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Abstract

The personalization of treatment via bio-
markers and other risk categories has drawn
increasing interest among clinical scientists.
Personalized treatment strategies can be
learned using data from clinical trials, but
such trials are very costly to run. This pa-
per explores the use of active learning tech-
niques to design more efficient trials, address-
ing issues such as whom to recruit, at what
point in the trial, and which treatment to
assign, throughout the duration of the trial.
We propose a minimax bandit model with
two different optimization criteria, and dis-
cuss the computational challenges and issues
pertaining to this approach. We evaluate our
active learning policies using both simulated
data, and data modeled after a clinical trial
for treating depressed individuals, and con-
trast our methods with other plausible active
learning policies.

1 Introduction

The heterogeneity of responses to treatment has be-
come a highly influential factor in shaping future drug
development and clinical practices [13]. Already, some
biomarkers (e.g. findings in the brain MRI) and risk
categories (e.g. gender or smoking history) are known
to be strong indicators of differential responses to
treatments. Clinical scientists are very interested in
the development of novel methods to identify subpopu-
lations (i.e. patients stratified based on some biomark-
ers) that respond differently to treatment, and corre-
spondingly, the best treatments for those subpopula-
tions.

Formally, the goal is to learn good Individualized
Treatment Rules (ITR). ITRs are mappings from the
pretreatment observations to treatments. A major

challenge is how best to collect data necessary to learn
good ITRs. The most common approach is to run a
standard Randomized Clinical Trial (RCT), in which
the number of patients in each subpopulation reflects
the relative sizes of each subpopulation, followed by a
stratified data analysis in the hopes of revealing the
best treatment suited for each subpopulation. How-
ever, there are at least two disadvantages to this ap-
proach. First, it usually lacks the power to discern
the treatment effect for many of the subpopulations,
especially when there exist some subpopulations that
are rare or the treatment effects for them are relatively
small. Second, such an approach will also waste trial
resources on subpopulations which experience treat-
ment effects that are relatively large. This second dis-
advantage is particularly problematic, given the high
cost of running clinical trials. In view of these prob-
lems, a more sensible design for developing personal-
ized treatment would be to adapt the number of pa-
tients recruited from each subpopulation, as demanded
by the goal of the trial.

The problem of trial design can be formulated as
a multi-armed bandit [11], whereby each arm corre-
sponds to a (subpopulation, treatment) pair. Each
decision step corresponds to the recruitment and treat-
ment of a new subject. In this paper, we propose a
Minimax bandit model that intelligently recruits pa-
tients from different subpopulations and assigns them
to different treatments, in order to optimize the qual-
ity of the constructed ITR. We formalize two differ-
ent optimization criteria related to the quality of an
ITR, and propose exploration policies for solving them.
We present experimental results comparing the perfor-
mance of our approach to alternative active learning
strategies. We observe that our approach can success-
fully balance the objectives of the clinical trial, in-
cluding recruiting subjects from subgroups for which
there is a high potential of finding good ITRs. The
techniques presented in the paper generalize to a large
spectrum of other domains requiring efficient contex-
tual exploration, including experimental design, drug



discovery, and the design of personalized interfaces.

2 Methods and Algorithms

Consider the following motivating example, in which
one must decide between two treatment options (a1
and a2) for treating subjects from four subpopulations
(c1, . . . , c4). We consider perhaps the simplest goal,
that of assigning each subpopulation to the most effec-
tive of the two competing treatments, ignoring other
characteristics/covariates of the subjects. This goal,
though simple, has recently been of much interest [14],
particularly in the area of stratified medicine [13]. We
denote the mean response under each treatment for
subpopulation ci to be µi1 and µi2. So a treatment
assignment may look like this:

d(ci) =

{
a1 if µ̂i1 − µ̂i2 ≥ 0
a2 if µ̂i1 − µ̂i2 < 0

∀i ∈ {1, 2, 3, 4} (1)

where the µ̂i· are the estimates of µi·. The estimator of
the i-th subpopulation’s treatment effect is µ̂i1 − µ̂i2.

The above treatment rule can be regarded as a special
case of a more general construct, called an Individu-
alized Treatment Rule (ITR) [10]. Formally, for each
patient, we have the pretreatment observation X ∈ X ,
summarizing various aspects of individual heterogene-
ity, treatmentA taking values in a finite, discrete treat-
ment space A, and a real-valued response R (assuming
large values are desirable). An Individualized Treat-
ment Rule, denoted d, is a deterministic decision func-
tion from X into the treatment space A. We aim to
construct this rule so as to maximize the future re-
sponse R. In the above example, X = {1, 2, 3, 4} is
the set of subpopulations and A = {1, 2} is the set of
treatments.

Our goal is to develop an efficient active learning policy
for learning reliable ITRs that inform clinical decision
making. We assume that the constraints of the trial do
not prevent recruiting patients from specific subpop-
ulations. We also assume that the active treatment
period for a patient is of relatively short duration com-
pared to the pace of patient recruitment. Finally, we
assume that once a patient is recruited into the trial,
the treatment and monitoring process are costly, and
thus there is a constrained budget (say N subjects) for
the entire trial.

Within this framework, there are many possible ob-
jectives that can be used to formalize the problem of
online exploration for learning ITRs. For the purposes
of this paper, we focus on two of these:

• Minimize the overall uncertainty about the treat-
ment effects for all subpopulations.

• Minimize the overall error of incorrectly selecting a
nonoptimal treatment for all subpopulations.

We discuss other possible objectives, and issues related
to these choices in Section 5.

The model we use is formally described as follows:
there are C bandits (corresponding to the C subpopu-
lations), each equipped withK arms (corresponding to
the K treatments). At each time step (corresponding
to the recruitment of a patient), we are only allowed
to select one bandit. For that bandit, we need to fur-
ther choose an arm to pull. There will be a total of
N pulls. We assume that the response to pulling the
jth arm of the ith bandit, denoted as (i, j), follows the
distribution Dij , with mean µij (corresponding to the
response to treatment j in the ith subpopulation). At
each time point n, the estimated mean response of arm
j for the ith bandit is µ̂n

ij , and the loss for bandit i is
measured by a known loss function Ln

i . The overall
loss of an online active learning policy π is measured
by the worst-case loss over the C bandits:

Ln(π) = max
1≤i≤C

Ln
i . (2)

We would like to design π such that the loss Ln(π)
is small. In this paper, we consider two concrete loss
functions Ln

i . They are defined in the next two sub-
sections.

2.1 Minimizing the maximal variance of the
estimated treatment effects

In this section, we develop an active learning policy
for a common case in which there are only two treat-
ments per subpopulation (K = 2). Assuming the pa-
tients in the subpopulations respond independently,
we have that the variance of the estimated treatment
effect V[µ̂i1− µ̂i2] = V[µ̂i1]+V[µ̂i2]. Thus we consider
the case where Ln

i =
∑

j={1,2} V[µ̂n
ij ], is the variance

of the estimated treatment effect for subpopulation i.
The corresponding Ln(π) loss refers to the worst un-
certainty about the ITR over the different subpopula-
tions. In the clinical setting, optimizing this criterion
allows us to distribute the resources wisely so that the
learned ITR has a bounded uncertainty (or vice versa,
high confidence) for each subpopulation. This is in
contrast to the approach of using a standard random-
ized clinical trial, in which the number of patients in
each subpopulation reflects the relative sizes of each
subpopulation, and which use equal randomization of
the treatments, thus running the risk of yielding highly
variable estimated treatment effects for some subpop-
ulations.

We base our active learning policy for this optimiza-
tion criterion on an optimal “oracle” allocation policy,
that has been endowed with the knowledge of the vari-
ances σ2

ij of the responses. Note that if an arm (i, j)

has been pulled nij times, then V[µ̂ij ] =
σ2
ij

nij
. Re-



call that there are a total of N pulls. The optimal
oracle allocation can be computed by solving the fol-
lowing convex optimization problem, ignoring integer
constraints on nij :

minimize
nij

maxi
∑

j
σ2
ij

nij
(3)

s.t.
∑

i

∑
j nij = N

nij > 0 ∀i ∀j
The optimal allocation for the ith bandit and jth arm,
ignoring integer constraints, is

n∗
ij =

σij
∑

j σij∑
i(
∑

j σij)2
N ∝

σij
∑

j σij∑
i(
∑

j σij)2
(4)

To see this, note that the above convex optimization
problem can be restated as:

minimize
nij ,r

r

s.t.
∑

j
σ2
ij

nij
≤ r ∀i ∈ {1, ..., C}

∑
i

∑
j nij = N

−nij ≤ 0 ∀i ∈ {1, ..., C}, j ∈ {1, ...,K}
The full Lagrangian is

L(nij , r,λij ,α,βij) = r +
∑

i

λi(
∑

j

σ2
ij

nij
− r)

+α(
∑

i

∑

j

nij −N) +
∑

i

∑

j

βij(−nij)

By the KKT condition, βij = 0 as nij has to be strictly
positive ; ∂L

∂nij
= 0 yields

α =
λiσ2

ij

n2
ij

for all i and j;∂L∂r = 0 yields

1−
∑

i

λi = 0,

and finally, α(
∑

i

∑
j nij − N) = 0. It’s easy to ver-

ify that n∗
ij in (4) and r∗ =

∑
i(
∑

j σij)
2

N are solutions.
Thus, the optimal oracle allocation would recruit n∗

ij

subjects from subpopulation i and assign them treat-
ment j.

Our proposed active learning policy, called Adaptive
Randomization with Estimated Optimal Allocation
(AREOA), uses (4) as the basis for selecting sub-
jects and assigning treatments. It is worth noting

that
{

σij
∑

j σij∑
i(
∑

j σij)2
; i ∈ {1, ..., C}, j ∈ {1, ...,K}

}
forms

a proper probability distribution, so if an active learn-
ing policy samples according to this distribution at
each of the N decision points, it will end up allocating
in expectation n∗

ij for each arm (i, j). Of course, the
values of σij are unknown in an online setting, how-
ever they can be estimated via the sample standard
deviation, σ̂ij , when there is sufficient data. Also, ac-
cording to (4), when either σij or

∑
j σij is large, arm

(i, j) or bandit j should be pulled more often, which is
consistent with our objective. The details of this ac-
tive learning policy (together with two other policies
that will be used for comparison later) are described
in Figure 1. Note that to make AREOA more robust,
our implementation of AREOA starts with an initial
exploratory phase that uses a fixed portion of budget
to estimate the inital values for σ̂, then uses the main
optimality criterion (4) in the context of an epsilon-
greedy strategy that maintains a small probability of
uniform random exploration.

1: Choose each treatment for each subpopulation B times
in the first B×C×K trials where C and K are number
of subpopulations and number of treatments.

2: Set n(n)
ij = B and n = BCK

3: while n ≤ N do
4: Compute the standard error estimate σ̂(n)

ij for treat-
ment (i, j) at time point n

5: Option 1:AREOA.

6: if
∑

i

(∑
j σ̂

(n)
ij

)2
#= 0 then

7: Let τij =
σ̂
(n)
ij

∑
j σ̂

(n)
ij

Z where Z is chosen such that∑
i

∑
j τij = 1

8: else
9: let τij = 1

CK
10: end if

Pick the next subpopulation and treatment pair
(i, j) with probability (1− ε)τij + ε ∗ 1

CK

11: Option 2:AARandom.
Randomly pick a subpopulation i according to its
composition in the general population, and then pick
a treatment j uniformly at random.

12: Option 3:GAFS-MAX.
Assume some arbitrary but fixed ordering for the set
of all (i, j) pairs.

Let Un = {(k, l) : n(n)
k,l <

√
n+ 1}

Let

In+1 =






minUn if Un #= ∅

argmax
(σ̂

(n)
ij )2

n
(n)
ij

otherwise

Choose option In+1 and update n(n+1)
ij accordingly

13: n = n+ 1
14: end while

Figure 1: Algorithm Framework for minimizing the
maximal variance. AREOA is the proposed active
learning policy. AARandom and GAFS-MAX are two
alternative active learning policies.

2.2 Minimizing the maximal probability of
incorrectly selecting suboptimal
treatments

Next, we consider a second objective, namely minimiz-
ing the probability of selecting an incorrect treatment.



Assume that there is a single best treatment for each
subpopulation; let j∗ 1 be the index of the true best
treatment. Define

Ln
i = Pr[max

j #=j∗
µ̂ij ≥ µ̂ij∗ ] ,

the probability that an inferior treatment has equal
or higher estimated mean response for subpopulation
i than that of the true best. The loss Ln(π) =
max1≤i≤C Ln

i aims to control the maximal error of in-
correctly selecting a suboptimal treatment based on
the data. Again, we base our adaptive learning policy
on an optimal oracle allocation that assumes known
subpopulation means and variances:

minimize maxi Pr[maxj #=j∗ µ̂ij ≥ µ̂ij∗ ] (5)

s.t.
∑

i

∑
j nij = N.

Using the standard notation Φ(·) and φ(·) for the cu-
mulative density and density function of standard nor-
mal random variables, we have

Li
def
= L(ni,·;µi,·,σi,·)

def
= Pr[max

j !=j∗
µ̂ij ≥ µ̂ij∗ ]

= 1− Pr

[
max
j !=j∗

µ̂ij < µ̂ij∗

]

= 1− E
[
Pr

[
max

j
µ̂ij < µ̂ij∗ |µ̂ij∗

]]

= 1− E [Πj !=j∗ Pr [µ̂ij < µ̂ij∗ |µ̂ij∗ ]]

= 1− E
[
Πj !=j∗Φ(

µ̂ij∗ − µij

σij/
√
nij

)

]

= 1−
∫

Πj !=j∗Φ(
x− µij

σij/
√
nij

)φ(
x− µij∗

σij∗/
√
nij∗

)
1

σij∗/
√
nij∗

dx

= 1−
∫

Πj !=j∗Φ(

σij∗√nij∗
z + µij∗ − µij

σij/
√
nij

)φ(z)dz, (6)

which yields a closed form for Li. However, Li is not
convex in ni·, neither is maxi Li.

We use the following relaxation to derive a surrogate
for the original objective function:

Pr[max
j !=j∗

µ̂ij ≥ µ̂ij∗ ] ≤
∑

j !=j∗

Pr [µ̂ij ≥ µ̂ij∗ ] ≤
∑

j !=j∗

V(µ̂ij − µ̂ij∗)
(µij − µij∗)2

,

where the first inequality is due to Boole’s inequality,
and the second inequality is due to Chebyshev’s in-
equality. We solve the following convex optimization
problem (ignoring integer constraints):

surrogate:minimize
nij

max
i

∑

j #=j∗

σ2
ij

nij
+

σ2
ij∗

nij∗

(µij − µij∗)2
(7)

s.t.
∑

nij = N.

1For brevity, we abused the notation slightly, in that j∗

depends on i, and should really be written as j∗i .

Table 1: Datasets for the AREOA comparisons
DS subpop./ dist. means variances

treatments

DS1 4/2





.25

.25

.25

.25









1 4
2 2
4 1
2 2









1000 1000
100 100
100 100
100 100





DS2 4/2





.1

.3

.3

.3









1 4
2 2
4 1
2 2









1000 1000
100 100
100 100
100 100





DS3 8/2





.125

.125
...
.125









2 2
2 2
... ...
2 2









5 5
10 10
... ...
640 640





DS4 4/2





.25

.25

.25

.25









1 4
2 2
4 1
2 2









100 1000
100 1000
100 1000
100 1000





DS-CBASP 3/2




1/3
1/3
1/3








10.9 16.2
9.3 19.4
12.9 15.8








99.3 79.7
110.7 55.9
103.5 78.6





Note the similarity of this formulation with (3) in the
previous section. As a matter of fact, the optimal so-
lution can be obtained by properly scaling σij , and is
given by

n∗
ij =

vij
∑

j vij∑
i(
∑

j vij)
2
N, (8)

where
{
v2ij =

1
(µij∗−µij)2

σ2
ij j '= j∗

v2ij∗ =
∑

j #=j∗
1

(µij∗−µij)2
σ2
ij∗ j = j∗.

(9)

As before, we can use the estimators v̂2ij to derive
an active learning policy, which we call MINMAX-
PICS. Note that j∗ is unknown as well, and at
any time point, it is estimated by the argmaxj µ̂ij .
Thus MINMAXPICS selects the next subpopula-
tion/treatment according to the distribution formed

by
{

v̂ij
∑

j v̂ij∑
i(
∑

j v̂ij)2
; i ∈ {1, ..., C}, j ∈ {1, ...,K}

}
.

3 Experiments

3.1 Minimizing the maximal variance

In this section we compare AREOA’s performance
with two alternative active learning policies. All start
by first sampling each subpopulation and assigning
each treatment for a fixed number of times, defined
by parameter B, and then proceed to a loop of ac-
tively selecting the next subpopulation and treatment
pair (i, j) until the budget (e.g. N) runs out. Full
algorithmic details of all three methods are provided
in Figure 1. The first alternative, denoted AARan-
dom, recruits subjects from the subpopulation accord-
ing to the subpopulation fraction in the general pop-
ulation and assigns the treatment uniformly at ran-
dom. The second alternative, denoted GAFS-MAX, is
an active learning policy proposed in [1] for a slightly
different loss function: max1≤i≤C; j=1,2 V[µ̂n

ij ]. This
is similar to the loss in equation (3) however our loss



function makes more sense in the context of the clin-
ical trial since the focus is on a relative comparison
between mean responses (e.g. the treatment effect),
as opposed to the mean responses themselves. In ad-
dition to (deterministically) selecting the next (sub-
population, treatment) pair with the highest estimated
sample variance, GAFS-MAX also forces a revisiting
of (subpopulation, treatment) pairs that haven’t been
visited for some time.

To illustrate the behaviors of the three active learning
policies under different realistic scenarios, we consider
the five data sources described in table 1. The response
for each subpopulation i under treatment j is modeled
using a normal distribution N (µ,σ). The means and
the variances of these normal distributions are detailed
in the table. A number of budgets N are considered
with the maximum budget set to be 200 in all experi-
ments. For each budget, each algorithm was repeated
100 times with different random initializations of the
data sources, so the results reported below are aver-
aged over those 100 runs. Parameter B, the initial
number of pulls per (subpopulation, treatment) pair
is set to 5 for all algorithms. For AREOA, we chose
ε = 0.1 from {0, 0.1, 0.2, 0.3}, though the results were
consistent for B = 5.

For dataset DS1, subpopulation c1 has a large treat-
ment effect variance relative to the other subpopula-
tions. For dataset DS2, the subpopulation distribu-
tion is non-uniform in that subpopulation c1 is rare
compared to the other subpopulations. For dataset
DS3, we consider a scenario where there are 8 subpop-
ulations, with moderate to large variances across sub-
populations. For dataset DS4, we consider a scenario
where all subpopulations have the same variance in
treatment effect, but within each subpopulation there
is a large difference in variance between the estimated
mean responses to each treatment. For dataset DS-
CBASP, the mean and variances are taken from a clin-
ical trial for chronic depression [7]. In this case, pa-
tients are stratified based on the severity of their his-
tory of alcoholism, and the treatment effect variances
of the subpopulations are very similar.

For each dataset, we first plotted the loss of the active
learning policies as the budget (N) increases (Figure
2). In the figures, the dotted lines at the bottom corre-
spond to the optimal loss of the oracle allocation (i.e.∑

i(
∑

j σij)
2

N , with N varying from 1 to 200).

As shown in Figure 2, for DS1, AREOA utilizes
the budget more efficiently than random assign-
ment (AARandom) and GAFS-MAX, particularly for
smaller budgets. For DS2, due to the nonuniform dis-
tribution of the subpopulation distribution, AARan-
dom performs significantly worse than algorithms that

make use of the estimated treatment variances. For
DS3, the performance of GAFS-MAX is worse than
AARandom, which is suspicious; we discuss this fur-
ther below. For DS4, we notice that even in cases
where there are no significant differences in treatment
variance across subpopulations, AREOA still performs
quite well; note that as the budget is spent, AREOA
approaches the optimal oracle allocation slightly more
quickly than AARandom and GAFS-MAX. Recall
that in the dataset DS-CBASP, there is little differ-
ence in estimated variances across subpopulations and
across treatments. In this case, the random assign-
ment policy, AARandom, is perhaps the right choice.
We observe that AREOA converges slowly at the
beginning but approaches the oracle performance as
quickly as AARandom as the budget increases. It is
reassuring to see that AEROA performs in a reason-
able manner, even for cases which it wasn’t specifically
designed to handle.

Focusing further on the peculiarity of GAFS-MAX on
the dataset DS3, we plotted the allocations and vari-
ances of each subpopulation in Figure 3. As is shown
in subfigure (a), (b), there are many plateaus for cer-
tain high variance subpopulations, which are severely
under-explored, due to the fact that resources (alloca-
tions) have been devoted to other subpopulations. We
think there are a couple of causes behind this behavior.
First, when there are many subpopulations, GAFS-
MAX will spend time revisiting subpopulations whose
treatment variance is well estimated. This can be
problematic, especially if the budget is small and there
exists some subpopulations that have much larger vari-
ances and thus still need more exploration. Another
problem with using GAFS-MAX in this setting is the
fixed ordering for picking the next rarely visited arm,
which may also delay a high variance arm being revis-
ited in the short term. To confirm that the algorithmic
behavior of GAFS-MAX is dependent on the ordering
of subpopulations, we reversed their ordering in DS3,
and we see now in subfigure (c) of Figure 3 that the
performance of GAFS-MAX changes significantly.

3.2 Minimizing the probability of selecting
suboptimal treatments

In this section, we evaluate two variants of the active
learning policy MINMAXPICS: MINMAXPICS(SEQ)
and MINMAXPICS(GRP) for minimizing the maxi-
mal error of selecting a suboptimal treatment. MIN-
MAXPICS(SEQ) is a fully sequential algorithm; it se-
lects the next (subpopulation, treatment) pair propor-
tional to {v̂ij

∑
j v̂ij , 1 ≤ i ≤ C, 1 ≤ j ≤ K}, whereas

MINMAXPICS(GRP) selects the next subpopulation
proportional to {(

∑
j v̂ij)

2, 1 ≤ i ≤ C}, and then ran-
domly assigns one patient to each treatment. Note



Table 2: Datasets for the MINMAXPICS comparison
DS subpop./ dist. means variances

treatments

DS21 4/3





.25

.25

.25

.25









20 10 10
20 10 10
20 10 10
20 10 10









50 50 50
50 50 50
50 50 50
50 50 50





DS22 4/3





.25

.25

.25

.25









20 19 15
20 10 10
20 10 10
20 10 10









50 50 50
50 50 50
50 50 50
50 50 50





DS23 5/3





.05

.05
.3
.3
.3









20 15 15
20 15 15
... ... ...
20 15 15









50 50 50
50 50 50
... ... ...
50 50 50





DS24 8/3





.125

.125
...
.125









20 15 15
20 10 10
... ... ...
20 10 10









50 50 50
50 50 50
... ... ...
50 50 50





DS2-CBASP 3/2




1/5
2/5
2/5








10.9 16.2
9.3 19.4
12.9 15.8








99.3 79.7
110.7 55.9
103.5 78.6





that
∑

j v̂ij
∑

j v̂ij = (
∑

j v̂ij)
2 for each subpopula-

tion, and we are interested in this variant because it re-
quires fewer interim decision points within a trial, so it
may reduce the burden on the trial recruiters. For our
algorithms, we also employed a similar epsilon-greedy
strategy (with ε = 0.1) as that in AREOA. Next, we
define a baseline for this problem to be the objective
value for (5), calculated by the solutions (8) of the sur-
rogate objective function (7). This baseline provides
an estimate of how well MINMAXPICS would perform
if it started with the exact prior knowledge and acted
greedily according to it.

As before, we included AARandom in our compar-
isons. Again, B is set to 5 for all the experiments,
so the overall initialization budget varies from dataset
to dataset because each dataset may have different
number of subpopulations and treatments. The or-
acle allocation was drawn starting from the budget
for initialization to the maximal budget. The details
of the datasets used are given in table 2 and the re-
sults are presented in Figure 4. The maximal budget
is equal to 200 subjects for DS21—DS23. For dataset
DS21, in which all subpopulations have the same large
treatment effect, all algorithms obtain optimal results
even for smaller budgets. Dataset DS22 reflects the
setting in which there is a small, but clinically sig-
nificant, effect between treatments 1 and 2 for one of
the subpopulations (here subpopulation 1). Both our
active learning policies were able to direct resources
quickly to this subpopulation to pick up this effect. For
dataset DS23, we assume subpopulations 1 and 2 are
rare, so uniform random assignment completely fails to
identify the correct treatment. For dataset DS24, we
assume there exists many subpopulations, a situation
that could happen with complex stratification based
on multiple biomarkers. Also for better displaying the
trend, the maximum budget is increased to 250 for
this dataset. One of the subpopulations has slightly
smaller treatment effect, again the uniform random
assignment failed to identify the correct treatment be-

cause the resources are spread too thin. As before,
the DS2-CBASP example is modeled after a clinical
dataset with three subpopulations [7]. The budget is
set to 700 mimicking 680, the number of patients in
the original trial. we also assume that subpopulation
1 is slightly rare. We observe advantage of our meth-
ods when the budget is limited. For example, it takes
about 255 subjects to reach 20% error rate, while it
takes almost 500 subjects for AArandom. We also see
that oracle allocations indicate that there is a lot of
room for improvement with prior knowledge. Overall,
MINMAXPICS-SEQ and MINMAXPICS-GRP per-
formed about the same.

4 Related Work

This problem addressed in this paper is related to
the famous “multi-armed bandit problem” by Rob-
bins [11]. For example, in clinical trials, our formu-
lation bears formal similarity with some of response
adaptive trials [14], popular in cancer research, which
also divide patients into groups. These trials aim to
place more subjects on what appears to be the better
treatment in each group. A key difference between our
work and the conventional multi-armed bandit prob-
lem is that in the latter, one tries to maximize the
cumulative rewards over all pulls, whereas with this
work, one simply wants to maximize a measure of the
quality of the resulting ITRs once the budget is used
up. Problems with similar interests in only the “end
results” have been studied under the names of “bud-
geted” multi-armed bandit problems [9, 4]. Budgeted
learning is related to this problem in several ways.
First, both have a “hard” budget constraint. Second,
the performance depends on the quality of the final
decision once the budget is exhausted. For our first
objective in Section 2.1, the closest work to ours is
that of Antos et al.[1] with a similar goal of reducing
the variances of the estimated mean values.

Our work is also related to the topic of active learning,
which has a long history in machine learning [3, 12]
as well as in statistics; in the latter this is generally
referred to as optimal experimental design [5]. The
main objective of this line of research is to reduce the
variance of prediction over parameter estimates, while
controlling the bias of the prediction at the same time.
Our problem shares some similarity with this litera-
ture in that our first formulation is to minimize the
maximal variance of the estimated treatment effects.

Our second optimization criterion (Section 2.2), is re-
lated to the topic of ranking and selection (R&S) in
operations research [8]. In particular, our allocation
scheme is related to a popular method called OCBA
[2] for R&S problems in the setting in which there is



only one subpopulation. Essentially, ranking and se-
lection is a form of budgeted learning with 0-1 loss
functions, though the focus there is on the minimally
required sample size and the statistical soundness of
the online procedures.
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(b) gafs-max subpopulation
variances
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(c) DS3 with subpopulation or-
dering reversed

Figure 3: Algorithm GAFS-MAX on DS3, subfigure
(a), (b) are the subpopulation allocations and vari-
ances, subfigure (c) uses the same dataset as DS3, with
ordering of the subpopulations reversed

5 Summary and Future Work

We presented an active learning approach for acquiring
data with the goal of learning individualized treatment
rules. The first optimization criterion aims to bound
the worse case uncertainty of the ITR for any subpop-
ulation, while the second optimization criterion aims
to bound the worse case error of picking a suboptimal
treatment for any subpopulation. For both optimiza-
tion criteria discussed, we demonstrated the potential
of active learning policies for cost-saving, in compari-
son with a completely randomized exploration policy.
Currently, the total budget is expressed as a parame-
ter (N). It would be useful to provide a way to esti-
mate the required total budget so as to ensure that the
budget is not too small to provide a high quality ITR.
One potential issue with selecting a single best treat-
ment (Section 2.2) is that when there is no clear winner
among treatments for a subpopulation, our approach

would still devote excessive resources to it. One way
to avoid this is to incorporate a stopping rule, causing
the approach to “give up” on this subpopulation. An-
other way is to modify the objectives to select any near
optimal treatment not far away from the best treat-
ment. Pertaining to this idea, yet another meaningful
objective is to identify as many good treatments for all
subpopulations under the budget constraint. Finally,
“dynamic treatment regimes” or “adaptive treatment
strategies” [10, 6] naturally generalize the idea of ITRs
to multiple stages by constructing a sequence of deci-
sion rules, one for each disease stage. The extension of
the ideas presented in this paper to such time-varying
settings is also an interesting avenue for future work.
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(a) DS1
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(b) DS2
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(c) DS3
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(d) DS4
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(e) DS-CBASP

Figure 2: Simulation results for the objective of minimizing overall variance
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(a) DS21
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(b) DS22
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(c) DS23
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Figure 4: Simulation results for the objective of minimizing overall error of selecting suboptimal treatment


