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Abstract

Real-world reinforcement learning problems
often exhibit nonlinear, continuous-valued,
noisy, partially-observable state-spaces that
are prohibitively expensive to explore. The
formal reinforcement learning framework, un-
fortunately, has not been successfully demon-
strated in a real-world domain having all of
these constraints. We approach this domain
with a two-part solution. First, we overcome
continuous-valued, partially observable state-
spaces by constructing manifold embeddings
of the system’s underlying dynamics, which
substitute as a complete state-space represen-
tation. We then define a generative model
over this manifold to learn a policy off-line.
The model-based approach is preferred be-
cause it enables simplification of the learn-
ing problem by domain knowledge. In this
work we formally integrate manifold embed-
dings into the reinforcement learning frame-
work, summarize a spectral method for esti-
mating embedding parameters, and demon-
strate the model-based approach in a com-
plex domain—adaptive seizure suppression of
an epileptic neural system.

1. Introduction

A driving force in reinforcement learning research is
the growing need for intelligent, autonomous control
strategies that operate in real-world domains. Inter-
esting real-world problems, however, often exhibit non-
linear, continuous-valued state-spaces that are only
partially observable through signals containing some
degree of noise. In a fully observable state represen-
tation the first two domain characteristics may be ad-
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dressed by turning to a rich literature of function ap-
proximation. The third characteristic, partial observ-
ability, however, makes this class of problem arguably
more complex because the functional dependence of
the state-space must first be guaranteed before approx-
imation may proceed.

Partial observability is not unique to reinforcement
learning. Predictive modeling and dynamic systems
research have long identified and addressed partial ob-
servability (Sauer et al., 1991) from a geometrical per-
spective through the method of delayed embeddings,
known as Takens Theorem (Takens, 1981). In this ap-
proach, sequences of partial observations are grouped
(i.e. embedded) onto a higher-dimensional embedding
to characterize the phase space of the underlying sys-
tem. This method is the basis for many nonlinear
noise filtering and context-based predictive modeling
approaches (Parlitz & Merkwirth, 2000; Huke, March
2006).

The appropriate embedding parameters of a system,
unfortunately, are generally unknown a priori and
must be determined empirically. Assuming that fixed-
policy data is available we can estimate these parame-
ters via spectral analysis (Galka, 2000). Moreover, the
dynamic preserving characteristics of manifold embed-
dings allow us to take an additional step and directly
model the system. This is an ideal domain for model-
based reinforcement learning.

The primary contribution of this paper is to demon-
strate reinforcement learning applied to a embedding-
based generative model. For our example we choose a
challenging problem in neuroscience research, adaptive
seizure suppression via neurostimulation of epileptic
brain tissue.

2. Background

Our research lies at the intersection of disparate re-
search threads. To provide a single mathematical for-
malism, in this section we first work through the math-



Manifold Embeddings for Model-Based Reinforcement Learning of Neurostimulation Policies

ematics of reinforcement learning, partial observabil-
ity, and embedding theory. We then detail the spec-
tral method used to construct manifold embeddings in
practice and motivate why this method is successful.

2.1. Reinforcement Learning

Reinforcement learning (RL) is a class of problems
in which an agent learns an optimal solution to a
multi-step decision task by interaction with its envi-
ronment (Sutton & Barto, 1998). We focus on the
Q-learning formulation.

Consider a system (i.e. the environment), which
evolves according to nonlinear discrete dynamic sys-
tem g,

s(t + 1) = g(s(t), a(t)). (1)

This function maps the state of the world, s(t), at the
current time, t, and action, a(t) (i.e. decision), onto
the state of world one time-step into the future. The
environment also includes a reward function r(t) =
h(s(t)), which is a scalar measure of the goodness of
taking the previous action with respect to the goal of
the multi-step decision task. The agent selects actions
according to the policy, π,

a(t) = π(s(t)). (2)

We define reinforcement learning as the process of
learning the policy function that maximizes the ex-
pected sum of future rewards. The optimal sequence
of actions is the optimal policy, π∗, and the maximum
expected sum of future rewards is termed the action-
value function or Q-function, Q∗(s(t),a(t)), defined as

Q∗(s(t), a(t)) = r(t + 1) + γQ∗(s(t + 1), a(t + 1)), (3)

where γ is the discount factor. We can then specify
the optimal policy, π∗, in terms of the Q-function,

π∗(s(t)) = argmax
a

Q∗(s(t), a). (4)

Equations 3 and 4 assume that Q∗ is known. Without
a priori knowledge of Q∗, an approximation, Q, must
be constructed iteratively, using temporal difference
error (Sutton & Barto, 1998).

2.2. Embedding Foundations

The formulation of Q-learning presented above relies
on an assumption of state observability. That is, the
complete environment state, s, is an injective function
of the observable state, s̃. In real world domains this
is often untrue. A major topic in dynamic systems,

signal processing, and time-series analysis is the re-
construction of complete state from incomplete obser-
vations. One such reconstruction process, the method
of delayed embeddings, may be defined formally by
applying Takens Theorem (Takens, 1981). Here we
will present the key points utilizing the notation of
Huke (Huke, March 2006).

Consider the state-space, s, of the environment is an
M -dimensional, real-valued vector space and a is a
real-valued action input to the environment. We sub-
stitute Equation 2 into Equation 1 and compose a new
function, φ,

s(t + 1) = g(s(t), π(s(t))),

= φ(s(t)),

which specifies the discrete time evolution of our com-
bined system of agent and environment. Assume
that this system is partially observable via observa-
tion function, y, such that

s̃(t) = y(s(t)),

where y : RM → R and y is noise free and represented
with infinite floating point precision. If φ is invertible,
and φ, φ−1, and y are differentiable we may apply
Takens Theorem to reconstruct the dynamics of sys-
tem φ(s(t)) using the observables s̃(t). For each s̃(t),
we construct a vector sE(t),

sE(t) = [s̃(t), s̃(t − 1), ..., s̃(t − E)]. (5)

If E > 2M then the vectors sE(t) lie on a subset of RE

which is an embedding of our original system (Huke,
March 2006). This embedding forms a new dynamic
system which preserves the structure of the original
system. Thus, not only does there exist a vector sE(t)
for each observation s̃, but the dynamics governing the
evolution of these vectors in time is preserved, such
that there exists a function, ψ,

sE(t + 1) = ψ(sE(t)). (6)

In the context of reinforcement learning, the vectors
sE(t) may be substituted into Equations 3 and 4 as
replacements for complete state s(t) without loss of
generality. In this same context, however, embeddings
exhibit a serious limitation. Because we roll the policy
into the definition of the state transition, each element
of the reconstructed state space is policy dependent.
Therefore, an embedding is only explicitly valid for the
policy π under which the time-series was observed. By
changing the policy slowly, and by carefully choosing
a robust function approximation, these effects can be
minimized.
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2.3. Spectral Embedding Method

Embedding theory does not tell us how to select the
embedding parameters. In general, the intrinsic di-
mension of the system, M , is unknown and not eas-
ily determined. Therefore, we need a reliable method
for selecting parameters that yield a high-quality em-
bedding. In practice we utilize a spectral method
(Galka, 2000) employing the singular value decompo-
sition (SVD).

A summary of this method follows. Consider a
partially-observable, discretely-sampled time-series, s̃,
of length S̃ that we desire to embed. We choose a suf-
ficiently large fixed embedding dimension, E. Suffi-
ciently large refers to a cardinality of dimension which
is certain to be greater than the dimension in which
the actual state-space resides.

The spectral method we propose works by manipulat-
ing s̃ into a form usable in Equation 5. To do this we
define the embedding window size, Tmin. We then uti-
lize a desample rate, τ = Tmin/(E − 1), to uniformly
select elements of s̃ from the window Tmin, according
to the rule,

sE(t) = [s̃(t), s̃(t − τ), ..., s̃(t − (E − 1)τ)]. (7)

We assume a range [T low
min, Thigh

min ] and interval, ∆Tmin,
over which to explore, Tmin(i) = T low

min + i∆Tmin, i ∈
1, 2, ..., Nmin where Nmin = Thigh

min /∆Tmin. A good

upper bound, Thigh
min , is the fundamental period of the

system if estimable.

For each i, we construct the vectors sE(t), t ∈

1, ..., NE(i), where NE(i) = S̃ − Tmin(i), and concate-
nate them as rows of a matrix, SE(i), of size NE ×E.
We compute the SVD of SE(i),

SE(i) = U(i)Σ(i)VT (i)

where Σ(i) is a diagonal matrix of loadings, (i.e. the
energy contained in the dimensions of the new space)
and VT (i) is the basis of the SVD coordinate space.
We store the diagonal of each Σ(i) for analysis as the
ith row of matrix χ, of size Nmin × E.

Why is spectral method effective for identifying high-
quality embedding parameters? In the SVD decompo-
sition, the right singular vectors, VT are the Eigen
vectors of the covariance matrix of the embedding,
CE = ST

ESE , if matrix SE is mean centered. There-
fore, columns of U define the principal components of
SE (Kirby, 2001).

In the limits of this embedding technique the covari-
ance matrix, CE , will take on two forms. For very
small Tmin the rows of SE are redundant, which drives

elements of CE toward a uniform constant value.
Thus, CE is rank one and all of the variance is in the
first component. This is the time-series itself. In the
second case, for very long Tmin, the rows of SE become
uncorrelated. Therefore, diagonal values of the covari-
ance matrix, CE , will trend toward constant values
while off-diagonal elements tend to zero. In this case
CE is full rank and is indistinguishable from noise.

Suitable embedding parameters can be found by analy-
sis of the principal components at intermediate lengths
of Tmin. Good embedding parameters are found when
a subset (preferably small) of the eigenvalues stored
in the iopt row of χ simultaneously exhibit a local op-
tima. The value Tmin(iopt) identifies the appropriate
embedding window length, which also determines the
desample rate τ(iopt). The subset of eigenvalues with
non-trivial values defines the appropriate embedding
dimension, E′.

3. Methods

Our approach combines best practices from both non-
linear dynamic analysis and reinforcement learning to
identify high-quality policies in partially observable,
real-world domains that are prohibitively expensive to
explore. This practice incorporates the following steps:
1) record a partially observable system under the con-
trol of a random policy or some other policy or set
of policies known to be near the desired optimal pol-
icy; 2) perform spectral embedding; 3) identify good
candidate parameters for embedding; 4) choose a lo-
cal function approximator well-suited to the demands
of the embedding; 5) construct an integrable model of
the system’s dynamics; and 6) learn a desired policy
on this model via reinforcement learning.

4. Case Study: Adaptive
Neurostimulation

Epilepsy afflicts approximately 1% of the world’s pop-
ulation (The Epilepsy Foundation, 2009). Of those
suffering from this disease 30% do not respond to
currently available anticonvulsant treatments or are
not candidates for surgical resection. Development of
new treatments, therefore, is a priority for epilepsy re-
search.

Neurostimulation shows promise as an epilepsy treat-
ment. In vitro studies indicate that fixed-frequency
external electrical stimulation applied to substruc-
tures within the hippocampus can effectively suppress
seizures (Durand & Bikson, 2001). Fixed-frequency
policies, however, do have limitations. In vitro neu-
rostimulation experiments suggest that the efficacy of
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fixed-frequency stimulation varies across epileptic neu-
ral systems. The recency of this technology also raises
questions about long-term impacts such as stimulation
induced tissue damage.

These limitations motivate the search for stimulation
policies that satisfy additional constraints. Ideally, a
treatment policy should adapt to optimally suppress
seizures in each unique patient while minimizing the
number of stimulations necessary to do so. By posing
the problem’s components in this way, an agent (im-
plant) that learns a policy (treatment) that maximizes
rewards (maximum suppression using minimum stim-
ulation constraints) by interacting with the environ-
ment (patient), we can recast neurostimulation treat-
ment of epilepsy, formally, as a reinforcement learning
problem (Sutton & Barto, 1998).

Recasting as a learning problem requires that these
components be mathematically well-defined. The
complex dynamics of neural systems, however, are typ-
ically observable only through low-dimensional time-
series corrupted by noise (e.g. extracellular record-
ing electrodes). Therefore, the objectives of this case
study are twofold: 1) identify low-dimensional state-
space and transition model from field potential record-
ings of neural systems that accurately reproduces ob-
served neural dynamics and 2) learn a neurostimula-
tion therapy in this model that minimizes both seizures
and stimulations.

To fulfill our first objective we construct a state-space
and transition model from previously recorded data
under fixed policies. Our dataset is comprised of field
potential recordings from five epileptic rat hippocam-
pal slices were made under fixed-frequency stimula-
tion policies of 0.2, 0.5, and 1.0 Hz as well as control
(i.e., unstimulated). The dataset totals 4,639 seconds
of recordings including 15 seizures (seizure labels are
hand annotated).

From this dataset we desire to construct a high-quality
state-space and transition model, using only the con-
trol data. We measure quality as the predictive ac-
curacy of a generative model built from these com-
ponents. Using the spectral embedding method, pre-
sented in Figure 1, we extract the manifold embed-
ding parameters of the dataset (E′ = 5, Tmin = 1.2
seconds) and then embed the dataset, using Equa-
tion 5. This defines the state-space of our system in
RE′

. We define the transition model as the local time-
derivative of the element of the dataset that is nearest
the current state (i.e., a nearest neighbors derivative).
Because the stimulation events are not logged in the
dataset, we must find a reasonable mapping of actions
into our domain. To do this, we define an action as an
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Figure 1. Selecting embedding parameters via PCA: (a)
eigenvalues of the principal components of the embedding
as a function of embedding window length Tmin holding
embedding dimension constant at E′ = 15; (b) detail of
principal components 2–15 from plot (a) for the embed-
ding window range Tmin = [0.1, 4] seconds, highlighting
the local maxima of components 2–5 in this range.

interictal-like derivative which is added to the current
derivative of the system. We then define the genera-
tive model of the system as numerical integration over
the embedding.

We simulate rat hippocampal dynamics under control
and fixed-frequency stimulation policies, choosing the
embedding parameters that yield the smallest simu-
lation error with respect to analogous fixed-frequency
policies in the dataset.

Using reinforcement learning, we find an optimal pol-
icy which maximizes seizure suppression with minimal
stimulations. We define the Q-function approximation
for each state in RE′

as the Q-value of the nearest el-
ement of the model. Actions take one of two forms,
either on or off. We perform ε-greedy SARSA on the
generative model subject to the reward function (-1 for
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Mean Frac. Mean Seizure Mean Seizure
of Seiz. States Length (s) Interval (s)

model 0.19 ± 0.02 61.0 ± 4.6 251.7 ± 14.5
data 0.19 ± 0.03 64.4 ± 39.4 271.6 ± 121.3

Table 1. Comparison of summary statistics between the
original dataset and 30 generative model simulations of
40,000 seconds.

Mean Fraction of Seizure States
policy 0.2 Hz 0.5 Hz 1.0 Hz Adaptive∗

model 0.15±0.02 0.14±0.02 0.12±0.02 0.02±0.01
data 0.16±0.23 0.12±0.16 0.08±0.09 —

Table 2. Comparison of summary statistics between the
original dataset and 30 generative model simulations of
40,000 seconds under fixed-frequency neurostimulation
of 0.2, 0.5, and 1.0 Hz and adaptive neurostimulation
(∗effective frequency = 0.02 Hz).

each stimulation and -20 for visiting an element of the
dataset that is labeled seizure). We restart the stim-
ulation from a random initial element of the dataset
every 1,500 steps (5 min. simulation time) until 90% of
the model states have been visited during simulation
more than 20 times.

Performance validation of the simulation is summa-
rized in Tables 1 and 2 for both control and fixed fre-
quency stimulation policies. The model’s seizure dy-
namics and suppression predictions fall within confi-
dence intervals of the original dataset. Our learned
stimulation policy achieves 0.02 ± 0.01 fraction of
seizure states using an effective mean stimulation fre-
quency of 0.02Hz, more than an order of magnitude
better than the best fixed-frequency policy.

The learned policy also provides useful qualitative
knowledge of the domain. For each simulation time-
step, we calculate the nearest dataset element of the
current state, the seizure label of this element, and
the action requested. From this data we construct the
agent’s policy graph, Figure 2(a), projected onto the
first two principle components. This graph is formed
by 1) drawing edges between elements of the dataset
that request stimulation events less than 4 seconds
apart and 2) scaling each element’s size by the pro-
portion of stimulations requested by the agent at that
element.

This graph unmasks two distinct classes in the learned
policy. The first class consists of pulse trains requested
when the simulation operates in the post-seizure region
of the manifold, Figure 2(b). These pulse trains are vi-
sually identifiable as cliques in the policy graph formed
by the edges. The second policy class consists of in-

dividual, well-timed stimulations requested when the
simulation operates in the dynamically normal region
of the manifold, Figure 2(c)—note the lack of edges,
indicating individual stimulation requests.

Without on-line verification of this policy, these results
are of limited value. Qualitatively, however, these re-
sults agree well with neurostimulation results found in
the literature (Durand & Bikson, 2001). Prior stud-
ies have observed 1) avoidance of full seizure devel-
opment using well-timed stimulations immediately at
seizure onset (i.e., at the interface between normal and
seizure dynamics) (Durand & Warman, 1994) and 2)
early termination of fully developed seizures via low-
frequency stimulation (D’Arcangelo et al., 2005). The
learned neurostimulation policy incorporates both of
these policy classes, but applies them under differ-
ent dynamic regimes, seemingly to maximize the sup-
pression benefits of each class. The literature does
not claim that well-timed stimulations can abort fully
developed seizures. Moreover, there exists evidence
suggesting that fixed-frequency policies below 0.2 Hz
exhibit little or no seizure suppression. Therefore, it
makes sense that a well-timed stimulation policy in the
normal regime, if possible, would be the best available
choice.

5. Discussion

The reinforcement learning community has long been
aware of the need to find low-dimensional represen-
tations to capture complex domains. Approaches for
efficient function approximation, basis function con-
struction, and discovery of embeddings have been the
topic of significant investigations (Bowling et al., 2005;
Keller et al., 2006; Smart, 2004; Mahadevan & Mag-
gioni, 2007). However most of this work has been
limited to the fully observable (MDP) case and has
not been shown to extend to partially observable en-
vironments. The question of state space representa-
tion in partially observable domains was tackled under
the POMDP framework (McCallum, 1996) and more
recently in the PSR framework (Singh et al., 2003).
While these methods tackle a similar problem they
have primarily been limited to discrete action and ob-
servation spaces.

The PSR framework was recently extended to contin-
uous (nonlinear) domains (Wingate & Singh, 2007).
This method is significantly different from our work,
both in terms of the class of representations it consid-
ers and in the criteria used to select the appropriate
representation. Furthermore, it has not yet been ap-
plied to real-world domains. Nonetheless it could po-
tentially be used to tackle the problems presented in
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Figure 2. Policy analysis: (a) The learned policy graph
plotted on the first two-principle components of the em-
bedding manifold. (b) Detail of the policy graph in the
post-seizure portion of the attractor. (c) Detail of the pol-
icy graph in the dynamically normal portion of the attrac-
tor.

Section 4; an empirical comparison with our approach
is left for future consideration.

The implications of this technique for modeling poorly
understood, partially observable domains are more
concrete. We demonstrate a data-driven, generative
model construction technique that accurately repro-
duces the dynamics of fixed-frequency electrical stim-
ulation applied to a slice of epileptic neural tissue. Us-
ing reinforcement learning, we identify an optimal sup-
pression policy that is, interestingly, two-class. This
learned policy predicts a dependence between suppres-
sion efficacy of these two policy classes and the dy-
namic regime in which these policy classes are applied,
which is supported, in part, by previous in vitro ex-
periments.
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