An integrated approach to hierarchy and abstraction
for POMDPs

Joelle Pineau and Sebastian Thrun
August 2002
CMU-RI-TR-02-21

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

. This research has been sponsored by NSF’s ITR, Robotics, and CAREER program, and DARPA’s
MARS Program (contract N66001-01-C-6018), DARPA’s CoABS Program (contract F30602-98-2-0137),
and DARPA’s MICA Program (contract F30602-01-C-0219), all of which are gratefully acknowledged.
The views and conclusions contained in this document are those of the authors and should not be
interpreted as necessarily representing official policies or endorsements, either expressed or implied, of
the United States Government or any of the sponsoring institutions.



Abstract

This paper presents an algorithm for planning in structured partially observable Markov
Decision Processes (POMDPs). The new algorithm, named PolCA (for Policy- Contingent
Abstraction) uses an action-based decomposition to partition complex POMDP problems
into a hierarchy of smaller subproblems. Low-level subtasks are solved first, and their par-
tial policies are used to model abstract actions in the context of higher-level subtasks. At all
levels of the hierarchy, subtasks need only consider a reduced action, state and observation
space. The reduced action set is provided by a designer, whereas the reduced state and ob-
servations sets are discovered automatically on a subtask-per-subtask basis. This typically
results in lower-level subtasks having few, but high-resolution, state/observations features,
whereas high-level subtasks tend to have many, but low-resolution, state/observation fea-
tures. This paper presents a detailed overview of PolCA in the context of a POMDP hierar-
chical planning and execution algorithm. It also includes theoretical results demonstrating
that in the special case of fully observable MDPs, the algorithm converges to a recursively
optimal solution. Experimental results included in the paper demonstrate the usefulness of
the approach on a range of problems, and show favorable performance compared to compet-
ing function-approximation POMDP algorithms. Finally, the paper presents a real-world
implementation and deployment of a robotic system which uses PolCA in the context of a
high-level robot behavior control task.

Keywords: Markov decision process, POMDP, reinforcement learning, hierarchical
planning, abstraction, robot control, dialogue systems






1. Introduction

The problem of planning under uncertainty has received significant attention in the scientific
community over the past few years. Many real-world problem domains, such as robotics
and human computer interfaces, are characterized by significant degrees of uncertainty. It
has long been recognized that considering uncertainty during planning and decision-making
is imperative for the design of robust computer systerms.

A long-established approach for planning under uncertainty is that of Markov decision
processes (MDPs). MDPs allow for stochastic action effects, described by probabilistic
state transition functions. The result of MDP planning is not just a sequence of actions,
as would be the case in classical STRIPS-like planning (Fikes & Nilsson, 1971). Rather, it
is a policy for action selection, which prescribes the choice of action for any possible state
that might be encountered during execution. In large domains, computing such policies
can be computationally challenging. For example, techniques based on walue iteration—a
highly popular approach for MDP policy computation—often require time quadratic in the
number of states.

To overcome this problem, various researchers have developed techniques that exploit
intrinsic properties of the domain. The two dominant paradigms for large-scale MDP prob-
lem solving are based on function approzimation and structural decomposition (abstraction).
Function approximation techniques generalize across states and actions when calculating
policies, thereby reducing the number of states or actions that have to be considered. A
seminal example of this approach is Tesauro’s (1995) TD-Gammon program, whose integra-
tion of multilayer perceptrons into Sutton’s (1988) TD family of algorithms led to a policy
that achieved world-class backgammon playing strength. Further examples include domains
with continuous state spaces where exact methods are inapplicable, such as certain robot
path planning problems (Moore & Atkeson, 1995). The other, equally important class of
efficient algorithms is based on structural decomposition of the domain. The idea here is
that the planning problem can be decomposed into a collection of smaller problems that can
be solved separately. This divide-and-conquer strategy can lead to considerable computa-
tional savings. A seminal example of the structural decomposition approach is Dietterich’s
(2000a) MAX-Q algorithm. MAX-Q decomposes the planning problem into a hierarchy
of smaller subproblems. Each such subproblem is defined over a reduced state and action
space, possesses a subgoal (or, more generally, sub-reward function), and also requires a
termination condition. By restricting subproblems to smaller state and action spaces, they
can be solved more efficiently. This results in significant speed-ups when solving complex
problems. We note that the literature on structural decomposition in MDPs offers a range
of alternative algorithms for improved planning through structural decomposition (Singh,
1992; Dayan & Hinton, 1993; Kaelbling, 1993; Dean & Lin, 1995; Boutilier et al., 1997;
Meuleau et al., 1998; Singh & Cohn, 1998; Sutton et al., 1999; Parr & Russell, 1998; Wang
& Mahadevan, 1999; Andre & Russell, 2001).

All these approaches, however, are limited in that they apply to MDPs only. That is,
they can only cope with stochastic action effects but not with stochastic or imperfect sensors.
MDPs rely on the assumption that the state of the world (or a sufficient statistic thereof)
can be sensed reliably and without noise, at any point in time. This is clearly not the case
in many real-world problems. In robotics, for example, sensor limitations are pervasive,



and the seemingly ‘simple’ problem of recovering the state from sensor measurements is
the key subject of research in entire subfields (Borenstein, Everett, & Feng, 1996; Cox &
Wilfong, 1990). Similarly, research on natural language dialog systems typically seeks to
devise techniques for recovering state information through conversing with a person (Asoh
et al., 1997; Torrance, 1994). It is those problems, where the state of the world is only
partially measurable, that motivate the research described in this paper.

It has long been recognized that a more general framework for addressing planning under
sensor limitations is partially observable Markov decision processes (POMDPs) (Sondik,
1971; Kaelbling, Littman, & Cassandra, 1998; Monahan, 1982). POMDPs are just like
MDPs with one important difference: policies are defined over information states, instead
of world states, since the latter ones are not directly observable. The space of information
states is the space of all beliefs a system might have regarding the world state. Information
states are easily calculated from the measurements of noisy and imperfect sensors. In
POMDPs, information states are typically represented by probability distributions over
world states. Unfortunately, the space of all probability distribution over states is much
larger than the state space, and for this reason planning in POMDPs is computationally
much harder than in MDPs. In fact, the best known bound for ezact solution is doubly
exponential in the planning horizon, or singly exponential in the cases where the starting
state is known. This enormous complexity is arguably the most important obstacle towards
applying POMDPs successfully in practice.

The computational complexity of POMDP planning makes the need for fast approxi-
mations in POMDPs more prevalent than in MDPs. Unfortunately, the design of efficient
POMDP algorithms has received relatively little attention from the scientific community
compared to MDPs. Function approximation approaches have been proposed in several pa-
pers (White, 1991; Lovejoy, 1991; Littman, Cassandra, & Kaelbling, 1995; Parr & Russell,
1995; Brafman, 1997; Thrun, 2000; Roy & Thrun, 2000; Hauskrecht, 2000; Bayer Zubek
& Dietterich, 2000; Bonet & Geffner, 2001), consistently demonstrating significantly faster
planning in problems often too hard for exact planners. However, we still lack effective
methods that employ structural decompositions of the domain.

This paper describes one such algorithm: a hierarchical POMDP planning algorithm
called PolCA. Similar to Dietterich’s MAX-Q algorithm, this new algorithm decomposes
the planning problem into a hierarchy of subproblems. Each subproblem is treated as a
separate POMDP, and solved separately of the other subproblems. At the lowest level of
problem solving, PolCA solves a collection of POMDP problems characterized by a reduced
action space. The reduced action space leads to significant computational savings, since the
number of actions has a major impact on the computational costs of planning. In high-level
subproblems, the action set contains abstract actions, which subsume lower-level subtasks
and their policy. In addition to the reduced action sets, each subproblem uses only a subset
of the state and observation spaces. This reduction follows directly from the reduced action
set: when eliminating an action, it is also natural to ignore those state/observation features
that are only affected by this specific action. Furthermore, the state/observation abstraction
in high-level subtasks is delayed until lower-level subtasks have been solved, thus the name
of the algorithm, PolCA=Policy-Contingent Abstraction, which represents the fact that
abstraction in high-level subtasks is contingent on the policy of lower-level subtasks. As we



will show in this paper, this aspect of our algorithm is a key to obtaining significant state
abstraction.

When solving complex problems, many hierarchical MDP approaches calculate and then
combine partial value functions to reconstitute the full value function. In contrast, our hier-
archical POMDP approach focuses instead on reconstituting a complex policy by combining
subpolicies. By moving away from value function reconstitution, we are able to circumvent
the subtask termination conditions required by virtually all hierarchical MDP algorithms.
This is particularly important given the nature of POMDPs, where state perception is in-
complete, rendering the determination of a state-based termination condition impossible.
The result is an algorithm that can be applied to a range of structured POMDP problems.
Moreover, by solving subpolicies exactly we are able to successfully address partially ob-
servable planning problems requiring non-trivial information-gathering sequences. Many
such problems are beyond the scope of existing function-approximation POMDP solutions.

In addition to stating the basic PolCA algorithm, this paper offers systematic experi-
mental results in four different domains. These domains possess natural structure which
facilitates their hierarchical decompositions. In particular, one task is an instance of
an information-contingent POMDP, where a successful policy requires the use of mul-
tiple information-gathering actions, thus putting it beyond the reach of many function-
approximation POMDP approaches. In addition, we also describe a high-level robot control
task, which is unique in that a service robot deployed in a real world application (that of
assistant to an elderly person) is controlled using explicit POMDP-style representations of
uncertainty.

Our algorithm is not the first hierarchical POMDP approach (Hernandez-Gardiol &
Mahadevan, 2001; Theocharous, Rohanimanesh, & Mahadevan, 2001; Wiering & Schmid-
huber, 1997). Earlier algorithms, however, typically make significant assumptions regarding
the ability to fully observe the completion of subproblems, which we do not require.

We nonetheless note that our approach makes several assumptions. The most important
being the reliance on a human designer to provide the structural decomposition beforehand.
A decade of research on the much simpler MDP paradigm has shown that finding good de-
compositions automatically is extremely difficult (Pickett & Barto, 2002; Hengst, 2002;
Ryan, 2002; McGovern & Barto, 2001; Thrun & Schwartz, 1995). Moreover, it has often
been argued (Russell & Norvig, 1995) that providing structural decompositions provides
an opportunity to bring to bear background knowledge that a human designer might natu-
rally possess to speed up planning. A second assumption concerns the fact that in certain
tasks, artificial sub-reward functions have to be provided. This property is shared with a
rich body of work on MDPs (though exceptions exist), and should be thought of as an-
other opportunity to bring to bear background knowledge a human designer might have.
Given these assumptions, in extensive comparisons with other state-of-the-art algorithms,
we found that PolCA outperforms others in information-contingent tasks, while exhibiting
comparable performance in goal seeking tasks.



2. Partially Observable Markov Decision Processes

2.1 Probabilistic Model

We begin our exposition with a brief introduction to partially observable Markov decision
processes (POMDPs), setting forth the notation used throughout this paper. This intro-
duction is similar to that by Kaelbling et al. (1998).

Formally, a POMDP is characterized by seven distinct quantities, denoted S, A, 0, by,
T, O, and R.

e States. The state of the world is denoted s, with the set of all states denoted by
S = {s0,51,.--}. The state at time ¢ is denoted s;, where ¢ is a discrete time index.
The state is not directly observable in POMDPs, where an agent can only compute a
belief over the state space S.

e QObservations. To infer a belief regarding the world’s state s, the agent can take
sensor measurements. The set of all measurements, or observations, is denoted Q2 =
{00, 01,-..}. The observation at time ¢ is denoted o;. Observation o; is usually an
incomplete projection of the world state s;, contaminated by sensor noise.

e Actions. To act in the world, the agent is given a set of actions, denoted A =
{ag,a1,...}. Actions affect the state of the world. Choosing the right action as a
function of history is the core problem in POMDPs.

POMDPs are instances of Markov processes, that is, the world state s; d-separates (Pearl,
1988) the future from the past. For notational convenience, it is commonly assumed that
actions and observations are alternated over time. This assumption does not restrict the
general expressiveness of the approach.

To fully define a POMDP, we have to specify the probabilistic laws that describe state
transitions and observations. These law are given by the following distributions:

o The initial state probability distribution
bo(s) = Pr(sp=s) (1)

is the probability that the domain is in state s at time ¢ = 0. This distribution is
defined over all states in S.

e The state transition probability distribution
T(s,a,s') = Pr(s;=35|s-1=s,a1—1 =a) (2)

is the probability of transitioning to state s’, given that the agent is in state s and
selects action a, for any (s,a,s’). Since T is a conditional probability distribution,
we have > 5 T(s,a,s") = 1,Y(s,a). As our notation suggests, T is time-invariant,
that is, the stochastic matrix 7" does not change over time. For time-variant state
transition probabilities, the state s must include a time-related variable.



e The observation probability distribution
O(S,G,,O) = P’I‘(Ot =0 | St—1 = $,a1—-1 = a‘) (3)

is the probability that the agent will perceive observation o upon executing action a
in state s. This conditional probability is defined for all (s,a,o0) triplets, for which

2065 O(s,a,o) = 1,V(8,a,).

Finally, we have to define the objective of action selection, which is the function being
optimized in the planning process. In POMDPs and MDPs alike, it is common to assume
that the agent is given a reward function:

e The reward function. R: S x A — R, assigns numerical values to state-action pairs.
The goal of the agent is to maximize its reward over time. Mathematically, this is
commonly defined by an infinite sum of the form:

BIS v R, @)

T=t

where R, is the reward at time ¢, E[ | is the mathematical expectation, and y with
0 <« < 1is a discount factor which ensures that the sum in Equation 4 is finite. It is
easy to see that the reward function R is more general than goal functions, in which
the agent seeks to arrive at one or more goal states.

These items together, the states S, actions A, observations €2, reward R, and the three
probability distributions 7', O, and by, define the probabilistic world model that underlies
each POMDP.

2.2 Belief Computation

The key characteristic that sets POMDPs aside from many other probabilistic models (like
MDPs) is the fact that the state s; is not directly observable. Instead, the agent can only
perceive observations {o1,...,0;}, which convey incomplete information about the world’s
state.

At first glance, it might appear that the agent has to maintain a complete trace of all
observations and all actions it ever executed to select an optimal action. However, a well-
known fact is that this history can be summarized via a belief distribution (Boyen & Koller,
1998), which is the following posterior probability distribution:

bi(s) = Pr(st=s|o0a1-1,0t-1,-..,00)- (5)

Because the belief distribution b; is a sufficient statistic for the history, it suffices to condition
the selection of actions on by, instead of on the ever-growing sequence of past observations
and actions. Furthermore, the belief b; at time ¢ is calculated recursively, using only the
belief one time step earlier, b;_1, and the most recent action a;_1 and observation o;:

bi(s) = f(b—1,at-1,01)
= c-ZO(s',at,l,ot) T(s' a3 1,5) by_1(s") (6)



where c is a normalizing constant.

This equation is equivalent to the decades-old Bayes filter (Jazwinski, 1970), and is
commonly applied in the context of hidden Markov models (Rabiner, 1989). Its continuous
generalization forms the basis of Kalman filters (Kalman, 1960).

It is interesting to consider the nature of belief distributions. For finite state spaces,
which will be assumed throughout this paper, the belief is a continuous quantity, defined over
the simplex describing the space of all distributions over the state space S. For very large
state spaces, calculating the belief update (Equation 6) can be computationally challenging.
Recent research has led to efficient techniques for belief state computation that exploits
structure of the domain, sometimes expressed by Bayes networks (Boyen & Koller, 1998;
Poupart & Boutilier, 2000). However, we note that by far the most complex aspect of
POMDP planning is the generation of a policy for action selection, which will be described
further below. For example in robotics, calculating beliefs over state spaces with 10° states
is easily done in real-time (Burgard et al., 1999). In contrast, calculating optimal action
selection policies exactly appears to be infeasible for environments with more than 102
states (Kaelbling et al., 1998), not directly because of the size of the state space, but
because of the complexity of the optimal policies. For this reason, this paper exclusively
addresses the computational complexity involved in policy generation (planning), assuming
that the state spaces at hand are small enough that the belief can be calculated exactly.

2.3 Computing a Policy

The central objective of the POMDP is to compute a policy for selecting actions. A policy
is of the form

w(b) — a, (7

where b is a belief distribution and a is the action chosen by the policy .
Of particular interest is the notion of optimal policy, which is a policy that maximizes
the expected future discounted cumulative reward:

o0
P(b) = argmax B> 77 'R, (®)
& T=t
Clearly, computing an optimal policy is challenging. This is because 7 is defined over a
high-dimensional continuous space, the space of all belief distributions.

The most straightforward approach to finding optimal policies remains the value itera-
tion approach, where iterations of dynamic programming are applied to compute increas-
ingly more accurate values for each belief state b. Let V be a value function that maps
belief states to values in . Beginning with the initial value function:

Vo(b) = mngb(s)R(s,a) )
seS

then the ¢-th value function is constructed from the (¢ — 1)-th by virtue of the following
recursive equation:

Vi(b) = max > b(s)R(s,a) +v>_ Pr(t' | a,b)Vi_1 (V)] . (10)
SES v



Here, the conditional probability of the belief b’ is given by
Pr(t' |a,b) = Z Iy — f(b,0,0) Z O(s,a,0) b(s). (11)

oeN seS

The function I denotes the indicator function that is 1 if its argument is true and 0 otherwise,
and the function f is the belief updating function defined in Equation 6. A remarkable result
by Sondik (1971) shows that for a finite-horizon problem (i.e., one that terminates in finite
time), the value function is a piecewise linear, convex, and continuous function of the belief,
composed of finitely many linear pieces.

After t iterations, the value V; is the expected sum of all (possibly discounted) future
pay-offs the agent receives in the next t time steps, for any belief state b. The following
one-step look-ahead policy is reminiscent of the update rule (Equation 10):

mi1(b) = argmax Zb(s)R(s,a)+’yZP7‘(b’|a,b)Vt(b') . (12)
@ sES b

It maximizes, in expectation, the discounted sum of the next ¢ + 1 time steps. Thus, it
is optimal under the planning horizon ¢ + 1. Bounded-time POMDP problems, thus, can
be solved exactly with an appropriate choice of the horizon ¢ + 1. If the environment is
such that the agent might not be able to bound the planning horizon in advance, the policy
7f1(b) is an approximation to the optimal one whose quality improve with the planning
horizon ¢. Thus, POMDPs with finite state, action, and observation spaces can be solved
effectively by selecting an appropriate ¢.

Unfortunately, the best known exact algorithms for computing the optimal value func-
tion appear, in the worst case, to require time doubly exponential in the planning horizon
t (Kaelbling et al., 1998); or singly exponential in cases where the initial state is known.

More specifically, a single step of value iteration may require space and time on the order
of

ITe| = O(JATe-1[) (13)

where |A| is the number of actions, || is the number of observations, I';_; represents
the set of linear components necessary to represent the value function at horizon ¢ — 1.
In practice, |I';| often appears to grow singly exponentially in ¢, even with clever mecha-
nisms for pruning unnecessary linear functions when computing the value function V;. This
enormous computational complexity is a serious impediment towards applying POMDPs
to practical problems. As remarked in the introduction, recent research has led to func-
tion approximation-based approaches (White, 1991; Lovejoy, 1991; Littman et al., 1995;
Parr & Russell, 1995; Brafman, 1997; Thrun, 2000; Roy & Thrun, 2000; Hauskrecht, 2000;
Bayer Zubek & Dietterich, 2000; Bonet & Geffner, 2001), yet we lack effective methods that
employ structural decompositions to lower the computational burden imposed by POMDPs.

3. Hierarchical Task Decompositions

The key idea of PolCA is to reduce the complexity of planning by hierarchically decomposing
POMDP problems. The basic idea behind PolCA’s structural decomposition is analog to
that in the hierarchical MDP literature: if the overall task is such that it naturally maps



into a hierarchy of subtasks, a planner should take advantage of such structure, by solving
individual subtasks separately, rather than jointly. The computational savings of such a
methodology arise from the fact than solving N subtasks is usually computationally more
efficient that solving a single task that is N times as large. In MDPs, problem solving
usually requires time quadratic in the size of the state space, which gives an indication of the
savings one might attain through an optimal decomposition. In POMDPs, the complexity
of calculating policies is much larger: it may be doubly exponential in the planning horizon
in the worst case, and is singly exponential in most practical problems. Thus, the potential
savings one may attain through the structural decomposing of a POMDP problem are much
larger—as will be demonstrated empirically in our experimental results section.

One common MDP strategy, defining subtasks via partitioning the state space, is not
applicable when decomposing POMDPs where special attention has to be paid to the fact
that the state is not fully observable. For this reason, but also because action reduction has
a greater impact than state reduction on planning complexity in POMDPs (Equation 13),
PolCA relies on a structural decomposition of the task/action space. This decomposition
is expressed by a task hierarchy, illustrated in Figure 1. The state reduction then follows
from the action reduction, in the form of subtask-specific abstraction.

Figure 1: General form of a task hierarchy, H, which structurally decomposes the action
space of a POMDP. This hierarchy subsumes a problem that has been divided
into four subtasks, {hg, h;, ho, h3}, with respective action sets: Ap, : {a1, a9, az},
Ap, : {as,a5,a6}, An, : {as,as}, An, : {a7,as}. Actions {a4,as,as,a7,as,a9}
are from the original action set A. Actions {ag,a1,az,a3} are abstract actions
introduced to represent structural constraints.

Before defining task hierarchies formally, let us first discuss the intuition behind them.
We conjecture that task hierarchies reflect a natural decomposition of a complex task into
simpler subtasks. Formally, a task hierarchy is represented by a tree. At the top level, the
root of the tree represents the overall task, as defined by the POMDP. At the bottom level,
each individual leaf corresponds to an individual action a € A, which we will henceforth
refer to as primitive action. Such primitive actions represent the lowest level of policy
choice. In between, all internal nodes in the tree represent subtasks. Subtasks are defined



over limited sets of other subtasks and/or primitive actions, as specified by their children
in the tree. Thus, each internal node in the hierarchy has a double interpretation. Relative
to its children, it specifies a task that involves a limited set of subtasks and/or primitive
actions. Relative to tasks higher up in the hierarchy, it specifies an abstract action, namely
the action of invoking this very subtask. We use a bar (as in @) to denote an abstract action.

Subtasks in PolCA have a second important characteristic, apart from being defined
over a limited number of other tasks and actions. Often, the value of a given subtask only
depends on a subset of all state features, and similarly, only a subset of all observations are
relevant. Examples of such situations will be presented in the experimental results section
of this paper. To accommodate such situations, the task hierarchy specifies at each node a
subset of states and observations that are relevant to the respective subtask.

Our hierarchical approach relies on a few important assumptions related to domain
knowledge. Like most structured MDP approaches, we assume that the hierarchical subtask
decomposition is provided by a designer. This constitutes prior knowledge brought to bear
on the domain to facilitate planning. In addition, we assume that we are given a POMDP
model of the original flat (non-hierarchical) problem.

In the following sections, we will provide formal definition of a task hierarchy, and illus-
trate how it alters planning and plan execution in POMDPs. As argued below, the notion
of task hierarchies raises two fundamental questions: how can we exploit task hierarchies
in POMDP planning, and how can we use them afterwords, during plan execution. The
first question is non-trivial in that nodes in the hierarchy represent tasks relative to their
children, but actions relative to their parents. This raises important issues, for example
how to tie value functions between subtasks through abstract actions. The second question
is also non-trivial in that a decision has to be made at plan execution time as to which
subtask is responsible for selecting the final primitive action to be executed by the agent.

Though PolCA was developed specifically with the goal of solving POMDPs, it can
also address the specific case of MDP problem solving. In the next section, we start by
introducing the simpler MDP formulation of PolCA, which shares some similarities with
earlier algorithms such as MAXQ (Dietterich, 2000a) and ALisp (Andre & Russell, 2001).
In the following section, we present the complete (and more general) POMDP formulation.

4. Hierarchical MDPs

The Markov decision process (MDP) is a special case of the POMDP, where the current
state of the world is assumed to be fully-observable at every time step. An MDP is defined
to be a 4-tuple M = {S, A, T, R}, where S, A, T, R have the same meaning as in POMDPs
(namely S is the state set, A is the action set, 7" defines transition probabilities and R defines
costs/rewards.) Under the full-observability assumption of MDPs, a unique observation is
emitted by each state. Thus, it is not necessary to consider observation probabilities during
planning, and belief tracking is trivial.

4.1 Structural assumptions

The proposed hierarchical MDP algorithm requires a set of structural assumptions, which
are similar to those of earlier hierarchical MDP approaches. Formally, we assume we are



given a task hierarchy H, which as for POMDPs is defined by a tree (Figure 1). Tree nodes
are either internal (labeled h;) or leaf nodes.

Each leaf node contains a primitive action ¢ € A. Individual actions a € A may be
affiliated with multiple leaves in the task hierarchy. However, each primitive action a € A
should be associated with at least one leaf in the tree—otherwise it will never be chosen
and therefore should have been eliminated from the MDP in the first place.

Each internal node h corresponds to a well-defined MDP subtask containing:

o Ay = {ag,ay,...,Gp,aq,...}, the set of actions allowed in subtask h. Based on the
hierarchy, there is one action for each immediate child of h. This set can include
both primitive actions {ay, a;, ...} and abstract actions {ay,ag, ...} (corresponding to
lower-level subtasks). The set of actions is completely specified by the given subtask.

o Sn = {zn(s0), 2n(s1),...}, the set of states relevant to subtask h. The function zp()
defines a state abstraction, mapping states to clusters of states, such that planning
can occur over clusters of states. We assume that the abstraction preserves sufficient
resolution to solve h. The function z() might be the identity function, in which
case a subtask will comprise all states, that is S,=S. The state abstraction is found
automatically as part of the algorithm.

o Gy = {si,sj,...}, the set of terminal states for subtask h, where {s;,s;,...} € S.
Subtask A is terminated upon reaching state s € Gy, at which point control is returned
to the higher-level subtask which initiated h.!

e Rp(s), the pseudo-reward function specifying the relative desirability of each terminal
state. By definition, Rp(s) = 0,Ys ¢ G}. In practice, Rp(s) is often set to zero for
goal-achieving terminal states, and to a large negative value for non-goal terminal
states.

Unlike Ay, G}, and Ry, which are all provided by a designer, we assume that the clus-
tered set Sy, is automatically found for each subtask from the original set S. Finally, PolCA
also requires a parameterized model of the MDP domain: M = {S, A,T, R}. This is in con-
trast with other hierarchical reinforcement learning algorithms which rely on exploration to
acquire the model. Nonetheless we require it to perform the automatic state abstraction.

4.2 Planning Algorithm

For each subtask, the hierarchical planning algorithm optimizes a corresponding local policy:
Definition 1: Given h, a subtask with action set Aj, we say that 7, the policy defined
over action subset Ay, is a LOCAL POLICY.
Table 1 describes our hierarchical MDP planning algorithm. It computes the set of local
policies (one per subtask) using four simple steps, each of which is explained in further
details below.

1. We use notation G}, for terminal states (both goal and non-goal), instead of the more common 7}, in an
attempt to avoid confusion with the notation for transition probabilities T'(s,a, s").

10



PLAN—POICAMDP(M, H)
STEP 1: Re-formulate structured state space: H - S
For each subtask h € H, following a bottom-up ordering:
STEP 2: Set parameters: T (h-s,a,h-s') and R(h-s,a),Vs € S,a € Ay,
STEP 3: Minimize states: S — Sy,
STEP 4: Solve subtask: M} — 7},
end

N O Utk W N~ O

end

Table 1: Main planning function. The function is called using the parameterized MDP
model M as the first argument and the hierarchy H as the second argument.

4.2.1 STEP 1—Re-formulate structured state space

Because steps 2-4 apply to each subtask separately, it is highly likely that any given world
state will have different clustering assignments or final policy for different subtasks. Con-
sequently, step 1 reformulates the state space by adding one more state variable to reflect
the hierarchy state. This idea was first suggested in the HAM framework (Parr & Russell,
1998).

The new state space H - S is equal to the cross product between the original state space
S = {s0,...,8n} and the hierarchy state H = {hg,...,hyn}. The final structured state
space is H - S = {ho-S0;,---,h0-Spy-v---. sPhm - 80y« hm - Sp}-

4.2.2 STEP 2—Set parameters

The purpose of the second step is to appropriately translates the transition and reward
parameters specified in M = {S, A, R,T} to the structured problem representation. This
involves translating parameters from the original state space S, to the structured state space
H-§. This is typically straight-forward for any parameter conditioned on primitive actions.
However it also involves inferring parameters for the newly-introduced abstract actions, a
non-trivial operation.

Given a subtask h, with action set Ay = {ag,q,...,ap,aq,...}, where {ag,a;,...} are
from A, the set of primitive actions, and {ay, a4, ...} invoke corresponding lower-level sub-
tasks {hp, hg, ...}, then Equations 14-17 translate the parameters from the original MDP
to the structured state space.

CASE 1 - PRIMITIVE ACTIONS (full-line transition arrows in Figure 2): Vay € Ap,ax € A
and V(s,s') € S,

T(h-s,ag,h-8) = T(s,a,s") (14)

R(h-s,ak) — {Rh(s), ifse Gy,

R(s,ay), otherwise. (15)

11



CASE 2 - ABSTRACT ACTIONS (dotted-line transition arrows in Figure 2): Va, €
Ap,a, ¢ A and V(s,s') € S,2

T(h-s,ap,h-s") = T(s, T, (8), s") (16)
_ L Ry (s), if se Gy,
R(h-s.ap) = { R(s,m, (s)), otherwise.3 (17)

One should note that Equations 16-17 depend on 7T;;p, the final policy of subtask h,,.
This is an important feature of this algorithm. It is the reason we traverse the hierarchy
from the bottom up, that way, each subtask is parameterized only after all subtasks below
it in the hierarchy have been solved. This hierarchical ordering has important implications
for state abstraction, for example significantly increasing clustering possibilities in subtasks
with multiple terminal states. This will be shown in the experimental section.

4.2.3 STEP 3— Minimize states

The goal of this step is to learn a minimization function z,(s) mapping individual states to
clusters of states. State abstraction (also called state clustering and model minimization)
is used to reduce the size of the planning problem, thereby accelerating solving. Automatic
state abstraction is done on a subtask-per-subtask basis, using an MDP model minimization
algorithm by Dean and Givan (1997).

To infer z,(s) — ¢, the function mapping states {h-sg,h-s1,...} to the (expanding) set
of clusters Cp, = {co,c1,...}:

I - INITIALIZE STATE CLUSTERING: Let zj(s;) = 25(s;) if

R(h - si,a) = R(h - sj,a),Ya € Ay, (18)
IT - CHECK STABILITY OF EACH CLUSTER: A cluster ¢ € C}, is deemed stable iff

Z T(h-si,a,h-s") = Z T(h-sj,a,h-s"), V(si,sj) €,V € Cp,Va €Ay, (19)

s'ec! s'ec!

IIT - IF A CLUSTER IS UNSTABLE, THEN SPLIT IT: Let

c— {ck, Cht1,-- -} (20)

such that Step II is satisfied (with corresponding re-assignment of zj(s),Vs € ¢). This is
typically done by evaluating several cluster splits and greedily choosing the split that most
improves stability.

In summary, in Part T a set of overly-general clusters are proposed; Parts 11 and III
are then applied repeatedly, gradually splitting clusters according to salient differences in
model parameters, until there are no intra-cluster differences. This algorithm exhibits the
following desirable properties (which we state without proof, see Dean and Givan (1997),
Dean, Givan, and Leach (1997) for details):

1. All states in a given cluster have the same value.

2. To clarify the notation in Case 2, consider a,, an abstract action in subtask h; a, subsumes subtask h,
and m, (s) is the policy of h, at state s.

12



2. Planning over clusters converges to the optimal solution.
3. The algorithm can be relaxed to allow approximate (e-stable) state abstraction.

4. Assuming an MDP with a factored state space, all steps can be implemented such
that we can avoid fully enumerating the state space.

This last point is of particular interest: avoiding full state space enumeration is paramount
for large problems, both during state abstraction and during planning/solving.

Though not part of the original model minimization algorithm by Dean and Givan
(1997), it is also possible to compute an abstraction of z(s,a) (abstracting over Q(s,a)),
instead of just z(s) (which abstracts over V(s)). This is often used when hand-crafting
abstraction functions in hierarchical MDPs (Dietterich, 2000a; Andre & Russell, 2002). The
advantage of abstracting () instead of V is that we can allow different state abstractions
under different actions, potentially resulting in an exponential reduction in the number of
clusters. To abstract @), we fix any policy that visits every state-action pair and make a
new MDP whose states are the state-action pairs of M and whose transitions are given by
our fixed policy. We then run the clustering algorithm on this new MDP.

4.2.4 STEP 4—Solve subtask

The purpose of Step 4 is to learn the value function and policy for subtask A. Since the state
clustering step described in Step 3 ensures that all states in a cluster share the same value,
it is most convenient to fold value function updates directly into the clustering algorithm.
Thus, state minimization augmented with value updates becomes:

e I-III - SAME AS EQUATIONS 18-20

e IV - UPDATE VALUE OF EACH CLUSTER:

Vie) = mgl,x[R(c,a)—F’y Z T(c,a,c YV ()], Vece€ Cy (21)
ceCy
7(c) = argznax[R(c, a)+7v Y T(c,a,d)V(c)], Ve Cy (22)
el

In this case, the algorithm terminates when V() converges. For non-hierarchical MDPs, and
under certain conditions, this is equivalent to Boutilier, Dearden, and Goldszmidt’s (2000)
decision-tree representation of MDP value functions.

Finally, if desired, the optimized approximate value function for the problem can be
retrieved by simply looking at the value function of the top subtask: VW;O (ho - ).

Figure 2 illustrates the entire process for a simple 4-state, 2-subtask problem. The pro-
cedure starts with a given model of the 4-state problem, and a given action-based hierarchy
containing two subtasks with respective action sets: Ap, = {ag,a1}, An, = {a3,as}. The
structured state space augments the 4-state problem by adding a subtask identifier variable
h = {ho,h1}. Subtask hi, being the lower-level one, is addressed first. It starts by un-
dergoing parameterizing, where parameters conditioned on actions {as3, a4} are transposed
from the original model to this subtask. Next, the model minimization procedure reduces

13



Sh, from four states to two clusters, because of symmetry in the transition probabilities.
Finally, value iteration yields the final policy for this subtask, where 7(h - s) = a3,Vs € S.
Subtask hg is address next. In the parameterization step, it transposes parameters from
the original model to describe as and uses the policy of h; to model abstract action a;.
Clustering on subtask hg reduces the subtask from four states to three. Finally, value it-
eration yields the final policy for hg, as illustrated in the bottom right corner of Figure 2.
By generating policies for each subtasks, we have achieved a full planning solution to this
problem.

MDP: Hierarchy: ho T3,

h, 3

RUCTURED STATE SPACE o ady

@ © & ©
— N —
W&T PARAMETERSfor h, \]ﬁT PARAMETERSfor h,
i ’-El

Q. A , a az_: ....... X1 L _
TR EIY RO > G aaaa

CLUSTER STATESfor h;

(.‘ 3 as where

eI N ey
4 ¢ ={su.s

lSOLVE POLICY for h

SE"D)

Figure 2: Simple 4-state problem with 2-subtask hierarchy. Non-zero transition probabilities are
illustrated in the MDP (top left corner). The subtask hierarchy H is illustrated in the
top right corner. Note that the final policy of hy (bottom left) is used to model @, in the
context of higher-level subtask hg (right column). The reward function is not included
to keep the example simple.

4.3 Execution Algorithm

It is necessary to specify an execution algorithm that uses the collection of local policies
to extract a global policy. The hierarchical execution algorithm maps the current state s;
to a primitive action a; to be executed by the agent. Rather than pre-computing a global
policy explicitly, we propose a recursive online algorithm to generate the next policy action
at each time step.

Execution corresponds to a trace down the subtask tree. The algorithm, as described in
Table 2, starts by consulting the local policy for the root task; this yields a policy action,

14



EXECUTE—POICAMDP(h, St)

Let ay = 7Th(8t)

If a; is a primitive action
Return a;

Else if a; is an abstract action (i.e. @)
Let hcnig be the subtask spanned by a;
EXECUTE(hchitd, t)

end

CO IO Ut i W N O

end

Table 2: Recursive execution function. The function is initially called using the root subtask
ho as the first argument and the current state s; as the second argument.

either abstract or primitive. In the case where this is an abstract action, the policy of
the corresponding lower-level subtask is consulted, and so on down the hierarchy until a
primitive action is selected. Once a primitive action is selected, the execution trace is
terminated and the action is applied by the agent.

It is important to emphasize that the full top-down trace through the hierarchy is re-
peated at every time step. This is a departure from many hierarchical MDP planning
algorithms which operate within a given subtask for multiple time steps until a terminal
state is reached; this common approach is impractical in POMDPs where we cannot guar-
antee detection of terminal states. Because it uses a polling approach, consistent with that
used by Kaelbling (1993) and Dietterich (2000a), PolCA extends easily to POMDPs.

4.4 Theoretical implications

To better discuss the theoretical performance of our algorithm, we introduce two useful
definitions (adapted from Dietterich (2000a)):

Definition 2 - Hierarchical Optimality: Given Ily, the class of all policies consistent
with hierarchy H, then a policy n* € Iy is said to be HIERARCHICALLY OPTIMAL if it
achieves the most reward amongst all policies 7 € I1g.

Definition 3 - Recursive Optimality: Given a subtask A with action set A, and II,
the class of all policies available in h, and assuming fixed policies for subtasks below h in
the hierarchy, then a policy 7 € IIj is said to be RECURSIVELY OPTIMAL if it achieves the
most reward amongst all policies 7, € IIj,. A set of subtask policies is recursively optimal
if all policies are recursively optimal with respect to their children.

These definitions are commonly used in the literature to describe and compare hierar-
chical MDP planning algorithms. For example, the well-known MAXQ achieves recursive
optimality (Dietterich, 2000a), whereas others such as HAM (Parr & Russell, 1998), Op-
tions (Sutton et al., 1999) and ALisp (Andre & Russell, 2001) achieve hierarchical optimal-
ity. The main difference between the two cases can be attributed to context. A recursively
optimal solution is obtained when subtask policies are optimized without regards to the
context in which they are called. In contrast, hierarchical optimality is achieved by keeping
track of all possible contexts for calling subtasks, which is key when subtasks have multiple

15



goal states. As a result, there is a trade-off between solution quality and representation:
hierarchical optimality is a stronger optimality result, but a recursively-optimal algorithm
often allows more state abstraction.

Theorem 1: Recursive optimality for PolCA. Let M = {S,A,T, R} be an MDP
and let H = {hg,...,hy,} be a subtask graph with well-defined terminal states and pseudo-
reward functions. Then the planning algorithm of Table 1 computes 7y, a recursively opti-
mal policy for M that is consistent with H.

Proof: We start by proving that Theorem 1 holds for the case where the planning
algorithm is applied without state abstraction (i.e. Step 3 in Table 1). To do this, we use
structural induction, which requires that we first show that the policy of any lowest-level
subtask is recursively optimal, and then that assuming this, the policy of any higher-level
subtask is also recursively optimal.

We first consider h, a low-level subtask containing only primitive actions A, = {ak, a;,...}
and no abstract actions. Applying Steps 2 and 4 1 yields a local policy 7. By convergence
of value iteration (which we apply in Step 4), this policy must be optimal with respect to
its action set Aj. Furthermore, because it is strictly optimal, it must also be recursively
optimal.

Now consider h, a higher-level subtask containing action set A, = {ag,as,...,ap,aq, ...},
where abstract actions {@p, a4, ...} are associated with corresponding subtasks {hy, hg, ...}
Assume that these subtasks have respective policies {ﬁ;‘Lp, 7r,*Lq, ...}, all of which have been
shown to be recursively optimal. Then applying Steps 2 and 4 yields a policy 7. We now
use a proof by contradiction to show that m} is also recursively optimal.

Assume there exists a policy W}T that differs from the 77 by at most €, such that 3s € S
where:

V”szr (s) = V’r;(s) +e€ (23)

and consequently:

Ny _ Ny TR
max R(s,a) +~ IZEST(S,CL, sV (s )] = max lR(s,a) + ’ZEST(S,a, s)V7h(s )] +e. (24)
Now substituting Equation 23 into Equation 24 and simplifying:
max R(s,a)+'ylzesT(s,a,s)(V r(s)+e)| > max R(s,a)+’y,ZeST(s,a,s)V h(s)| +e (25)
max R(s,a) +7 %T(s,a, s YW (s )] +ye > max lR(s,a) + %T(s,a, s)V™h(s)| +e€ (26)
ye > € (27)

For the general case 0 < v < 1 this can only hold if € = 0, and so we can say that
% (s) = V7™(s), and similarly 7; (s) = 7}(s),Vs € S. Thus, we conclude that 7}, must
be recursively optimal.

The extension of this proof to the case with state abstraction depends on the proof
included in Dean and Givan (1997), which shows that the model minimization algorithm
preserves policy quality. Q.E.D.

16



We terminate this section by pointing out that PolCA achieves recursive optimality,
rather than the stronger hierarchical optimality, specifically because it fixes low-level subtask
policies prior to solving higher-level subtasks. Nonetheless we show in the experimental
section that by restricting PolCA to this weaker form of optimality we achieve much greater
state abstraction than would be possible otherwise.

5. Hierarchical POMDPs

Any attempt at generalizing hierarchical MDP algorithms to address partially observable
MDPs must overcome two obstacles. First, both planning and execution must be re-
expressed with respect to beliefs, instead of states. Second, it is now unreasonable to assume
that terminal states (subgoals or otherwise) can be detected.* This section, which constitutes
the cornerstone of this paper, presents the full PolCA algorithm—a POMDP-generalization
of the version introduced in Section 4. Much of the algorithm remains unchanged from its
MDP formulation, however some important modifications are necessary to accommodate
partial observability, and to include the observation space and observation probabilities into
the algorithm.

5.1 Structural Assumptions

The structural assumptions necessary for hierarchical POMDP planning are for the most
part very similar to the hierarchical MDP assumptions. We add a set of observations
relevant for each subtask. Formally stated, given a task hierarchy H, each internal node
represents a separate POMDP subtask A defined by:

o Ap ={ak,a-...,0p,aq,...}, the set of actions allowed in subtask h.
o Sp={2n(s0),2n(s1),---}, the (clustered) set of states relevant to subtask h.

o OF = {om,0n,...}, the (reduced) set of observations relevant to subtask h, conditioned
on each action a € A;,. The observation abstraction excludes those observations which
cannot be observed in a given action. The abstraction preserves sufficient resolution
to solve h. All observation abstraction subsets are found automatically.

o Gy = {si,sj,...}, the set of terminal states for subtask h, where {s;,s;,...} € S.
The definition of goal states is only required to help specify the pseudo-reward func-
tion, Ry() The goal states need not be observed during planning or execution, and
furthermore in some POMDP domains it is perfectly acceptable to define G}, = 0.

e Ry(s), the pseudo-reward function specifying the relative desirability of each terminal
state. Typically, in subtasks with uniform reward (e.g. if R(s,a) = constant,Vs €
Sh,Va € Ap), the pseudo-reward is set to zero for goal-satisfying terminal states and
a negative constant for non-goal terminal states. In subtasks with a non-uniform
reward, the pseudo-reward is often set to the real reward.

4. This is not to say that they cannot be specified, but that in the general case, they cannot be fully
observed. The distinction is useful because in some cases the terminal states must be specified in the
process of determining the pseudo-reward function.

17



As in hierarchical MDPs, we also require a model of the domain, in this case a POMDP
model: M ={S,A,Q,b,T,0, R}.

5.2 Planning Algorithm

The POMDP formulation of the PolCA planning algorithm remains largely unchanged
from the MDP version (Table 1). Nonetheless there are a few notable differences. First,
the parameter setting step is extended to include observation probabilities. Next, the state
abstraction algorithm is complicated slightly by the need to consider observation probabil-
ities when clustering states. We also introduce automatic observation abstraction. Finally,
the actual subtask solving uses appropriate POMDP techniques. Table 3 presents the hier-
archical POMDP planning algorithm.

PLAN-PolCA (M, H)

STEP 1: Re-formulate structured state space: H - S

For each subtask h € H, following a bottom-up ordering
STEP 2: Set parameters: T'(h - s,a,h-s') and R(h - s,a),Vs € S,a € Ap,0€ Qp
STEP 3: Minimize states: S — Sp,
STEP 3b: Minimize observations: 2 —
STEP 4: Solve subtask: My — 7},

end

0O Ui W HO

end

Table 3: Main PolCA planning function. The function is called using the POMDP model
M ={S,A,Q,by,T,0, R} as the first argument and the hierarchical constraints
H = {hg,...,hn} as the second argument.

5.2.1 STEP 1— Re-formulate structured state space

The first step is identical in both MDP and POMDP formulations (Section 4.2.1.) Simply
stated, a new state space H - S is equal to the cross product between the original state space
S = {so,...,8n} and hierarchy state H = {hg, ..., hy}.

5.2.2 STEP 2—Set parameters

This step translates the POMDP parameters specified in M = {S, A,Q,by, T, O, R} to the
structured state space H - S. The specification of the reward and transition parameters
is identical to the MDP case (Section 4.2.2), and we now add the specification of the
observation parameters.
Given a POMDP M = {S, A,Q,T, O, R}, to set parameters for subtask h we use Equa-
tions 28-33:
CASE 1 - PRIMITIVE ACTIONS: Vay € Ap,ar € A, V(s,s') € S, Vo € Q:
T(h-s,ag,h-8) = T(s,ax,s), (28)
O(h-s,ag,0) = O(s,a,0), (29)

18



. Rh(s), if s € Gy,
R(h-s,a;) = { R(s,ay), otherwise. (30
CASE 2 - ABSTRACT ACTIONS: Va, € Ap,a, ¢ A, Y(s,s') € S, Yo € Q:
T(h-s,ap,h ) = T(s,7,(5), ) (31)
O(h . S’a’p’o) = O(S,ﬂ';:p(s),o) (32)
~ . Rh(s)’ if s € Gy,
R(h-s,ap) = { R(s,w,’;p(s)), otherwise. (33)

As explained in section 4.2.2, @, is an abstract action available in subtask h, where a,
subsumes subtask h, and m}, (s) is the policy of h, at state s. However in this POMDP
formulation of PolCA, unlike in the special-case MDP version, the parameter assignment
used for Case 2 constitutes an approximation.

5.2.3 STEP 3— Minimize states

The state clustering procedure for POMDPs extends the MDP model minimization of Dean
and Givan (1997) to also consider observation probabilities when checking for stability
between clusters. As in MDPs (Section 4.2.3), the automatic state abstraction algorithm
starts by selecting a set of initial clusters based on reward parameters. The cluster partition
is then gradually refined according to differences in transition and observation parameters.

To infer z,(s) — ¢, the function mapping states {h-sg,h-s1,...} to the (expanding) set
of clusters Cp, = {cg,c1,...}:

I - INITIALIZE STATE CLUSTERING: see Equation 18.

IT - CHECK STABILITY OF EACH CLUSTER: A cluster ¢ € C}, is deemed stable iff

Z T(h-si,a,h-s)O(h-s' a,0) = Z T(h-sj,a,h-s"O(h s a,0), (34)
s'ec see

V(si, 85) € ¢,V € Cp,Va € Ap,Vo € Q

IIT - IF A CLUSTER IS UNSTABLE, THEN SPLIT IT: see Equation 20

5.2.4 STEP 3B— Minimize observations

This step automatically determines observation abstraction 27, that defines the subset of
relevant observations for each action a € A, in subtask h. Observation abstraction is used
to accelerate solving; the effect on POMDP solving can be tremendous, since the complexity
of even one-step of planning is exponential in the number of observations (Equation 13).
Automatic observation abstraction is done on a subtask-per-subtask basis, and within each
subtask on an action-per-action basis.

Let o € Qp iff:

Z O(h - s,a,0;) =0, Ve € Ch. (35)
s€c

For each subtask h and action a € Ay, only those observations which maybe be observed
need be considered. The effect is to exclude those observations that have zero probability
over all state clusters.

19



5.2.5 STEP 4—Solve subtask

This step focuses on learning the POMDP value function and policy for subtask h. In the
case of POMDPs, unlike in MDPs, the solving is delayed until after the compact state and
observation sets, Sp and Qf, have been found.

The state and observation abstraction functions are first used to re-define the POMDP
parameters in terms of clusters:

bo(c) = ) bo(s), Ve€Cy (36)
sec
T(c,a,c) = Z T(h-s,a,h-5s"), s€ec, V(e cd)eCy, Vac A, (37)
s'ec
O(c,a,0) = O(h-s,a,0), s€c, YceCp, Yoe N}, Yac€ Ay (38)
R(c,a) = R(h-s,a), s€c, YVeeCp, Ya€ Ay (39)

Planning over clusters of states and observations is realized by using an exact POMDP
solver. We typically apply the incremental pruning algorithm described in Cassandra,
Littman, and Zhang (1997), using code obtained from Cassandra (1999). For very large
real-world domains, we have also used the Augmented-MDP algorithm described in Roy
and Thrun (2000).

5.3 POMDP Policy Execution with Task Hierarchies

The only significant change in hierarchical POMDP execution, compared to the MDP case,
is the fact that POMDPs require belief updating at every time step, prior to consulting the
policy. Given that each subtask h uses a different state clustering S}, it follows that its
local policy 7y, is expressed over a local belief.

Definition 4: Given a subtask h, we say that bs(c), the belief defined over clusters
¢ € C}, is a LOCAL BELIEF.

Rather than update the local belief for each subtask separately, using the latest pair
(at—1,0¢), we instead update the global belief b;() according to Equation 6. As the policy
lookup traverses the tree, the local belief for each subtask, b?(), is extracted from the global
belief:

bi(c) =D bi(s), Ve Cy (40)
s€ec
resulting in a simple projection according to each subtask’s state clustering function.
Table 4 describes the complete hierarchical POMDP execution algorithm. This com-
pletes our exposition of the general PolCA algorithm.

5.4 Theoretical implications

Unlike in MDPs, where we can guarantee finding a recursively-optimal solution, we are un-
able to make theoretical claims regarding the quality of our hierarchical POMDP solution.
In fact, we can easily demonstrate that the final solution will generally be sub-optimal,
simply by considering Equations 31-33. This parameterization of the abstract actions con-
stitutes an approximation, for the simple reason that the subtask policy 7, is only considered

20



EXECUTE-PolCA(h, b;)

Let bl (c) = >, . be(s), Vee Cy

Let a; = 7, (b))

If a; is a primitive action
Return a;

Else if a; is an abstract action (i.e. @)
Let hcpiq be the subtask spanned by a;
EXECUTE(hchitd, bt)

end

Neolie JBEN e NG I NVUN VIS =

end

Table 4: PolCA execution function. The function is initially called using the root subtask
ho as the first argument and the current global belief b; as the second argument.

at the corners of its belief state (i.e. when the belief is restricted to a single state—mp(s)),
thereby ignoring any policy action that may be called in high-uncertainty beliefs. This
approximation is necessary if subtask h is to be modeled as a POMDP, where by definition
parameters are assumed to be linear in the belief (e.g. R(b,a) = > ,c5b(s)R(s,a), and so
on for T'(b,a,b'), O(b,a,0)). Despite this approximation, the empirical results presented in
the next section demonstrate the usefulness of the approach for a wide range of POMDP
problems.

Embedded in our hierarchical POMDP planning algorithm are two important contribu-
tions to the area of model minimization. First, we presented a POMDP extension to the
MDP state minimization algorithm by Dean and Givan (1997). Second, we proposed a sep-
arate algorithm to perform observation abstraction. We include two theorems stating that
these algorithmic contributions are sound with respect to POMDP solving, independent of
any hierarchical context. Proofs for both theorems are included in Appendix A.

Theorem 2: Optimality for state abstraction in POMDPs. Let M = {S, A,Q, by,
T,0,R} be a POMDP. Then, the state minimization algorithm of Section 5.2.3 preserves
sufficient information to learn w*, the optimal policy for M.

Theorem 3: Optimality for observation abstraction in POMDPs. Let M =
{S,A,Q,by,T,0,R} be a POMDP. Then, the observation minimization algorithm of Sec-
tion 5.2.4 preserves sufficient information to learn w*, the optimal policy for M.

6. Experimental Evaluation of our Hierarchical MDP Approach

Although there are few other hierarchical POMDP algorithms with which to compare
PolCA, there exists a number of established hierarchical MDP approaches. For this reason,
we begin our experimental evaluation by comparing the MDP version of PolCA to three
other well-known hierarchical MDP algorithms: HSMQ (Dietterich, 2000b), MAXQ (Di-
etterich, 2000a) and ALisp (Andre & Russell, 2001). All three assume an action-based
subtask decomposition very much like our own, and also leverage state abstraction to ac-
celerate MDP problem solving. However state abstraction is derived by hand in HSMQ),

21



MAXQ, and ALisp, whereas the clustering is automatic in PolCA. There are other impor-
tant differences in the type of abstraction exploited in MAX(Q and ALisp, compared to
PolCA.

We first recall that both MAXQ and ALisp use a decomposed representation of the
value function:

Q(h-s,a) = Qr(h-s,a) + Qc(h-s,a) + Qe(h-s,a) (41)

where @), is the expected reward of taking action a, Q). is the expected reward of completing
subtask h after having taken a, and Q. is the expected reward of finishing the entire task
after having completed h. A 2-part Q, + Q. decomposition was first introduced in MAXQ.5
The full 3-part decomposition was later defined in ALisp (Andre & Russell, 2001). The
advantage of decomposing the value function in this way resides in the ability to perform
state abstraction separately for each component Q,() — z.(), Qc.() = 2:(), and Q.() —
z¢(), which in some problems yields much greater abstraction, compared to clustering on
the monolithic Q-function.® Specifically, it typically allows significant funnel abstraction.
Funnel abstraction is achieved when a subtask has few terminal states (for example moving
a robot to a doorway) by decoupling costs before and after the terminal states.

Nonetheless, PolCA—which does state abstraction on the non-decomposed @Q()—has a
different advantage when it comes to state abstraction. Specifically, because abstraction in
higher-level subtasks takes place after lower-level subtasks have been solved, the abstraction
in these high-level subtasks only needs to be consistent with one policy for each lower-
level subtask (as well as all possible policies for the current subtask). In contrast, state
abstraction in MAXQ and ALisp must be consistent with any policy per lower-level subtask.
In addition, because state abstraction is automatic in PolCA, it can take advantage of
symmetry in the domain (e.g. reflections, rotations, etc.; see Zinkevich and Balch (2001))
to further reduce the required parameter set.

The purpose of the first experiment is to investigate the effects of these differences. Thus,
we begin with an experiment that specifically looks at the amount of state abstraction
allowed by each method. It is worth emphasizing that the quantity of state abstraction
found is of interest because it is a direct indicator of policy computation times.

6.1 Hierarchical MDP Results - Taxi domain

The taxi domain is a well-known hierarchical MDP problem (Dietterich, 2000a). The overall
task (Figure 3a) is to control a taxi agent with the goal of picking up a passenger from an
initial location, and then dropping him/her off at a desired destination. The initial state is
selected randomly, however it is fully observable and transitions are deterministic. Figure 3b
represents the MAXQ control hierarchy used for this domain. The structured state space for
this domain—called Tazil—can be described by features: {X,Y,passenger,destination,H},
where H = {hRoota hGet, hput, hNav(Y)a hN(w(B)a hN(w(R) ’ hNav(G) } In addition, we consider
a second domain— Tazi2—in which the passenger can start from any location on the grid,

5. To obtain an even more concise representation, Q.(s,a) is stored only for primitive actions, and in
the case of abstract actions is recursively calculated online when necessary (see Dietterich (2000a) for
details).

6. In practice, automatically finding z.() can be non-trivial. The main difficulty is in estimating T'(h -
Si,an,h-s') and Q,(h- s',a,) for abstract action.

22



Putdown

0 — s 4

[North][South][East ]|W&d]

(a) (b)

Figure 3: The taxi domain is represented using four features: {X,Y,Passenger,Destination}.
The X,Y represent a 5x5 grid world; the passenger can be at any of:
{Y,B,R,G,taxi}; the destination is one of: {Y,B,R,G}. The taxi agent can se-
lect from six actions: {N,S,E,W,Pickup,Putdown}. Actions have a uniform —1
reward. Reward for the Pickup action is —1 when the agent is at the passenger
location, and —10 otherwise. Reward for the Putdown action is +20 when the
agent is at the destination with the passenger in taxi, and —10 otherwise.

compared to only {Y,B,R,G} in Taxil. This task is harder for MAXQ and ALisp because
of the need to represent many more completion costs in Nav(t).

Without any structural assumption, we would require respectively 3000 Q-values (500
states x 6 primitive actions) and 15600 Q-values (2600 states x 6 primitive actions) to rep-
resent the solution of the Taxil and Taxi2 tasks. Figures 4 and 5 compare state abstraction
results for each task, in terms of the number of parameters necessary to learn the solution.
In both cases, all four approaches (HSMQ, MAXQ, ALisp and PolCA) yield considerable
savings, compared to the full set of parameters required for an optimal MDP solution. Also
in both tasks, HSMQ requires many more parameters than MAXQ, ALisp or PolCA, in
large part because it only abstracts away full state features (e.g. destination is irrelevant
in hGet-)

Taking a closer look at the differences between MAX(Q ALisp, and PolCA, we see that
in the Taxil task, the number of parameters required are very comparable (632 values for
MAXQ, 744 for ALisp and 621 for PolCA). ALisp requires a few additional parameters
than the other because it represents external completion costs @.; and PolCA gets further
abstraction in low-level subtasks (e.g. hyqy()) because it automatically exploits symmetry
in the domain, something the other approaches fail to do.

In the case of the Taxi2 task, the results illustrate the advantage of PolCA in problems
where subtasks have multiple termination conditions. In this domain, both MAXQ and
ALisp require many more parameters to capture the completion costs (Q.) of subtasks
hNav() and hget, since the subtask can terminate in a large number of states (i.e. the
passenger can be in any of the 25 cells). PolCA on the other hand uses both symmetry in
the domain and constrained subtask ordering to achieve significantly more state abstraction.

23



Finally, we point out that the abstraction results for Q-learning, HSMQ, MAXQ and
ALisp in Taxil are published results (Dietterich, 2000a; Andre & Russell, 2002); Taxi2
results are hand-crafted following a careful reading of each algorithm. All algorithms learn
the same hierarchically-optimal policy on both of these tasks.

7. Experimental Evaluation of Hierarchical POMDP Approach

In this section, we move on to POMDP domains and present experimental results comparing
the PolCA algorithm with other well-established POMDP solving algorithms, both exact
and approximate, on three contrasting POMDP problems. The first domain can be solved
exactly, and has little structure to speak of. The second domain is a partially-observable
variant of the taxi domain (Section 6.1). Finally, the third domain is an information-
contingent POMDP which requires a policy with multi-step information-gathering actions,
and is therefore unsolvable by many approximate POMDP algorithms.

There exists a large variety of POMDP solution algorithms, both exact and approximate.
For the three target problems, we compare the performance of PolCA with that of one
exact POMDP solver and six approximate algorithms. These algorithms are all described
in Hauskrecht (2000), which offers a thorough comparative analysis of these, as well as other
approximate-value POMDP approaches. The approaches we consider include:

1. The POMDP solution is obtained using the incremental pruning algorithm (Cassandra
et al., 1997; Cassandra, 1999). This is an exact POMDP solution, with exponential
time complexity.

2. The MDP yokahead SOlution is obtained by solving the problem as fully observable using
the MDP value iteration algorithm, and thus disregarding any state uncertainty. The
control policy is obtained by combining the MDP value function with a single step
of exact POMDP solution. The result is a policy that assumes full observability for
every step but the current one. This solution is polynomial in the size of the state
and action sets.

3. The QMDP solution is obtained by solving the problem as fully observable, but keep-
ing track of all Q(s,a) values rather than only V(s) values. The POMDP policy is
extracted by linearly extrapolating Q-values to cover the entire belief space and taking
the action with maximum expected value. The result is a policy that assumes uncer-
tainty in the immediate time step, but full observability thereafter. This solution is
also polynomial in the size of the state and action sets.

4. The FIB (fast-informed bound) solution is obtained by solving the problem much
like the QMDP solution, with the difference that the Q-values are now weighted
according to observation probabilities. The POMDP policy is extracted by linearizing
the modified Q-values in the belief state and taking the action with maximum expected
value. This algorithm is polynomial in the size of the state, action, and observation
sets.

5. The QMDP pokahead SOlution is obtained by first optimizing the QMDP value function,
and then using the QMDP solution set to seed a single step of exact POMDP solving.

24



1800
1600
1400

1200 +

B Nav(t)
B Get
OPut

B Root

1000
800
600

#parameters

400 -
200

-

HSMQ MAXQ Alisp PolCA
Solution Type

Figure 4: Number of parameters required to find a solution for Taxil task.
HSMQ=hierarchical semi-Markov Q-learning (Dietterich, 2000b), MAXQ (Di-
etterich, 2000a), ALisp (Andre & Russell, 2002), PolCA-Q=our algorithm with
clustering on Q-values (see end of Section 4.2.3).

9000

8000

7000 H

6000
5000

ENav(t)
B Get
OPut

B Root

4000 -
3000
2000
1000

#parameters

HSMQ MAXQ Alisp PolCA
Solution Type

Figure 5: Number of parameters required to find a solution for Taxi2 task.

25



This solution has exponential time complexity due to the one-step of full POMDP
solution.

6. The FIByokahead SOlution is obtained by first optimizing the FIB value function, and
then using the FIB solution set to seed a single step of exact POMDP solving. This
solution has exponential time complexity due to the one-step of full POMDP solution.

7. The UMDP planner assumes a completely unobservable version of the given POMDP
problem, and applies a full POMDP solution to this worst-case problem characteri-
zation. The advantage is that the size of the POMDP solution—namely the number
of a-vectors—only grows by a multiplicative factor, |A|, with each iteration. Conse-
quently the complexity, though still exponential in the horizon length, is of a lower-
degree than for exact POMDP solving. The final policy is extracted from the set of
a-vectors, as in any POMDP.

8. The PolCA planner uses the algorithm introduced in this paper (more specifically,
Table 3.) Each subtask is solved using the exact POMDP algorithm, thus the com-
plexity is exponential in the size of the largest subtask, which is typically substantially
less than for exact planning, due to the reduced action, state and observation sets.

The following set of equations, directly adapted from Hauskrecht (2000), illustrates the
value-iteration update formula for the various approaches. Each value function expression
is mathematically bounded above by the expression listed above it in the list.

VAPP®) = Zb max R(s,a) + v Z Pr(s' | a, S)V;MDP(S,)]

seS s'eS

\Y

VRYPP ) = max > b(s) R(s,a)+’yZPr(s’|a,s)V;QMDP(s')H
Ls€S L s'eS

\Y

VAB () = max Zb(s (s,a +’yZZPr5 ol a,s)VFIB(s )H

a€A
LseS 0€EN S'ES

2
VATYPP() = max Zb(S)R(s,a)JrWZPT(OIa,b)V}POMDP(bQ)]
acA LseS 0€EQ
2
UMDP _ / S
VPP = | SR+ s |35 e oo

7.1 Simulation Domain 1: Part-Painting Problem

The first task considered is based on the part-painting problem described in Kushmerick,
Hanks, and Weld’s (1995) paper. It was selected because it is sufficiently small to be solved

26



exactly. It also contains very little structure, and is therefore a valuable sanity test for a
structured algorithm such as PolCA.

The task consists of processing a part which may or may not be flawed. If the part
is flawed, it must be rejected, and alternately if the part is not flawed it must be painted
and then shipped. The POMDP state is described by a Boolean assignment of three state
features: flawed={0,1}, blemished={0,1}, painted={0,1}. Not all assignments are included,
and thus the state set includes only four possible states: {unflawed-unblemished-unpainted,
unflawed-unblemished-painted, flawed-unblemished-painted, flawed-blemished-unpainted}. In
addition, the domain contains four possible actions: A={inspect, paint, ship, reject} and
two observations: Q2={blemished, unblemished}.

Shipping an unflawed-unblemished-painted part yields a +1 reward; otherwise shipping
yields a —1 reward. Similarly, rejecting a flawed-blemished-unpainted piece yields a +1
reward, and otherwise rejecting yields a —1 reward. Inspecting the part yields a noisy
observation. Finally, painting the part generally has the expected effect:

Pr(Spainted = 1 | @ = paint, spgintea = 0) = 0.9 (42)
Pr(spainted = 0 | a = paint, spginted = 0) = 0.1 (43)

and in the case of a blemished part, generally hides the blemish:

Pr(spiemished = 0 | @ = paint, Spiemished = 1) = 0.9 (44)
Pr(spiemished = 1 | @ = paint, Spiemished = 1) = 0.1 (45)

Figure 6 shows the action hierarchy used for this task. Though there are many possible
hierarchies, this intuitively seemed like a good hierarchy given minimum knowledge of the

problem.

Inspect Reject |

Paint  Ship

Figure 6: Action hierarchy for part-painting task.

Table 5 contains the results of the experiment with the set of different POMDP plan-
ners. For this very small domain, rather than evaluating the performance of each policy
using multiple simulation trials, we can look directly at the policy yielded by each different
planning method. We observe that the different algorithms each learned one of three poli-
cies (as indicated in the Policy column.) Figure 7 illustrates those three policies. Policy 7~
is clearly very poor: by rejecting every part, it achieves the goal only 50% of the time. On
the other hand, optimal policy 7* and near-optimal policy 7™ both achieve the goal 75%
of the time (failing whenever action inspect returns an incorrect observation). In fact, 7*
and 7 are nearly identical (within a discount factor, v = 0.95) since the reward for a paint
action is always zero. Nonetheless, the optimal policy n* yields a higher reward by virtue

27



of its faster reset rate. The effect of the approximation introduced when modelling abstract
action @; (in Figure 6) is seen in policy 7.

Problem Solution | CPU time Policy
|S|=4, |A|=4, |Q]|=2 (secs)

POMDP 39.28 m*
MDPs0kahead <0.01 T
QMDP <0.01 ™
FIB < 0.01 ot
QMDP,okahead 0.07 nt
FIBjookahead 0.06 T*
UMDP 0.33 T
PolCA 5.84 T

Table 5: Performance results for part-painting task

Figure 7: Policies for part-painting task. (Nodes show actions; arrows indicate observations
when appropriate; dotted lines indicate a task reset, which occurs after a part

has been rejected or shipped).

The planning time for most of the approximate algorithms was extremely short—< 0.01s
for MDPpokahead, QMDP and FIB, 0.07s for QMDP;,orahead, 0-06s for FIB,okahead and
0.33s for UMDP—compared to the exact solution. Planning with PolCA also resulted in
significant time savings over the exact solution (5.84s vs 39.28s). We conclude that even for
small problems with little structure to speak of, PolCA is able to find reasonable policies.

28



Nonetheless, we observe that the QMDP approximate algorithm was able to find an optimal
policy in a fraction of the time required by PolCA. We attribute the optimal performance
of the QMDP to the fact that this problem contains a single information-gathering action.
The QMDP algorithm is able to select an information-gathering action when it represents
the lowest-risk option in high-uncertainty beliefs.

7.2 Simulation Domain 2: Cheese-Taxi Problem

This section addresses a robot navigation task that is a cross between Dietterich’s (2000a)
taxi problem (with added state uncertainty) and McCallum’s (1993) cheese maze. This
domain is interesting because it combines the cheese maze’s state uncertainty and the taxi
task’s hierarchical structure. We assume that a taxi agent is operating in a world that has
the configuration of the cheese maze (Figure 8), where the agent must pickup a passenger
located at state s10 and then proceed to deliver the passenger to his/her desired destination
(either s0 or s4). The state space is represented using 33 discrete states, formed by taking
the cross-product of two state variables: taxi locations {s0, sI, ..., s10} and destinations
{50, s4, s10}. The agent has access to seven actions: {North, South, East, West, Query,
Pickup, Putdown}, and can perceive ten distinct observations: {01, 02, 03, 04, 05, 06, 07,
destinationS0, destinationS4, null}.

S0) Sl S2 S3 A
destination? destination?,
S5 S6 S7
S8 S10 S9
passenger

Figure 8: State space for the cheese-taxi task.

One of the first seven observations is received whenever a motion action is applied,
partially disambiguating the taxi’s current location. As defined in McCallum (1993), this
observation is a localization signature indicating wall placement in all four directions im-
mediately adjacent to the location. According to this convention, states {s5, s6, s7} look
identical, as do respectively {s1,s3} and {s8, s9}; finally states s0, s2 and s4 have a unique
identifier. The two observations { destinationS0, destinationS4} are provided (without noise)
in response to the Query action, fully disambiguating the taxi destination state variable,
but only when the passenger is onboard. The null observation is received after the Pickup
and Putdown actions.

The state transition model is deterministic, for example motion actions have the ex-
pected transition effects:

Pr(s' = s2| a = North,s = s6) = 1 (46)

29



and so on for the other actions. In addition, the agent incurs a —1 reward for any action,
as well as a final reward of +20 for delivering the passenger at the correct location. A —10
reward is incurred for applying the Pickup and Putdown actions incorrectly.

There are three sources of uncertainty in this problem. First, as in McCallum’s original
cheese maze task, the initial location of the taxi is randomly distributed over maze cells
{s0, s1, ..., s9} and can only be disambiguated by taking a sequence of motion actions.
Secondly, the passenger’s destination (s0 or s4) is randomly selected when the passenger
is picked-up and can only be observed by using the Query action. And thirdly, whenever
the taxi has the passenger onboard and is in cells s2 or s6, there is a small possibility that
the passenger will change his/her mind and suddenly select the other destination. The new
destination can only be observed, once again, by using the Query action.

The transition and reward parameters used here are consistent with the original taxi
task; the observations parameters (with the exception of the Query action) are borrowed di-
rectly from the original cheese maze. Finally, we also adopt the taxi task’s usual hierarchical
action decomposition, as shown in Figure 3b.

This problem, unlike the previously considered part-painting problem, requires the use
of a pseudo-reward function in subtasks with a uniform reward (e.g. hpygqy() has a uniform
reward function Rygy()(s,a) = —1,V(s,a)). Thus, we artificially reward achievement of
partial goals in the hyg,() subtask by using pseudo-reward function:

RNav(SO) (3 = 50, a) =0, Vae ANav(SO)

and similarly for $4 and $10. This is identical to the pseudo-reward function used in
Dietterich (2000a).

Figure 9 and 10 present results for the cheese-taxi domain, for each of the POMDP
solving algorithms. Figure 9 illustrates the sum of rewards to accomplish the full task,
averaged over 1000 trials, whereas Figure 10 illustrates the computation time necessary
to reach the solution. These figures include results for two different hierarchical POMDP
solutions (PolCA and PolCA-NoAbs). PolCA is the full algorithm as described in Section 5.
PolCA-NoAbs uses the same algorithm, but without any state or observation abstraction,
which leads to a longer solution time. Both use the decomposition of Figure 3b.

The UMDP solution stands apart by its extremely poor performance; its policy is such
that the goal of dropping off the passenger is occasionally reached, but not from all starting
positions (we forcefully terminated any trial lasting 100 time steps.) Furthermore, the policy
never uses the Query action and therefore attempts to putdown the passenger at the wrong
destination in half of the trials.

Under all other policies, the agent starts with a sequence of motion actions that serves
to make progress towards the passenger’s location (S10) while also disambiguating location.
Upon reaching S10 with full certainty, the agent selects the Pickup action. The agent then
takes a sequence of motion actions, interspersed with the Query action, which leads it to
the correct passenger destination.

The main difference between the top four policies (PolCA, PolCA-NoAbs, QMDP,kaheads
and FIBj,okanead) and the next four best ones (POMDP, MDP, QMDP and FIB) is in their
policy for the first sequence of motion action, going from the random start location to the
passenger’s station at S10. The better policies exhibit optimized action sequences, such
that a minimum number of moves is required to simultaneously disambiguate position and

30



10

unll 1

POMDP MDP- QMDP FIB QMDP- FIB- PoICA NoAbs PoICA
lookahead lookahead lookahead

N

Reward

-10

Solution type
Figure 9: Reward profile for solving the cheese-taxi task.

100000 -

10000 -

1000 -
100 +
10 A
14
0.01 - S N s

POMDP MDP- QMDP FIB QMDP FIB- UMDP PoICA-NoAbs PoICA
lookahead lookahead lookahead

Computation Time

Solution type

Figure 10: Computation time for solving the cheese-taxi task. Both the UMDP and
POMDP algorithms were terminated after many hours of computation, before
either had converged to a solution. The Root and Put subtasks in both PolCA
solutions (PolCA and PolCA-NoAbs) were also terminated before convergence.
In all cases, the intermediate solution from the last completed iteration was used
to evaluate the algorithm and generate the results of Figure 9.

31



reach S10. The other three approximate algorithms (MDP,okahead;, QMDP and FIB) are
unable to correctly trade-off progress towards goal versus localization information, and con-
sequently require extra steps to reach $10. Finally the exact POMDP algorithm, though
theoretically able to find the shortest action sequence, would require longer computation to
do so. It was terminated after over 24hrs of computation, having completed only 5 iterations
of exact POMDP solving.

In this domain, the computation time for PolCA, even with abstraction, is significantly
longer than with any of the other approximate algorithms (except UMDP), and the ben-
efits in terms of policy performance over two of the approximations (QMDPyokaheqd and
FIBjookahead) are only marginal. We conclude that the PolCA algorithm is able to perform
on par with other approximate algorithms in this domain, however the longer computation
time required does not necessarily make it an appropriate choice for such a domain. As in
the part-painting problem, QMDP,kahead a0nd FIBjookahead perform quite well in large part
because this problem requires only a single information-gathering action. We now consider
a domain where this level of approximation is insufficient because a good policy can only
be achieved through multi-step information-gathering actions.

7.3 Simulation Domain 3: Twenty-questions game

This new POMDP domain is based on an interactive game called Twenty-questions (Bur-
gener, 2002), also know as “Animal, Vegetable, or Mineral?”. In this two-player game, the
first player selects a specific object in his/her mind, and the second player must then guess
what that object is. The second player is allowed to ask a series of {yes/no} questions,
which the other person must answer truthfully (e.g. Is it an animal? Is it green? Is it
a turtle?). The second player wins a round if s/he correctly identifies the object within
twenty questions (thus the name of the game.)

When modeling the game as a POMDP, the goal is to learn a POMDP policy that
correctly guesses the object selected by the user. We represent each possible object as
a state. The action space involves two types of actions: guesses and questions. There
is one guess per object in the state space (e.g. Is is a turtle?). The list of questions
should be sufficient to disambiguate between state-objects (e.g. Is is green? Is is it a
fruit? Is it a mineral?). The observation space contains only three items: {yes, no, noise},
corresponding to possible verbal responses from the non-POMDP player having picked the
object. This POMDP domain can easily be scaled by adding more objects: each new object
automatically adds one state and one action, and information-eliciting questions can also
be added as necessary. This example is a prototypical information-contingent POMDP,
characterized by a large action space (relative to the state space) which includes a variety
of information-gathering actions.

With respect to model parameterization, following the natural rules of the game the
state transitions should all be self-transitions. However, we add a small probability of
randomly transitioning from the current state-object to another one, thus allowing the first
player to change his/her mind about the target object. Though not traditionally part of
this game, adding stochasticity in the state transitions makes this a much more interesting
POMDP. We assume that after each question, the state stays the same with probability
0.9, and randomly changes to any of the other states with cumulative probability 0.1. The

32



reward is consistently —1 for all question-actions, whereas guess-actions yield a +5 reward
if the guess is correct and a —20 reward otherwise. The task is reset every time the policy
selects a guess-action. Finally, the observation probabilities for each question-action noisily
reflects the state, for example:

P(o =yes | s = turtle,a = green) := 0.85
P(o=mno | s=turtle,a = green) := 0.1
P(o = noise | s = turtle,a = green) := 0.05

We implemented a 12-object version of this domain. The POMDP representation con-
tains 12 states (one per object), 20 actions (12 guesses + 8 questions), and 3 observations
(yes, no, noise). We considered two alternate hierarchical decompositions for this domain.
Figure 11 illustrates the first decomposition (referred to as D1). In this case, the domain
is decomposed into four subtasks, with some action redundancy between subtasks. Prelim-
inary experiments with this decomposition quickly showed that most of the computation
necessary to apply hierarchical planning was spent in solving subtask hvegetable'7 We there-
fore proposed the second decomposition (referred to as D2), which is illustrated in Figure 12.
This decomposition further partitions the action space of the h subtask, to produce
two new lower-level subtasks: hreal—vegetable and hfruz't'

We applied our hierarchical planning algorithm twice, once for each decomposition, and
also generated policies using the full set of algorithms. For this domain, the performance
of each policy was evaluated in simulation using 1000 independent trials. Trials failing to
make a guess after 100 time steps were terminated.

Figure 13 shows the sum of rewards for each run, averaged over the 1000 trials and
plotted as a function of the number of value iteration updates completed (in the case of
the hierarchical planners, the full number of iterations was completed for each subtask.)
These results clearly illustrate the failures of the QMDP and FIB algorithms when faced
with an information-contingent POMDP domain. Looking closely at the policies generated
by the QMDP and FIB algorithms, we noted that they are unable to differentiate between
the various question-actions, and therefore randomly select questions until the belief is
sufficiently certain to make a guess. This certainty threshold is slightly lower for the FIB
algorithm, thus explaining its slightly less dismal performance. The QMDP algorithm on
the other hand was never able to take a correct guess, and in each trial spent 100 time steps
asking random questions without any useful effect. As expected, the performance of the
exact POMDP solver (in terms of accumulated reward) exceeds that of the approximate
methods. For the hierarchical approach, both D1 and D2 converge within approximately
20 iterations, but converge to slightly sub-optimal policies. Furthermore, we note that the
additional structural assumptions in D2 cause a greater loss of performance, compared to
D1.

Figure 14 presents the same results as in Figure 13, but now plotting the reward per-
formance as a function of computation time. This graph clearly shows the computational
savings—mnote the log(time) x-axis—obtained through the use of hierarchical structural as-
sumptions. By comparing D1 and D2 we can also see the trade-off resulting from different

vegetable

7. It is a convention of this game to let all plant-related objects be identified as “vegetables”.

33



At

askFruit
askWhite
askBrown
askRed
askHard
guessTomato
guessApple
guessBanana
guessPotato
guessMushroom
guessCarrot

askAnimal
askVegetable
askMinera

Bina

askWhite
askRed
askBrown
askHard
guessMonkey
guessRabbit
guessRobin

askWhite
askRed
guessMarble
guessRuby
guessCoal

Figure 11: Action hierarchy D1 for twenty-questions domain.

askFruit

askAnimal @@ AMineral
askVegetable
askMineral
A
it askWhite askWhite
askRed askRed
askBrown guessMarble
askHard guessRuby
askWhite askWhite guessMonkey guessCoal
askRed askBrown guessRabbit
askHard askHard guessRobin
guessTomato guessPotato
guessApple guessMushroom
guessBanana guessCarrot

Figure 12: Action hierarchy D2 for twenty-questions domain.

34




_20 i
-40 -
—X¥—POMDP
—— PoIlCA-D1
R -60 - —A— PoICA-D2
------ FIB
—QMDP
_80 i
-100 -
-120 : ‘ ‘ ‘ ‘
0 5 10 15 20 25 30
# lterations

Figure 13: Simulation results for the twenty-questions domain.
results are plotted as constants, representing optimized performance.

The QMDP and FIB

The

MDPookaheads QMDPookahead; and FIBjookahead are not illustrated on this figure;

all three generated results equivalent to the QMDP performance.

-20 -

-40 -

—X— POMDP
—— PoICA-D1
—&— PoICA-D2

R -60 -

-80 -

-100 -

x

-120

0.01

0.1 1

10 100

Time (secs)

1000

10000

100000 1000000

Figure 14: Simulation results as a function of computation time for the twenty-questions do-
main. All POMDP computations, including for hierarchical subtasks, assumed
a pruning criterion of € = 0.5.

35



structural assumptions. We conclude that PolCA’s hierarchical decomposition preserves suf-
ficient richness in representation to successfully address information-contingent POMDPs.
Furthermore, through the design of the hierarchy, one can effectively control the trade-off
between performance and computation. Other possible approaches to solve this problem
which we have not investigated include the even-odd POMDP (Bayer Zubek & Dietterich,
2000) and decision trees (Quinlan, 1986). However the stochasticity in state transitions
make decision trees a poor choice for this specific formulation of the 20-questions domain.

We are particularly interested in this domain because it shares many commonalities with
POMDP-based dialogue modeling (Roy, Pineau, & Thrun, 2000). When modeling a robot
interaction manager as a POMDP, as we do in the next section, the inclusion of information-
gathering actions is crucial to a good policy, since human-robot interactions are typically
marred by ambiguities, errors and noise. This game in essence provides us with a stylized
(and naturally scalable) version of an interaction task, thereby allowing us to perform com-
parative analyses in simulation, before moving to a real-world implementation. This is an
extremely valuable tool given the difficulty of staging real human-robot dialogue experi-
ments. For these reasons, we believe that this domain can be to information-contingent
POMDPs what the often-used maze navigation task has been to goal-driven POMDPs, in
particular the robot navigation domain.

8. A Real-World Application Domain

In this section, we follow up on our simulation experiments with a real-world implementa-
tion of the PolCA approach in the context of a robot behavioral manager. High-level robot
control has been a popular topic in Al, and decades of research have led to a reputable
collection of architectures (Arkin, 1998; Brooks, 1985; Gat, 1996). However, existing archi-
tectures rarely take uncertainty into account during planning. We propose a robot control
architecture where a POMDP incorporates high-level uncertainty obtained through both
navigation sensors (e.g. laser range-finder) and interaction sensors (e.g. speech recognition
and touchscreen) to performs high-level control. The POMDP is also able to arbitrate
between information gathering and performance-related actions, as well as negotiate over
goals from different specialized modules. Unfortunately, POMDPs of the size necessary for
good robot control are an order of magnitude larger than exact POMDP algorithms can
tackle. This domain, however, offers significant structure in the form of multiple alternate
goals as well as decomposable goals, thus making it a good candidate for PolCA.

In this domain, the POMDP policy is used to control the high-level behavior of a robot
in the context of an interactive task. This work was conducted as part of a larger project
dedicated to the development of a prototype nursing assistant robot (Montemerlo et al.,
2002; Pollack et al., 2002; Pineau & Thrun, 2002). The overall goal of the project is to
develop personalized robotic technology that can play an active role in providing improved
care and services to non-institutionalized elderly people. The target user is an elderly
individual with mild cognitive and/or physical impairment.

The robot Pearl (shown in Figure 15 on the right) is the primary test-bed for the
POMDP-based behavior management system. It is a wheeled robot with an on-board
speaker system and microphone for speech input and output. It uses the Sphinx IT speech
recognition system (Ravishankar, 1996) and the Festival speech synthesis system (Black,

36



Talor, & Caley, 1999). It also has two on-board PCs connected to the Internet via wireless
Ethernet.

Figure 15: Pearl, the robotic nursing assistant, interacting with elderly people at a nursing
facility.

In this domain, PolCA controls high-level decision-making over a large set of robot
activities, both verbal and non-verbal. Typical activities include sending the robot to pre-
selected locations, accompanying a person between locations, engaging the person in a
conversation, and offering both general information and specific cognitive reminders. This
task also involves the integration of multiple robot-based sensors into the POMDP belief
state. Current sensors include laser readings, speech recognition, and touch-screen input.
These can exhibit significant uncertainty, attributed in large part to poor speech recognition,
but also to noisy navigation sensors and erroneous human input.

Table 6 shows a sample dialogue between the robot and a test subject, using a POMDP
policy. Because of the uncertainty management in POMDPs, the robot chooses to ask a
clarification question at three occasions. The number of such questions depends on the
clarity of a person’s speech, as detected by the Sphinx speech recognition system. An MDP
policy would not exhibit similar adaptability to poor recognition performance.

8.1 POMDP Modeling

To formally test the performance of the PolCA algorithm in this domain, we developed
an experimental scenario that tested the effectiveness of the POMDP interaction manager
onboard the robot, in the context of a guidance task. This scenario required Pearl to
interact with elderly residents, with the primary goal of reminding them of, and taking
them to, a scheduled physiotherapy appointment, and with the secondary goal of providing
them with interesting information. In the course of this scenario, Pearl had to navigate to

37



Observation True State Action Reward

pearl hello request_begun say_hello 100
pearl what is like start_meds ask_repeat —100
pearl what time is it

for will the want_time say_time 100
pearl was on abc want_tv ask_which_station —1
pearl was on abc want_abc say_abc 100
pearl what is on nbc want_nbc confirm_channel_nbc —1
pearl yes want_nbc say_nbc 100
pearl go to the that

pretty good what send_robot ask_robot_where -1
pearl that that hello be send_robot_bedroom confirm_robot_place —1
pearl the bedroom any i send_robot_bedroom go_to_bedroom 100
pearl go it eight a hello send_robot ask_robot_where -1
pearl the kitchen hello send_robot_kitchen go_to_kitchen 100

Table 6: A sample dialogue with a test subject. Actions in bold font are clarification actions,
generated by the POMDP because of high uncertainty in the speech signal.

a resident’s room, establish contact, possibly accompany the person to the physiotherapy
center, and eventually return to a recharging station. The task typically also required the
robot to answer simple information requests by the test subject, for example providing the
time or the weather forecast. Pearl’s high-level behavior (including both speech and motion
commands) was completely governed by the POMDP interaction manager.

In this scenario the robot interface domain was modeled using 576 states, which are
described using a collection of multi-valued state features. Those states were not directly
observable by the robot interface manager; however, the robot was able to perceive 18
distinct observations. The state and observation features are listed in Table 7.

Observations were perceived through 4 different modalities; in many cases the listed
observations constitute a summary of more complex sensor information. For example, in
the case of the laser range-finder, the raw laser data was processed and correlated to a map
to determine when the robot had reached a known landmark (e.g. — Laser=robotAtHome).
Similarly, in the case of a user-emitted speech signal, a keyword filter was applied to the
output of the speech recognizer (e.g. “Give me the weather forecast for tomorrow.” —
SpeechK eyword=weather). In general, the speech recognition and touchscreen input were
used as redundant sensors to each other, generating very much the same information, but
assumed to have a greater degree of reliability when coming from the touchscreen. The
Reminder observations were received from a high-level intelligent scheduling module. This
software component, developed by McCarthy and Pollack (2002) in the context of the Pearl
project, reasons temporally about the user and his/her activity, with the goal of issuing
appropriately timed cognitive reminders to warn the person of upcoming scheduled events
(e.g. need to take medication, doctor’s appointment, social activities, etc.).

In response to the observations, the robot could select from 19 distinct actions, falling
into three broad categories:

e COMMUNICATE={RemindPhysioAppt, RemindVitamin, UpdateChecklist, CheckPer-
sonPresent, TerminateGuidance, TellTime, Tell Weather, ConfirmGuideToPhysio, Ver-

38



State Features Feature values

RobotLocation home, room, physio
PersonLocation room, physio

PersonPresent yes, no

ReminderGoal none, physio, vitamin, checklist
MotionGoal none, toPhysio

InfoGoal none, wantTime, wantWeather

Observation Features | Feature values

Speech yes, no, time, weather, go, unknown
Touchscreen t_yes, t_no, t_time, t_weather, t_go
Laser atRoom, atPhysio, atHome

Reminder g_none, g_physio, g_vitamin, g_checklist

Table 7: Component description for human-robot interaction scenario

ifyInfoRequest, ConfirmWantTime, ConfirmWantWeather, ConfirmGoHome, Confir-
mDone}

e MovE={GotoPatientRoom, GuideToPhysio, GoHome}
¢ OTHER={DoNothing, RingDoorBell, RechargeBattery}

Each discrete action enumerated above invoked a well-defined sequence of operations on
the part of the robot (E.g. Give Weather requires the robot to first look up the forecast using
its wireless Ethernet, and then emit SpeechSynthesis= “Tomorrow’s weather should be sunny,
with a high of 80.”). The actions in the Communicate category involved a combination of
redundant speech synthesis and touchscreen display, such that the selected information or
question was presented to the test subject through both modalities simultaneously. Given
the sensory limitations common in our target population, we found the use of redundant
audio-visual communication important for both input to, and output from, the robot. The
actions in the Mowve category were translated into a sequence of motor commands by a
motion planner, which uses dynamic programming to plan a path from the robot’s current
position to its destination (Roy & Thrun, 2002).

The POMDP model parameters were selected by a designer. The reward structure, also
hand-crafted, reflects the relative costs of applying actions in terms of robot resources (e.g.
robot motions actions are typically costlier than spoken verification questions), as well as
reflecting the appropriateness of the action with respect to the state. For example, we use:

e positive rewards for correctly satisfying a goal, e.g.
R(a = TerminateGuidance)=+50
if s(MotionGoal = {toPhysio}, RobotLocation = {physio}, PersonLocation = {physio})

e 3 large negative rewards for applying an action unnecessarily, e.g.
R(a = GuidetoPhysio)=—200
if s(MotionGoal = {none})

39



e a small negative reward for verification questions, e.g.
R(a = Con firmGuidetoPhysio)=—1
given any state condition

The scenario was implemented and tested using only a single policy, generated by the
PolCA approach (Figure 16 shows the action hierarchy used for this domain). The dif-
ficulties involved in carrying out experiments with elderly subjects made it prohibitively
difficult at this stage to perform a full scale comparative evaluation with alternate POMDP
solutions.

é@n@ DoNothing ‘ Aviove ‘ ‘ ConfirmDone ‘ ‘ Aniorm ‘ DoNothing
RemindVitamin ConfirmGoHome
RemindPhysioAppt GoHome
UpdateChecklist RechargeBattery

A4 A4 A4
DoNothing ConfirmGuideToPhysio TellTime
GoToPatientRoom CheckUserPresent ConfimWantTime
RingDoorbell GuideToPhysio TellWeather

TerminateGuidance ConfirmWantWeather
VerifylnfoRequest

Figure 16: Action hierarchy for robot experiment.

8.2 Experimental Results

We performed two days of formal experiments during which the robot autonomously led 12
full guidances, involving 6 different elderly people. Figure 17 shows an example guidance
experiment, involving an elderly person who uses a walking aid. The sequence of images
illustrates the major stages of a successful delivery: from contacting the person, explaining
to her the reason for the visit, walking her through the facility, and providing information
after the successful delivery—in this case on the weather.

Overall, the policy generated using PolCA successfully controlled the robot without any
human intervention, in all guidance experiments. The six subjects completed their scenario
without difficulty and were very pleased with the experience.® Throughout the experi-
ment, speech recognition performance was particularly poor due to the significant amount

8. For video footage see: http://www.cs.cmu.edu/ “thrun/movies/pearl-assist.mpg

40



(a) Pearl approaching elderly (b) Reminding of appointment (c) Guidance through corridor

(d) Entering physiotherapy dept. (e) Asking for weather forecast (f) Pearl leaves

Figure 17: Example of a successful guidance experiment. Pearl picks up the patient outside
her room, reminds her of a physiotherapy appointment, walks the person to the
department, and responds to a request of the weather report. Throughout this
interaction, communication took place through speech and the touch-sensitive
display.

of ambient noise, however the redundancy offered by the touch-screen allowed users to com-
municate with the dialogue manager without difficulty. In addition, in early experiments,
the robot lacked the ability to adapt its speed to that of the person, during guidance to
the physiotherapy center, causing it to run-away from slow-moving test subjects. This was
corrected by the addition of a second laser in the back of the robot, allowing it to adapt
its speed appropriately. This experiment constitutes encouraging evidence that, with ap-
propriate approximations, POMDP control can be feasible and useful in real-world robotic
applications.

9. Concluding Discussion

This paper has presented a novel approach to solve complex POMDP problems. PolCA
appears especially well-suited to information-contingent problems, in which the ability to
select from alternate information-gathering actions is paramount to successful planning, and
where existing algorithms often fail. The approach has also been successfully used in a robot
system for the control of high-level robot behavior, in the context of an interactive service
task. Furthermore, in the special case of MDP planning, this approach appears to compare
favorably to existing MDP approaches: in some problems it automatically discovered more
state abstraction than was possible with previous algorithms. We conclude this paper by
discussing manners in which this work can be extended, as well as relations to other work
on hierarchical planning.

41



First, the hierarchical planning algorithm presented in this paper requires having non-
trivial local reward functions in each subtask, which in some cases requires the use of a
pseudo-reward function. It is possible to loosely divide hierarchical POMDPs into two
types of problems: single goal and multi-goal domains. The division into these two types is
interesting because it offers some insight into which problems may require pseudo-reward
functions. The first type of problems is characterized by having a single large goal which is
achieved by sequentially completing relevant subgoals. Each subgoal is generally associated
with a subtask. The taxi task (Section 6.1) is an example of such a problem. It is often the
case that only the final goal completion is rewarded, and thus other subtasks need to be
provided with hand-crafted pseudo-reward functions. In the future, it is possible that work
on reward shaping (Ng, Harada, & Russell, 1999) will offer some insight into automatically
defining appropriate pseudo-reward functions. In contrast, the second type of problems
includes those in which many different alternative goals can be satisfied within a unified
framework. The information-contingent POMDP for the 20-questions domain (Section 7.3)
is an instance of such a problem. For this type of problems, a good hierarchy will typically
partition goals amongst subtasks and thus the local reward assumption can be met without
difficulty, and without the need for pseudo-rewards.

Second, the automated state clustering algorithm described in Section 4.2.3 tends to be
useful in MDPs only if it can be applied without requiring full enumeration of the state
space. This is necessary because otherwise the complexity of the clustering algorithm is
equivalent to that of the planning algorithm, and therefore impractical given those large
problems for which hierarchical planning is most needed. In general, it is often possible
to obtain an e-stable clustering solution without fully enumerating the state space. In the
case of POMDPs, the exponential complexity of computing a solution (Equation 13) means
that using a clustering algorithm that is polynomial in the size of the domain is by no
means prohibitive compared to planning costs. Thus, it is always feasible to compute an
(e = 0)-stable clustering of states. Nonetheless, a coarser and approximate clustering may
be preferable since it further reduces the size of the problem, and therefore the planning
time.

Third, because PolCA uses a monolithic Q)-function, instead of a decomposed Q)-function
(Equation 41), it it unable to achieve full funnel abstraction. This is most relevant in the
MDP version of PolCA, where costs can often be effectively decoupled around subtask
terminal states. We believe future versions of PolCA can use the decomposed Q-function
for still greater savings.

Fourth, the results presented in Figure 10 briefly allude to the fact that some subtasks
were not solved to completion. In particular, the results of Figure 9 assume that subtasks
Root and Put were terminated after 9 and 5 iterations respectively. This opens up the
question of whether lower-level subtasks should be solved fully (namely to convergence) be-
fore higher-level subtasks are solved. For very large domains, it may be better to interleave
planning between subtasks of different levels, to ensure an any-time solution. However, this
would require re-parameterization of the abstract actions (Equations 31-33) every time the
lower-level policy changed. In practice, this overhead will likely be very small compared to
the actual POMDP solving applied to each subtask; however, it is probably not advanta-
geous to start computation on high-level tasks too early, when the policies of low-level tasks
are extremely poor and change frequently.

42



Finally, PolCA combines action-decomposition with automated state and observation
abstraction to offer a highly-structured approach to POMDP planning. In general, the
prevalence of abstraction is a direct result of imposing the hierarchy. We predict that a
better understanding of the interaction between action hierarchies and state/observation
abstraction may lead to better ways of exploiting structure in problem solving, as well as
inspire new methods for automatically discovering action hierarchies

10. Acknowledgments

The authors would like to acknowledge invaluable contributions by the following researchers:
David Andre, Tom Dietterich, Geoff Gordon, Michael Littman, and Nicholas Roy.

References

Andre, D., & Russell, S. (2001). Programmable reinforcement learning agents. In Lean,
T., Dietterich, T., & Tresp, V. (Eds.), Advances in Neural Information Processing
Systems (NIPS), Vol. 13, pp. 1019-1025. MIT Press.

Andre, D., & Russell, S. (2002). State abstraction for programmable reinforcement learning
agents. In Proceedings of the Fighteenth National Conference on Artificial Intelligence
(AAAI), pp. 119-125.

Arkin, R. (1998). Behavior-Based Robotics. MIT Press.

Asoh, H., Hayamizu, S., Isao, H., Motomura, Y., Akaho, S., & Matsui, T. (1997). So-
cially embedded learning of office-conversant robot jijo-2. In Proceedings of the 15th
International Joint Conference on Artificial Intelligence (IJCAI), pp. 880-887.

Bayer Zubek, V., & Dietterich, T. (2000). A POMDP approximation algorithm that antic-
ipates the need to observe. In Springer-Verlag (Ed.), Proceedings of the Pacific Rim
Conference on Artificial Intelligence (PRICAI); Lecture Notes in Computer Science,
pp- 521-532, New York.

Black, A., Talor, P., & Caley, R. (1999). The Festival speech synthesis system. 1.4 edition.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129,
5-33.

Borenstein, J., Everett, B., & Feng, L. (1996). Navigating Mobile Robots: Systems and
Techniques. A. K. Peters, Ltd.

Boutilier, C., Brafman, R. I., & Geib, C. (1997). Prioritized goal decomposition of Markov
decision processes: Toward a synthesis of classical and decision theoretic planning.

In Proceedings of the 15th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1156-1162.

Boutilier, C., Dearden, R., & Goldszmidt, M. (2000). Stochastic dynamic programming
with factored representations. Artificial Intelligence, 121, 49-107.

Boyen, X., & Koller, D. (1998). Tractable inference for complex stochastic processes. In Pro-
ceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI),
pp. 33-42.

43



Brafman, R. I. (1997). A heuristic variable grid solution method for pomdps. In Proceedings
of the Fourteenth National Conference on Artificial Intelligence (AAAI), pp. 727-733.

Brooks, R. A. (1985). A robust layered control system for a mobile robot. Tech. rep. TR
AT memo 864, MIT.

Burgard, W., Cremers, A. B., Fox, D., Hahnel, D., Lakemeyer, G., Schulz, D., Steiner,
W., & Thrun, S. (1999). Experiences with an interactive museum tour-guide robot.
Artificial Intelligence, 114, 3-55.

Burgener, R. (2002). Twenty questions: The neural-net on the internet.
http://www.20q.net/index.html.

Cassandra, A. (1999). Tony’s pomdp-solve page. http://www.cs.brown.edu/research/
ai/pomdp/code/index.html.

Cassandra, A., Littman, M. L., & Zhang, N. L. (1997). Incremental pruning: A simple, fast,
exact method for partially observable Markov decision processes. In Proceedings of
the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI), pp. 54-61.

Cox, L. J., & Wilfong, G. T. (Eds.). (1990). Autonomous Robot Vehicles. Springer Verlag.

Dayan, P., & Hinton, G. (1993). Feudal reinforcement learning. In Advances in Neural
Information Processing Systems (NIPS), Vol. 5, pp. 271-278, San Francisco, CA.
Morgan Kaufmann.

Dean, T., & Givan, R. (1997). Model minimization in Markov decision processes. In
Proceedings of the Fourteenth National Conference on Artificial Intelligence (AAAI),
pp- 106-111.

Dean, T., Givan, R., & Leach, S. (1997). Model reduction techniques for computing ap-
proximately optimal solutions for Markov decision processes. In Proceedings of the
Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI), pp. 124-131.

Dean, T., & Lin, S. H. (1995). Decomposition techniques for planning in stochastic domains.
In Proceedings of the 14th International Joint Conference on Artificial Intelligence
(IJCAI), pp. 1121-1129.

Dietterich, T. G. (2000a). Hierarchical reinforcement learning with the MAXQ value func-
tion decomposition. Journal of Artificial Intelligence Research, 13, 227-303.

Dietterich, T. G. (2000b). An overview of MAXQ hierarchical reinforcement learning. In
Choueiry, B. Y., & Walsh, T. (Eds.), Proceedings of the Symposium on Abstraction,
Reformulation and Approzimation (SARA), Lecture Notes in Artificial Intelligence,
pp- 2644, New York. Springer Verlag.

Fikes, R. E., & Nilsson, N. J. (1971). STRIPS: A new approach to the application of theorem
proving to problem solving. Artificial Intelligence, 2, 189-208.

Gat, E. (1996). Esl: A language for supporting robust plan execution in embedded au-
tonomous agents. AAAT Fall Symposium: Issues in Plan Execution.

Hauskrecht, M. (2000). Value-function approximations for partially observable Markov
decision processes. Journal of Artificial Intelligence Research, 13, 33-94.

44



Hengst, B. (2002). Learning hierarchical decomposition for factored MDPs. In Machine
Learning: Proceedings of the 2002 International Conference (ICML).

Hernandez-Gardiol, N., & Mahadevan, S. (2001). Hierarchical memory-based reinforcement
learning. In Advances in Neural Information Processing Systems (NIPS), Vol. 13, pp.
1047-1053.

Jazwinski, A. M. (1970). Stochastic Processes and Filtering Theory. Academic, New York.

Kaelbling, L. P. (1993). Hierarchical reinforcement learning: Preliminary results. In Machine
Learning: Proceedings of the 1993 International Conference (ICML), pp. 167-173.

Kaelbling, L. P., Littman, M. L., & Cassandra, A. R. (1998). Planning and acting in
partially observable stochastic domains. Artificial Intelligence, 101, 99-134.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Trans-
actions of the ASME, Journal of Basic Engineering, 82, 35—45.

Kushmerick, N., Hanks, S., & Weld, D. (1995). An algorithm for probabilistic planning.
Artificial Intelligence, 76, 239-286.

Littman, M. L., Cassandra, A. R., & Kaelbling, L. P. (1995). Learning policies for par-
tially obsevable environments: Scaling up. In Proceedings of Twelfth International
Conference on Machine Learning, pp. 362-370.

Lovejoy, W. S. (1991). A survey of algorithmic methods for partially observable Markov
decision processes. Annals of Operations Research, 28, 47-66.

McCallum, R. A. (1993). Overcoming incomplete perception with utile distinction memory.
In Machine Learning: Proceedings of the 1993 International Conference (ICML), pp.
190-196.

McCarthy, C. E., & Pollack, M. (2002). A plan-based personalized cognitive orthotic. In
Proceedings of the 6th International Conference on AI Planning & Scheduling (AIPS).

McGovern, A., & Barto, A. G. (2001). Automatic discovery of subgoals in reinforcement
learning using diverse density. In Machine Learning: Proceedings of the 2001 Inter-
national Conference (ICML), pp. 361-368.

Meuleau, N., Hauskrecht, M., Kim, K.-E., Peshkin, L., Kaelbling, L. P., Dean, T., &
Boutilier, C. (1998). Solving very large weakly coupled Markov decision processes. In
Proceedings of the Fifteenth National Conference on Artificial Intelligence (AAAI),
pp. 165-172.

Monahan, G. E. (1982). A survey of partially observable Markov decision processes: Theory,
models, and algorithms. Management Science, 28(1), 1-16.

Montemerlo, M., Pineau, J., Roy, N., Thrun, S., & Verma, V. (2002). Experients with
a mobile robotic guide for the elderly. In Proceedings of the FEighteenth National
Conference on Artificial Intelligence (AAAI), pp. 587-592.

Moore, A. W., & Atkeson, C. G. (1995). The parti-game algorithm for variable resolution
reinforcement learning in multidimensional state-spaces. Machine Learning, 21, 199—
233.

45



Ng, A. Y., Harada, D., & Russell, S. (1999). Policy invariance under reward transformations:
Theory and application to reward shaping. In Machine Learning: Proceedings of the
1999 International Conference (ICML), pp. 278-287.

Parr, R., & Russell, S. (1995). Approximating optimal policies for partially observable
stochastic domains. In Proceedings of the 14th International Joint Conference on
Artificial Intelligence (IJCAI), pp. 1088-1094, Montreal, Quebec. Morgan Kauffmann.

Parr, R., & Russell, S. (1998). Reinforcement learning with hierarchies of machines. In
Advances in Neural Information Processing Systems (NIPS), Vol. 10, pp. 1043-1049.

Pearl, J. (1988). Probabilistic reasoning in intelligent systems: networks of plausible infer-
ence. Morgan Kaufmann.

Pickett, M., & Barto, A. G. (2002). Policyblock: An algorithm for creating useful macro-
actions in reinforcement learning. In Machine Learning: Proceedings of the 2002 In-
ternational Conference (ICML).

Pineau, J., & Thrun, S. (2002). High-leel robot behavior control using pomdps. In Work-

shop on Cognitive Robotics (CogRob), National Conference on Artificial Intelligence
(AAAI), pp. 80-87.

Pollack, M., Engberg, S., Matthews, J. T., Thrun, S., Brown, L., Colbry, D., Orosz, C.,
Peintner, B., Ramakrishnan, S., Dunbar-Jacob, J., McCarthy, C., Montemerlo, M.,
Pineau, J., & Roy, N. (2002). Pearl: A mobile robotic assistant for the elderly. In
Workshop on Automation as Caregiver: the Role of Intelligent Technology in Elder
Care, National Conference on Artificial Intelligence (AAAI), pp. 85-91.

Poupart, P., & Boutilier, C. (2000). Value-directed belief state approximation for POMDPs.
In Proceedings of the Sizteenth Conference on Uncertainty in Artificial Intelligence
(UAI), pp. 409-416.

Quinlan, J. R. (1986). Induction of decision trees. Machine Learning, 1, 81-106.

Rabiner, L. R. (1989). A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77(2), 257-285.

Ravishankar, M. (1996). Efficient Algorithms for Speech Recognition. Ph.D. thesis, School
of Computer Science, Carnegie Mellon University.

Roy, N., Pineau, J., & Thrun, S. (2000). Spoken dialog management for robots. In Pro-
ceedings of the 38th Annual Meeting of the Association for Computational Linguistics
(ACL).

Roy, N., & Thrun, S. (2000). Coastal navigation with mobile robots. In Advances in Neural
Information Processing Systems (NIPS), Vol. 12, pp. 1043-1049.

Roy, N., & Thrun, S. (2002). Robot navigation using policy search. In Proceedings of the
2002 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

Russell, S., & Norvig, P. (1995). Artificial Intelligence: A Modern Approach. Prentice Hall.

Ryan, M. (2002). Using abstract models of behavious to automatically generate reinforce-

ment learning hierarchies. In Machine Learning: Proceedings of the 2002 International
Conference (ICML).

46



Singh, S. (1992). Transfer of learning by composing solutions of elemental sequential tasks.
Machine Learning, 8, 323-339.

Singh, S., & Cohn, D. (1998). How to dynamically merge Markov decision processes. In
Advances in Neural Information Processing Systems (NIPS), Vol. 10, pp. 1057-1063.

Sondik, E. J. (1971). The Optimal Control of Partially Observable Markov Processes. Ph.D.
thesis, Stanford University.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine
Learning, 3, 9-44.

Sutton, R. S., Precup, D., & Singh, S. (1999). Between MDPs and semi-MDPs: A framework
for temporal abstraction in reinforcement learning. Artificial Intelligence, 112, 181—
211.

Tesauro, G. (1995). Temporal difference learning and TD-Gammon. Communications of
the ACM, 38(3), 58-68.

Theocharous, G., Rohanimanesh, K., & Mahadevan, S. (2001). Learning hierarchical par-
tially observable Markov decision process models for robot navigation. In Proceedings
of the 2001 IEEE International Conference on Robotics & Automation (ICRA), pp.
511-516.

Thrun, S. (2000). Monte Carlo POMDPs. In Advances in Neural Information Processing
Systems (NIPS), Vol. 12, pp. 1064-1070.

Thrun, S., & Schwartz, A. (1995). Finding structure in reinforcement learning. In Advances
in Neural Information Processing Systems (NIPS), Vol. 7, pp. 1064-1070.

Torrance, M. C. (1994). Natural communication with robots. Master’s thesis, Department
of Electrical and Computer Science, MIT.

Wang, G., & Mahadevan, S. (1999). Hierarchical optimization of policy-coupled semi-
Markov decision processes. In Machine Learning: Proceedings of the 1999 International
Conference (ICML), pp. 464-473.

White, C. C. (1991). A survey of solution techniques for the partially observed Markov
decision process. Annals of Operations Research, 32, 215-230.

Wiering, M., & Schmidhuber, J. (1997). HQ-learning. Adaptive Behavior, 6(2), 219-246.

Zinkevich, M., & Balch, T. (2001). Symmetry in Markov decision processes and its impli-
cations for single agent and multiagent learning. In Machine Learning: Proceedings of
the 2001 International Conference (ICML), pp. 632-639.

Appendix A - Convergence under POMDP state/observation abstraction
This appendix contains the proofs for Theorems 2 and 3 of Section 5.4.
Theorem 2: Optimality for state abstraction in POMDPs. Let M = {S, A,Q, by,

T,0,R} be a POMDP. Then, the state minimization algorithm of Section 5.2.3 preserves
sufficient information to learn w*, the optimal policy for M.

47



Proof: We consider two states s; and s;, with matching cluster assignment: ¢ = z(s;) =
z(s;) obtained by the POMDP state clustering algorithm of Section 5.2.3. We use a proof
by induction to show that any two beliefs b = {bg, ..., b;,b;,...} and b’ = {bo,...,b;-,b;-,...}
that differ only in their probability over states s; and s;, have identical value V' (b) = V (/).

First we consider the value at time ¢ = 0:

Vo(b) = max b(si)R(si,a) + b(sj)R(sj,a) + Z b(s)R(s,a) (47)
L s€S,s#{si,5;}

V@) = max V' (si)R(si,a) +b'(s;)R(sj,a) + Z b(s)R(s,a) (48)
L SES,s#{ss,5;}

Assuming that z(s;) = 2(s;), then by Equation 18 we can substitute R(s;) <= R(s;) in
Equation 48:

Vo(®) = max |:(b'(si) +'(sj)) R(si,a) + Y. b(s)R(s,a) (49)

a€A S€S,s#{si,5;}
And, because >, gb(s) = 1, we can substitute (b'(s;) + b'(s;)) < (b(s;) + b(s;)) in
Equation 49:

Vo(b) = max [(b(sz) +b(s;)) R(ss,a) + Z b(s)R(s,a)| , (50)
a€ 5657‘9#{5%3‘]‘}
leading to the conclusion that:
Vo(b) = Vo(¥). (51)
Next, we assume that the values at time ¢ — 1 are equal:
Vi1 () = Visa(0). (52)
Finally, we must show that the values at time ¢ are equal:
Vi(br) = max [Z bi(s)R(s,a) +vY_ Pr(o]|a, bt)Vt_l(bt_l)] (53)
ae sES 0€EQ)
Vi(by) = max LEZ; bi(s)R(s,a) + 7%1’7‘(0 | a, bi)th(bQ_ﬂ] : (54)

Using Equation 51, we can substitute: ) g bi(s)R(s,a) < > ,cqbt(s)R(s,a) in Equa-
tion 54:

Vi(b}) = max lz bi(s)R(s,a) +v Y Pr(o]|a, b;)Vt_l(bg_l)] : (55)
sES 0€Q

Next, we use the POMDP stability criterion (Equation 34) in conjunction with Equa-
tion 52 and the belief update equation (Equation 6) to infer that b,_; = b;_1, conditioned
on each observation o € 2, and therefore:

Vi(bt) = max [Z bi(s)R(s,a) +~v Y _ Pr(o]a, bt)Vt_l(bt_l)] : (56)
s€S 0€Q

48



leading to the conclusion that V;(b) = V;(¢). Q.E.D.

Theorem 3: Optimality for observation abstraction in POMDPs. Let M =
{S,A,Q,by,T,0,R} be a POMDP. Then, the observation minimization algorithm of Sec-

tion 5.2.4 preserves sufficient information to learn 7*, the optimal policy for M.

Proof: We consider an observation o € {2 which satisfies Equation 35 and thus is
excluded from a given set Qf. We consider a second set Qf " = {Qf,0}. We consider two
POMDP subtasks which are identical in every way except that the first uses €} and the
second uses Q;‘f. We show that solving both generates the same solution.? Let V* be the

solution obtained when using 0} and V' be the solution obtained when using QZ*’.

Using a proof by induction, we first consider:
Vi) = max [2 bO(S)R(SaG)]

Vit () = max leg(s)R(s,a)]

from which we can conclude that:
Vi (b) = V5t (b).
We now assume that:

V4 (0) = VL (0).

Next, we consider the exact POMDP value update equation of section 7:

V) = max Y b(s)R(s,a) +v Y Pr(o|a,b)V" (b,)
| s€S OEQZ*

h+ _

e = e

> b(s)R(s,a) +v Y. Pr(o]a,b)V (b))

s€8 o€yt

Substituting Equation 59 into 60 and re-arranging, we get:

hx* h
V(b)) = Ié’lea.j( ;b(s)R(s,a)—l-’y Z Pr(o\a,b)V;_J[(b'o)

a+
o€y

+Pr(o| a, bV (0))] -

(62)

9. In the interest of clarity, we assume no state abstraction (i.e. S, = S), however extending the proof to

the case with state abstraction is trivial.

49



Expanding the last term:

hx _ !
V" (b) = max Zb sa+'szro\ab)Vt 1(b,)
OEQ“+
+ V(L) )Y Pr(o|a,s)b(s)|, (63)
s€ES

we can then eliminate the last term using the observation abstraction condition in Equa-
tion 35, such that:

Vi( = max Zb (s,a) +y Z Pr(o|a,b)V; @), (64)
er’”‘
and therefore:
VI (b) = VI (b). (65)

We conclude that no loss of performance results from eliminating an observation o which
satisfies Equation 35. Q.E.D.

50



