the theorem fails with probability less than
(eD/k)k(4(12/ε)k + 2)e−dε

2/192.

The above Theorem requires setting the magnitude error
ε to obtain a probability bound that is a function thereof.
While this result has the same form as Theorem 1, we need

to use it the other way around, by setting the probability of
error and obtaining a corresponding error magnitude. The
following Corollary resolves this translation (the proof is
straightforward by substitution).
Corollary 5. Let ΦD×d be a random projection according
to Eqn 1. Let X be a D-dimensional k-sparse space. Fix
w ∈ RD and 1 > δ > 0. Then, with probability > 1− δ
∀x ∈ X :

∣∣〈ΦTw,ΦTx〉 − 〈w,x〉
∣∣ ≤ ε‖w‖‖x‖, (11)

where ε = c
√

k log d log(12eD/kδ)
d .

Proof of Lemma 3. For the OLS solution of Eqn 5 we have:
wols = X†y = X†(Xw + bf + η)

= w + X†bf + X†η. (12)
Therefore for all x ∈ X we have the error:
|f(x)− xTwols| ≤ |xTwols − xTw|+ εf (13)

≤ |xTX†bf |+ |xTX†η|+ εf . (14)
For the first term (part of prediction bias) on the right hand
side, we have:
|xTX†bf | ≤ ‖xT ‖‖X†‖‖bf‖ ≤ ‖x‖‖X†‖εf

√
n. (15)

For the second term in line 14 (prediction variance), we
have that the expectation of xTX†η is 0, as η is independent
of data and its expectation is zero. We also know that it is a
weighted sum of normally distributed random variables, and
thus is normal with the variance:

Var[xTX†η] = E[xTX†ηηT (X†)Tx] (16)

= σ2
ηx

TX†(X†)Tx (17)

≤ σ2
η‖xT ‖‖X†‖‖(X†)T ‖‖x‖ (18)

≤ σ2
η‖x‖2‖X†‖2, (19)

where in line 17 we used the i.i.d. assumption on the noise.
Thereby we can bound |xTX†η| by the tail probability of
the normal distribution as needed. Using an standard upper
bound on the tail probability of normals, when 0 < δvar ≤√

2/eπ, with probability no less than 1− δvar:

|xTX†η| ≤ ση‖x‖‖X†‖
√

log(2/πδ2
var). (20)

Adding up the bias and the variance term gives us the bound
in the lemma.

Proof of Theorem 4. Using Corollary 5, the following holds
with probability no less than 1− δprj:

f(x) = (ΦTx)T (ΦTw) + bf (x) + bprj(x), (21)
where |bf (x)| ≤ εf , |bprj(x)| ≤ εprj.

Now, using Lemma 3 with the form of a function de-
scribed in Eqn 21, we have:

|f(x)− xTΦw
(Φ)
ols | ≤

‖xTΦ‖‖(XΦ)†‖
(

(εf + εprj)
√
n+ ση

√
log(2/πδ2

var)
)

+ εf + εprj, (22)
which yields the theorem.
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