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Abstract

This paper presents a scalable control algorithm
that enables a deployed mobile robot to make
high-level control decisions under full consider-
ation of its probabilistic belief. We draw on in-
sights from the rich literature of structured robot
controllers and hierarchical MDPs to propose
PolCA, a hierarchical probabilistic control algo-
rithm which learns both subtask-specific state ab-
stractions and policies. The resulting controller
has been successfully implemented onboard a
mobile robotic assistant deployed in a nursing fa-
cility. To the best of our knowledge, this work is
a unique instance of applying POMDPs to high-
level robotic control problems.

1 Introduction

Real-world robotic control problems are characterized by
large numbers of states, and in some cases equally large
action sets. To control a robot effectively, it is necessary to
learn a good policy. That is, for each state of the world (or
for each state of the robot’s knowledge of the world), we
must learn which action to take. A good policy minimizes
costs over time, and is also robust both to possible stochas-
tic action effects and to the limited observability of world
state which arises from noisy and inaccurate sensors.

Our search for a robust robot controller is motivated by the
Nursebot project (Montemerlo et al., 2002). This project
has developed a mobile robot assistant for elderly institu-
tionalized people. Key tasks of the robot include deliver-
ing information (reminders of appointments, medications,
activities) and guiding people through their environment
while interacting in socially appropriate ways. Designing
a good robot controller for this domain is critical since the
cost of executing the wrong command can be high. Poor
action choices can cause the robot to wander off to another
location in the middle of a conversation, or to tell a user to

take the wrong medication. The design of the controller is
complicated by the fact that much of the human-robot in-
teraction is speech-driven. While today’s recognizers yield
high recognition rates for articulate speakers, elderly peo-
ple often lack clear articulation or the cognitive awareness
to place themselves in an appropriate position for optimal
reception. Thus the controller must be robust to high noise
levels when inferring, and responding to, users’ requests.

Some of the most successful robot control architectures
rely on structural assumptions to tackle large-scale control
problems (Brooks, 1986; Arkin, 1998). The Subsumption
architecture for example uses a combination of hierarchi-
cal task partitioning and task-specific state abstraction to
produce scalable control systems. However it, and other
similar approaches, rely on human designers to specify all
structural constraints (hierarchy, abstraction) and in some
cases even the policies. This can require significant time
and resources, and often lead to sub-optimal solutions.

This paper describes a new probabilistic planning algo-
rithm called PolCA (for Policy-Contingent Abstraction).
Though very much in the tradition of earlier structured
robot architectures, PolCA leverages techniques from the
MDP literature to formalize the framework and automat-
ically learn task-specific abstraction and policies. PolCA
uses a human-designed task hierarchy which it traverses
from the bottom up, learning an abstraction function and
recursively-optimal policy for each subtask along the way.

PolCA shares significant similarities with well-known hier-
archical MDP algorithms (Dietterich, 2000; Andre & Rus-
sell, 2002), in terms of defining subtasks and learning poli-
cies. However PolCA improves on these in three ways
which are essential for robotic problems. First, it requires
less information from the human designer: he or she must
specify the action hierarchy, but not the abstraction func-
tion. In our experience human experts are faster and more
accurate at providing hierarchies than they are at providing
state abstractions, so PolCA benefits from faster controller
design and deployment. The automatic state abstraction is
done using an algorithm by Dean and Givan (1997), which
has not been previously used in the context of hierarchies.



Second, PolCA performs policy-contingent abstraction: the
abstract states at higher levels of the hierarchy are left un-
specified until policies at lower levels of the hierarchy are
fixed. By contrast, human-designed abstraction functions
are usually policy-agnostic (correct for all possible poli-
cies) and therefore cannot obtain as much abstraction. Hu-
mans may sometimes (accidentally or on purpose) incorpo-
rate assumptions about policies into their state abstraction
functions, but because these are difficult to identify and ver-
ify, they can easily introduce bugs in the final plan.

Finally, PolCA extends easily to partially observable plan-
ning problems, which is of utmost importance for robotic
problems. We call the POMDP version of the algorithm
PolCA+ to avoid confusion. We present theoretical results
about PolCA, consistent with earlier hierarchical MDP re-
sults, and present experiments involving both PolCA and
PolCA+. In particular, we describe the performance of the
PolCA+ controller onboard the robot during deployment
in a nursing home near Pittsburgh, PA. While much of the
techniques at the heart of PolCA+ are well-known in the
MDP community, this paper shows how they can be ap-
plied to subsumption-style hierarchical robot control archi-
tectures to solve real-world robot problems.

2 The Nursebot Initiative

Figure 1: Pearl, the robotic nursing assistant, interacting with
elderly people at a nursing facility.

The Nursebot initiative is a multi-disciplinary effort to de-
velop a robotic nursing assistant. Pearl, the robot shown
in Figure 1, has been deployed in a nursing home near
Pittsburgh, PA. It employs a rich suite of navigation and
recognition routines developed previously and described
elsewhere (Montemerlo et al., 2002; Pollack, 2002). The
robot’s high-level controller, which is the focus of this pa-
per, is concerned with decisions concerning the robot’s
overall behavior. Actions at this level generally involve two
types of activities: (1) emitting a speech signal generated
from a fixed grammar and displaying the information on
the screen, and (2) moving to a designated target location.
Due to the complexity of the interactive component, the
number of possible actions is much larger than with a strict
navigation controller. Figure 2 shows a proposed action

hierarchy which reflects natural subtask groupings for this
domain.

�

The state space necessary to describe the robot’s
task domain consists of 576 states, based on the following
multi-valued features:

� robot’s location (discrete approximation)
� person’s location (discrete approximation)
� person’s attention (inferred from speech recognizer)
� battery status (discrete approximation)
� motion goal (discrete approximation)
� reminder goal (what to inform the user of)
� user initiated goal (e.g. an information request)

Obviously, such a state space is well within the reach of
present MDP algorithms. Hence, if the state was fully ob-
servable (as typically assumed in robotics), controlling the
robot would be a trivial exercise. The complication arises
from the fact that the state is not fully observable. The
robot’s sensors, most notably its speech recognition soft-
ware and its location sensors, are subject to noise. For ex-
ample, a robot may easily mistake phrases like “get me the
time” and “get me my medicine,” but whereas one involves
motion, the other does not. Thus, considering uncertainty
is of great importance in this domain. In particular, it is im-
portant to trade-off the costs of asking a clarification ques-
tion, versus accidentally executing the wrong command.
While POMDPs are perfectly equipped to address the prob-
lem of control under uncertainty, a domain of this size is
well beyond the reach of existing exact solvers (Kaelbling
et al., 1998). In this paper, we show how PolCA+, through
its joint use of hierarchical policy constraints and auto-
mated state abstraction, is able to find a good policy for
this large POMDP domain.
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Figure 2: The Nursebot’s actions.

3 Preliminaries

In the interest of clarity, we first describe all essential
ideas in the context of PolCA (using MDPs rather than

�

Though we currently assume that the hierarchy is given,
recent work has looked at automatically finding action hierar-
chies (McGovern & Barto, 2001; Pickett & Barto, 2002; Ryan,
2002). Most of this work does not yet apply to POMDP domains.



POMDPs). This allows us to draw parallels with other hi-
erarchical MDP algorithms. Section 4.4 describes the ex-
tensions that allow PolCA+ to handle partial observability.

3.1 Review of MDPs

A Markov Decision Process (MDP) is a probabilistic
framework to perform optimal action selection in stochastic
domains. We assume the standard formulation (Kaelbling
et al., 1996), where an MDP is defined to be a 4-tuple,

��������	�
�	���	��
. A discrete set of states

� � ���������������������
represents the domain where a robot must select between
actions

� � ���������������	��� �
. The robot aims to maximize

its expected (discounted) sum of rewards: !#"$&% �(' $*) $,+ ���-��. ,
where

'
is the discount factor and

) $,+ ���	�/.102
is the re-

ward received at time 3 for executing
�

in state
�
. The distri-

bution
� + ��45�	� �-��. defines state-to-state transition probabili-

ties, conditioned on action
�
. The main challenge of MDPs

is to optimize a policy 6 , mapping states to actions, such
that the expected sum of rewards is maximized. In small
domains, the optimal policy can be found analytically by
solving the Bellman equation:
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3.2 Hierarchical MDP Approaches

Hierarchical MDP problem solving accelerates planning
for complex problems by leveraging domain knowledge
to set intermediate goals. These define separate subtasks
and constrain the solution search space. Existing hierar-
chical MDP approaches include MAXQ (Dietterich, 2000),
HAM (Parr & Russell, 1998), ALisp (Andre & Russell,
2002), and OPTIONS (McGovern et al., 1998). Most of
these approaches assume that the domain knowledge nec-
essary to define subtasks is provided by the designer. Sub-
tasks are formally defined using a combination of elements,
including: initial states, expected goal states, fixed/partial
policies, reduced action sets, and local reward functions.

In a hierarchical controller it is generally unnecessary for
each subtask planner to consider every state feature. This
is massively exploited in subsumption-syle robotics. By
appropriately ignoring irrelevant features (or equivalently
grouping similar states into a single one) we can acceler-
ate subtask optimization without affecting policy quality.
For example, in a sequence of conversation actions in the
Nursebot domain, we do not need to consider the robot’s
precise

��MN�PO �
location when selecting speech commands.

This idea of applying subtask-specific abstraction is well
known in the hierarchical MDP literature (Dietterich, 2000;
Andre & Russell, 2002). But with the exception of work
by Jonsson and Barto (2001) for the OPTIONS framework,

most hierarchical approaches require a hand-designed state
abstraction for each subtask. As described above, hand-
designed abstractions can be difficult to get right, and are
unable to leverage policy-specific abstraction opportuni-
ties. For example, how coarsely can we represent the
robot’s

��M@�	O �
position for conversation tasks? Clearly

some abstraction is in order (e.g., all positions more than
10m from the user make conversation equally difficult), but
the exact amount or form of abstraction is hard to quantify.

3.3 Automatic state abstraction in MDPs

There exists a related body of work that focuses on au-
tomatically discovering state abstraction functions for flat
(non-hierarchical) MDPs. The overall goal there is to learn
a function Q + ��. , mapping states to clusters of states, such
that we can learn a policy over clusters. Since there are
many ways of clustering states, the real challenge lies in
finding a grouping that allows us to a) plan over clusters
with minimal loss of performance, compared to planning
over the entire state space, and b) significantly reduce plan-
ning time. To perform automatic abstraction, we adopt an
algorithm originally proposed by Dean and Givan (1997)
for (non-hierarchical) MDPs. To infer Q + ��.SRUTWV

, a func-
tion mapping states

�
0X�
to the set of clusters

T
:Y Step I - Initialize clustering: Let Z�[5\,]5^@_`Z�[5\ba�^ ifc [5\d]*eEf�^g_ c [5\ba�ebf�^	e5h/f
i1j (3)

Y Step II - Check stability of each cluster: A cluster k�] is
deemed stable iffA

l D5m�n�o�p [5\d]*eEf/eP\�qr^g_
A
l D5m�n�o�p [5\ba�eEf/eP\�qr^	e (4)

h([5\d]*eP\ba�^sitku]*evhwk(a�i:kxeyh/f
i1j
Y Step III - If a cluster is unstable, then split it: Let

ku]Hz>{�k@|�e�}~}~}~e	ku��� (5)

such that Step 2 is satisfied (and re-assign Z�[5\,^	evh�\�i:k ] ).
In step I, a set of overly-general clusters are proposed.
Steps II and III are then applied iteratively, gradually split-
ting clusters according to salient differences in model pa-
rameters, until there are no intra-cluster differences. This
algorithm exhibits many desirable properties (see Dean and
Givan (1997); Dean et al. (1997) for details and proofs):

1. Planning over clusters converges to optimal solution.
2. The algorithm can be relaxed to allow approximate

state abstraction.
3. Given a factorized MDP, all steps can be implemented

efficiently; to avoid full state space enumeration, we
may occasionally miss some feasible abstractions.

While Dean and Givan’s state clustering algorithm can be
relaxed to allow approximate abstraction, the current ver-
sion of PolCA does not include this. At first glance this



may seem too strict, but it is important to realize that while
exact abstraction may be very rare in flat MDPs, it is gen-
erally very prevalent in hierarchical MDPs where it stems
directly from the subtask partitioning. Given that each sub-
task has only a small number of (related) actions, it is un-
surprising that these only affect a subset of state features.
For example in the Nursebot domain, the robot’s position
is likely unaffected by any of the actions in subtask Inform.

4 PolCA: A Hierarchical MDP Controller

PolCA builds on concepts found in both hierarchical MDP
algorithms and automated state abstraction techniques. The
main idea is to follow an automatic, lazy procedure, to
gradually interleave planning and abstraction while travers-
ing the hierarchy bottom-up. For each subtask, PolCA first
infers appropriate parameters, then learns a state clustering
function, and finally optimizes the local control policy.

The motivation behind interleaved planning and abstrac-
tion is to leverage partial policies found in lower-level
tasks to automatically increase the state abstraction poten-
tial of higher-level subtasks. In the Nursebot task hierarchy
(Fig. 2), once the Inform subtask learns to satisfy informa-
tion requests, the higher-level Assist controller can assume
that those goals will be satisfied, and thus does not need to
distinguish between different information goals, or handle
unsatisfied goals. The resulting increase in abstraction can
have a tremendous impact on the algorithm’s scalability.

Once the entire hierarchy has been traversed, the final pol-
icy is defined by the set of local subtask policies. To se-
lect actions using these local policies, we use a top-down
polling approach. This means that at every time step we
first query the policy of the top subtask; if it returns an ab-
stract action we query the policy of that subtask, and so
on down the hierarchy until a primitive action is returned.
Since policy polling occurs at every time step, a subtask
may be interrupted before its subgoal is reached, namely
when the parent subtask suddenly selects another action.

4.1 Structural assumptions

PolCA relies on a set of basic structural assumptions, which
are similar to other hierarchical MDP approaches. For-
mally, we are given a task graph � , where each leaf node
represents a primitive action

�
, from the original MDP ac-

tion set
�

. Each internal node has the dual role of rep-
resenting both a distinct subtask (we use notation � for a
subtask) whose action set is defined by its immediate chil-
dren in the hierarchy, as well as an abstract action (we use
a bar, as in �� , to denote abstract actions) in the context of
the above-level subtask. A subtask � is formally defined by

�
��� � � �� V ���������-����������� � , the set of actions which are
allowed in subtask � . Based on the hierarchy, there is
one action for each immediate child of � .

� � � + ���	�/. , the local reward function. Each subtask in
the hierarchy must have local (non-uniform) reward
in order to optimize a local policy. In general, this is
equal to the true reward

 + ���	�/. . In subtasks where all
available actions have equal reward (over all states),
we must add a pseudo-reward to specify the desirabil-
ity of satisfying the subgoal. �

We also require a model of the domain:
��� ���u�-�
�	���	��

.
Though a departure from reinforcement learning methods,
this is common for automatic state abstraction. The model
can be estimated from data or provided by a designer.

4.2 Planning with PolCA

We now provide a full description of the four steps required
to learn a control policy with PolCA. Figure 3 illustrates the
entire process for a simple 4-state, 2-subtask problem. The
overview of the algorithm is as follows:

� Given an MDP
� � ���u�-�
�	���	��

and task hierarchy
� � � � � ��� � � � � � �

� Step 1: Structure state space: �	� �
� For each subtask � 0 � , in bottom-up order:

Step 2: Parameterize subtask:
� + �
� ���	�/.d�- + ��� ���-��.

Step 3: Cluster subtask: ��� � R Q + ��� ��.
Step 4: Solve subtask:

���� ��� C�� R 6���
Step 1—Structure state space—uses an idea introduced
in the HAM framework (Parr & Russell, 1998), that re-
formulates the MDP to reflect structural assumptions. The
new state space ��� � is the cross-product of the original
state space

�
and the hierarchy subtask set � .

Step 2—Parameterized subtask—appropriately translates
conventional transition and reward parameters to the struc-
tured problem representation. This includes copying orig-
inal transition and reward parameters from

�
for all rele-

vant primitive actions, as well as inferring parameters for
the newly-introduced abstract actions. Given a subtask
� , with state set

� � � ��� � � � ��� � �
������� �

and action set��� � ��� � ��������� �� � �������~� , where
� �� � �������~� invoke lower-

level subtasks
� � � ������� � , Equations 6-9 translate the param-

eters from the original MDP to the structured state space.
Case 1: Primitive actions (e.g. state-to-state transition ar-
rows drawn as solid line in Fig. 3), � ���
0 � �	�/��0 �

:� + ��� ���	�	� � � ��� � V . � � + ���b�-� � �-� V . (6) + �
� ���	�	� � . � ��� + ���	�	� � . (7)

Case 2: Abstract actions (e.g. state-to-state transition ar-
rows drawn as dotted line in Fig. 3), ����/�t0 � :
�
Pseudo-rewards are unnecessary in most multi-goal robot

problems, such as the Nursebot domain, where each subtask con-
tains one or many different goals. However they are needed for
some multi-step single-goal domains (Dietterich, 2000).
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Figure 3: Simple 4-state problem with 2-subtask hierarchy. Non-zero (deterministic) transition probabilities are illustrated in the MDP.
The subtask hierarchy � is illustrated in the top right corner. Note that the bottom subtask ( � � ) is solved first, and its final policy � ���
(illustrated in bottom left corner) is used to model �f � (in right column), as prescribed in Step 2.
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Equations 8-9 depend on 6��� � —the final policy of sub-
task � � —which enforces the policy-contingent aspect of
PolCA. Since parameter setting for ��/� occurs after � � has
been solved, state abstraction in � need be sufficient to rep-
resent 6����� , but not any policy 6 ��� . It is worth emphasizing
that because PolCA uses polling execution, abstract actions
are modelled according to their one-step effect.

	
Step 3—Cluster subtask—uses the exact iterative model
minimization of Equations 3-5. Model parameters are then
re-expressed over clusters:

p [
���,ku]EeEf/e���,k(a�^�_ A
l D5m�n�o�p [
���,\�eEf/e�����\�q ^ (10)

c [
����ku]*eEf�^�_ c [
���,\�eEf�^	e for any \xitku] (11)

Step 4—Solve subtask—applies dynamic programming up-
dates over clusters:� [
��� k ] ^@_������� � c [
��� k ] eEf�^��� A

n o m�n p [
��� k ] eEf/e���� k a ^
� [
��� k a ^��

(12)
The repeated application of this value update is guaranteed
to converge. The final value function solution is contained
in the value function of the top subtask:

7 �"!#%$ + � � � ��. .&
This is in contrast to other hierarchical MDP approaches (e.g.

MAXQ, ALisp, Options) which use cumulative effects:

p [
���,\d]*e%�f('we)���,\ba�^@_ !+*-,/. # � [5\ba�e)021 \d]*e3�f('�^ .

4.3 Theoretical properties of PolCA

Most traditional subsumption-style robot control architec-
tures offer little in terms of theoretical guarantees. How-
ever because it relies on a solid MDP framework, PolCA
can offer theoretical properties similar to that of other hier-
archical MDP approaches; we now discuss these.

Most hierarchical MDP approaches, as a result of imposing
structural constraints, effectively reduce their policy search
space, and thus cannot guarantee finding a globally optimal
solution. Instead, they can guarantee weaker forms of op-
timality, for example hierarchical optimality and recursive
optimality, as defined in (Dietterich, 2000).

The main difference between the two is a function of con-
text. A recursively optimal solution guarantees optimality
over a subtask’s local policies, conditioned on that of its de-
scendants. This is obtained when subtask policies are opti-
mized without regard to the context in which each subtask
is called. In contrast, hierarchical optimality guarantees op-
timality over the set of policies consistent with the hierar-
chy, which can be achieved by keeping track of all possible
contexts for calling subtasks, which is key when subtasks
have multiple goal states. There is a trade-off between so-
lution quality and representation: though in some domains
hierarchical optimality offers a better solution, this comes
at the expense of lesser state abstraction and thus recursive
optimality is generally considered more scalable.



Because it fixes low-level subtask policies prior to solv-
ing higher-level subtasks, PolCA achieves recursive, rather
than hierarchical optimality. In many cases, including the
Nursebot domain which does feature multi-goal subtasks,
this loss is a small price to pay for the sizeable scalability
benefits that come from policy-contingent abstraction.

Theorem 1 Let
� � ���u�	� �P���-��

be an MDP and let
� � � � � ��������� ��� � be a subtask graph with well-defined
terminal states and pseudo-reward functions. Then PolCA
computes 6 �� , a recursively optimal policy for

�
that is

consistent with � .

Proof: The reader is referred to (Pineau & Thrun, 2002) for
a complete proof. The main idea is that when solving each
subtask, the parameters are fixed, and in the case of abstract
actions, reflect true effects of the final policy for the corre-
sponding subtask. Therefore the subtask policy must be op-
timal with respect to its restricted set of actions, which by
definition meets the criteria for recursive optimality. This
line of argument does not take into account the differences
in state abstraction between related subtasks, however it is
easy to show that the learned abstraction function does not
have any effect on the policy optimization.

4.4 PolCA+: Planning for Hierarchical POMDPs

POMDPs are a generalization of MDPs which allow for
partial state observability (Kaelbling et al., 1998). Because
of this, they are the ideal framework for modelling most
robot problems. However planning in POMDPs is typi-
cally exponential in the size of the domain, making exact
solutions intractable for most robot problems. Nonetheless
by leveraging the structural assumptions of PolCA, and ex-
tending it to the partially observable case, we obtain a scal-
able hierarchical POMDP algorithm that is able to tackle
real-world robot problems. We call this algorithm PolCA+.
We now present the modifications necessary to handle par-
tial observation, and thus go from PolCA to PolCA+.

First, we modify the model minimization stability criteria
(Eqn. 4) to also check for similar observation probabilities.
In POMDPs, a cluster

T �
is deemed stable iff:

A
l D&m�n�o p [5\,]vebf/eE\dq ^

� [���ebfweb\dq ^g_ A
l D5m�n�o p [5\ba�eEf/eP\�qr^

� [���ebf/eb\�qr^	e
h [5\,]*eP\ba�^ui1ku]*e*h�k(aSi:k�evh�f i1j eyh�� i�� (13)

Second, we set policy-contingent observation parameters
(same as Eqns 6&8, but for 	 +�
 �	�w�w� ��� �dV�. ). Finally, we use
an appropriate POMDP solver to optimize local policies.
Throughout our experiments, we mostly optimize policies
using the exact Incremental Pruning algorithm (Cassandra
et al., 1997); for some larger domains we rely instead on
the AMDP algorithm (Roy & Thrun, 2000).

Given the properties of belief space planning, PolCA+ can-
not guarantee recursive optimality. Despite this, its ability

to handle partial observability makes it much better suited
than MDP approaches for real-world robot problems.

5 Experimental results

The control problem for the Nursebot domain was de-
scribed in Section 2. The main challenges are the fact that
because the robot’s sensors are subject to substantial noise,
particularly from the speech recognizer, MDP techniques
are inadequate to robustly control the robot. The PolCA+
algorithm described in this paper significantly improves the
tractability of POMDP planning, to the point where we can
rely on POMDP-based planning for a real-world robot con-
trol domain such as the Nursebot project.

PolCA+ requires both an action hierarchy and model of the
domain to proceed. The hierarchy (shown in Fig. 2) was de-
signed by hand. Though the model could be learned from
experimental data, the prohibitive cost of gathering suffi-
cient data from our elderly users makes this an impractical
solution. Therefore the model was designed by hand. It is
characterized by non-deterministic transition/observation
probabilities, large positive rewards for correctly deliver-
ing information or satisfying motion goals, large negative
rewards for incorrect motion or reminder actions, and small
negative rewards for clarification actions.

Because of the difficulties involved with conducting hu-
man subject experiments, only the final PolCA+ policy
was deployed onboard the robot. Nonetheless, we can
compare its performance in simulation with that of other
planners. We first compare state abstraction possibilities
between PolCA (which falsely assumes full observabil-
ity) and PolCA+ (which considers similarity in observation
probabilities before clustering states). This is a direct indi-
cator of model reduction potential, and equivalently plan-
ning time. Figure 4a shows significant model compression
for both PolCA or PolCA+, compared to the no-abstraction
case (NoAbs). Differences between PolCA and PolCA+
arise when certain state features, though independent with
respect to transitions and rewards, become correlated dur-
ing belief tracking through the observation probabilities.

Second, we compare the reward gathered over time by each
policy. As shown in Figure 4b, PolCA+ clearly outper-
forms PolCA in this respect. A closer look at the perfor-
mance of PolCA reveals that it often answers a wrong query
because it is unable to appropriately select amongst clari-
fication actions. In other instances, the robot prematurely
terminates an interaction before the goal is met, because the
controller is unable to ask the user whether s/he is done. In
contrast, PolCA+ resorts to confirmation actions to avoid
wrong actions, and satisfy more goals. Also included in
this comparison is QMDP, a fast approximate POMDP al-
gorithm (Littman et al., 1995). On this task, it performs
particularly poorly, repeatedly selecting to doNothing be-
cause of its inability to selectively gather information.
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Figure 4: (a) Number of parameters for Nursebot domain. (b) Cumulative reward over time in Nursebot domain. (c) Number of Q-values
to learn solution in Taxi domain. Q-learning (QL) and HSMQ (Dietterich, 2000) parameterization are included as a base comparison.
These results assume a clustering function on (state,action) pairs, instead of on states. This is standard for MDP compression, including
MAXQ, ALisp and PolCA (see (Pineau & Thrun, 2002) for details). However it does not carry-over to POMDPs (or PolCA+).

In terms of computation time, PolCA+ reached its solution
in 18 minutes. In comparison, Incremental Pruning (an ex-
act POMDP solver), could only complete 2 iterations of VI
in 24hrs, and thus would probably take many years to reach
a reasonable solution. The many-fold improvement found
in PolCA+ is for the most part due to its structural assump-
tions (hierarchy+abstraction); some of the improvement is
also achieved by using an AMDP solver at the highest-level
of the hierarchy (lower subtasks are solved exactly). The
PolCA solution was computed in only 4 seconds, whereas
the (unstructured) QMDP solution took 39 seconds.

Table 1: A sample dialogue with a test subject. Ac-
tions in bold font are clarification actions, generated by the
POMDP because of high uncertainty.

Observation Action Reward
(null) DoNothing -1
Scheduler=physio-message gotoPatientRoom 5
Laser=RobotAtPatientRoom RingBell 5
Speech=yes RemindPhysioAppt 50
Speech=noise ConfirmGuideToPhysio -5
Speech=yes CheckBattery -5
Battery=high GuideToPhysio 50
Laser=RobotAtPhysio CheckUserPresent -1
IR=no-user CheckUserPresent -1
IR=user CheckUserPresent -5
IR=user TerminateGuidance 50
Speech=noise ConfirmDone -1
Speech=no VerifyInfoRequest -1
Speech=weather ConfirmWantWeather -1
Speech=noise VerifyInfoRequest -1
Speech=weather ConfirmWantWeather -1
Speech=yes TellWeather 50
Speech=noise ConfirmDone -1
Speech=yes GoHome 5
Laser=RobotAtHome RechargeBattery 20

The PolCA+ policy was implemented onboard the robot
and tested during two days of experiments with elderly resi-
dents at a local nursing home. Through the course of twelve
interaction scenarios, Pearl was able to successfully deliver
scheduled reminders, guide residents to physiotherapy ap-
pointments, and satisfy information requests. The robust-
ness of the PolCA+ policy to uncertainty was demonstrated
by its use of clarification questions whenever a user’s in-
tentions were unclear. As a result, all six test subjects were

able to complete the full experimental scenario, after re-
ceiving only limited training (a five minute introduction
session). Table 5 shows a typical interaction between the
robot and user, in terms of the observations received by
the controller, and the actions selected in response, as well
as the corresponding reward signals. Step-by-step images
corresponding to this interaction are shown in Figure 5.

(a) Pearl approaching elderly (b) Reminding of appointment

(c) Guidance through corridor (d) Entering physiotherapy dept.

(e) Asking for weather forecast (f) Pearl leaves

Figure 5: Example of a successful guidance experiment.

6 Comparison with hierarchical MDPs

We conclude this paper by presenting a comparison of
PolCA with two competing hierarchical MDP algorithms:
MAXQ and ALisp. For this, we select the Taxi domain,
a commonly used problem in the hierarchical MDP litera-
ture (Dietterich, 2000). Both MAXQ and ALisp have pub-



0 1 2 3 4

0

1

2

3

4 R G

Y B

Get

Root

Nav(t)

Put

North South East West

PutdownPickup

+ 9 . +�� .
Figure 6: The Taxi domain is represented using four fea-
tures: { X,Y,Passenger,Destination � . The X,Y represent the
taxi’s position in the 5x5 grid; the passenger can be at any of:{ Y,B,R,G,taxi � ; the destination is one of: { Y,B,R,G � . The taxi
agent can select from six actions: { N,S,E,W,Pickup,Putdown � .

lished results for this task. The overall task (see Fig. 6a)
is to control a taxi agent with the goal of picking up a
passenter from a start location, and then dropping him/her
off at their destination. We include a second larger domain
(Taxi2). It is identical to the first task except that the pas-
senger can start from any location on the grid, compared
to only

�
Y,B,R,G

�
in the original Taxi domain. Figure 6b

represents the action hierarchy used by all algorithms for
both domains.

Figure 4c compares state clustering results for these two
tasks. In both cases, the clustering function for PolCA was
learned automatically, whereas that for MAXQ and AL-
isp was hand-crafted. These results confirm the fact that
performing automatic abstraction can allow further model
reduction; most of the gains can be attributed to the policy-
contingent aspect of PolCA. This occurs despite the fact
that PolCA does not use a decomposed value function. All
algorithms learn the optimal policy for both tasks.

7 Conclusion

This paper describes PolCA+, a novel algorithm for scal-
able POMDP planning. By combining techniques from hi-
erarchical MDPs and automated state abstraction, and in-
cluding a straight-forward extension to POMDPs, we are
able to produce a planning algorithm capable of perform-
ing high-level control of a mobile interactive robot. It is
the first hierarchical POMDP algorithm to do so, and was
a key element for the successful performance of the robot
in a series of experiments with elderly users. While we
agree with the long-held view in the robot community that
structural assumptions are a necessary ingredient to address
large-scale problems, we believe PolCA+’s ability to per-
form automated state abstraction and policy learning, as
well as handle uncertainty, are significant improvements
over earlier robot architectures.
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