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ABSTRACT

T
HE problem of planning under uncertainty has received significant attention in
the scientific community over the past few years. It is now well-recognized that
considering uncertainty during planning and decision-making is imperative to
the design of robust computer systems. This is particularly crucial in robotics,

where the ability to interact effectively with real-world environments is a prerequisite for
success.

The Partially Observable Markov Decision Process (POMDP) provides a rich frame-
work for planning under uncertainty. The POMDP model can optimize sequences of ac-
tions which are robust to sensor noise, missing information, occlusion, as well as imprecise
actuators. While the model is sufficiently rich to address most robotic planning problems,
exact solutions are generally intractable for all but the smallest problems.

This thesis argues that large POMDP problems can be solved by exploiting natural
structural constraints. In support of this, we propose two distinct but complementary al-
gorithms which overcome tractability issues in POMDP planning. PBVI is a sample-based
approach which approximates a value function solution by planning over a small number
of salient information states. PolCA+ is a hierarchical approach which leverages structural
properties of a problem to decompose it into a set of smaller, easy-to-solve, problems. These
techniques improve the tractability of POMDP planning to the point where POMDP-based
robot controllers are a reality. This is demonstrated through the successful deployment of
a nursing assistant robot.
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NOTATION
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CHAPTER 1

Introduction

T
HE concept of planning is at the core of many AI and robotics problems. Plan-

ning requires a person, a system, or a robot to select a sequence of actions

with the goal of satisfying a task. Automatic planning is generally viewed

as an essential part of an autonomous system, be it a software agent, expert

system, or mobile robot.

In the early days of AI, planning was restricted to simple tasks in static environments;

actions had few and predictable effects, and could be combined sequentially to satisfy the

desired goal. This gave rise to a rich and successful set of approaches that could handle

planning problems of increasing complexity, including the ability to satisfy multiple goals,

handle time constraints, quickly re-plan, and so on. However, these methods generally

relied on the assumption that the true state of the world (or a sufficient statistic thereof)

could be sensed exactly and reliably.

While this assumption is reasonable in some highly-structured domains, this is clearly

not the case in many real-world problems. For example, significant research on natural lan-

guage dialogue systems has sought to devise techniques for recovering state information

through conversing with a person. Similarly, in robotics, sensor limitations are pervasive

and the seemingly simple problem of recovering the state from sensor measurements is the

key subject of research in entire research programs.

Furthermore, as robots move into human-centered living and working environments,

they will face increasingly diverse and changing environments. These environments, be-

cause they are meant first and foremost for human occupants, cannot and should not be

constrained and modified to accommodate robots which need to know everything about

the state of the world at all times. Rather, it is the robots that need to adapt and develop

the ability to handle the uncertain and the dynamic nature of their environments.



1.1 PLANNING UNDER UNCERTAINTY

But it is not sufficient for robots to only detect and track uncertainty. Consider the case

of a personal assistant robot, which interacts with a user through natural speech. Given the

state of speech recognition technology, the robot should expect a certain amount of noise

in its detection of user utterances. While there are clear benefits for the robot to model and

reason about the uncertainty in the speech signal, what is crucial is for the robot to act on

this uncertainty, namely to decide when to answer a query, and when to seek clarification,

or solicit feedback.

Robots require the ability to formulate plans with appropriate contingencies for the

frequent uncertain situations that are bound to arise. It is those problems, where planning

takes into account the fact that the state of the world is only partially measurable, which

motivate the research described in this thesis.

The importance of planning in uncertain environments cannot be overstated: the im-

pact of intelligent agents in real-world applications depends directly on their ability to

satisfy complex tasks, without unnecessary modification of their environment. This is the

measure by which the success of autonomous agents—in particular robots—will be mea-

sured, thus the strong impetus for pursuing research on planning under uncertainty.

1.1. Planning under uncertainty

The concept of planning has a long tradition in the AI literature (Russell & Norvig,

2002; Weld, 1999). Classical planning is generally concerned with agents which operate

in environments that are fully observable, deterministic, finite, static, and discrete. States

and actions are described using propositional (first-order) representations. The STRIPS lan-

guage (Fikes & Nilsson, 1971) is an early instance of a classical planner. It assumes a known

start state and goal state, and actions are described in terms of preconditions and effects.

In this context, planning is implemented as a forward (or backward) search through the

state space, subject to the preconditions and effects of actions. Scalability of such planning

paradigm has been achieved through the appropriate use of partial plan ordering (Chap-

man, 1987; McAllester & Roseblitt, 1991; Penberthy & Weld, 1992), planning graphs (Blum

& Furst, 1997), constraint satisfiability (Kautz & Selman, 1992), and heuristics (Bonet &

Geffner, 2001). While these techniques are able to solve increasingly large state-space prob-

lems, the basic assumptions of classical planning—full observability, static environment,

deterministic actions—make these unsuitable for most robotic applications.

Planning under uncertainty aims to improve robustness by explicitly reasoning about

the type of uncertainty that can arise. Conformant planning (Goldman & Boddy, 1996;

Akella, Huang, Lynch, & Mason, 1997; Smith & Weld, 1998; Bertoli, Cimatti, & Roveri,

2



1.1 PLANNING UNDER UNCERTAINTY

2001) deals with the special case of sensorless environments, where the plan selects ac-

tions which coerce the agent into a known state, thus overcoming state uncertainty. Con-

ditional planning uses similar propositional representation as in classical planning, but is

able to address some form of uncertainty. Such techniques generate plans where action

choices are conditioned on the outcome of sensing actions (Peot & Smith, 1992; Pryor &

Collins, 1996). Stochastic action outcomes can also be represented through disjunctive ef-

fects and conditional effects (Warren, 1976; Olawsky & Gini, 1990), or through probabilistic

effects (Goldman & Boddy, 1994; Draper, Hanks, & Weld, 1994; Blythe, 1998).

The Partially Observable Markov Decision Process (POMDP) (Ästrom, 1965; Sondik,

1971; Monahan, 1982; White, 1991; Lovejoy, 1991b; Kaelbling, Littman, & Cassandra, 1998;

Boutilier, Dean, & Hanks, 1999) has emerged as possibly the most general representation

for planning under uncertainty. The POMDP supersedes other frameworks in terms of

representational power simply because it combines the most essential features for planning

under uncertainty.

First, POMDPs handle uncertainty in both action effects and state observability, whereas

many other frameworks handle neither of these, and some handle only stochastic action

effects. To handle partial state observability, plans are expressed over information states,

instead of world states, since the latter ones are not directly observable. The space of in-

formation states is the space of all beliefs a system might have regarding the world state.

Information states are easily calculated from the measurements of noisy and imperfect sen-

sors. In POMDPs, information states are typically represented by probability distributions

over world states.

Second, many POMDP algorithms form plans by optimizing a value function. This

is a powerful approach to plan optimization, since it allows one to numerically trade-off

between alternative ways to satisfy a goal, compare actions with different costs/rewards,

as well as plan for multiple interacting goals. While value function optimization is used

in other planning approaches—for example Markov Decision Processes (MDPs) (Bellman,

1957)—POMDPs are unique in expressing the value function over information states, rather

than world states.

Finally, whereas classical and conditional planners produce a sequence of actions,

POMDPs produce a full policy for action selection, which prescribes the choice of action

for any possible information state. By producing a universal plan, POMDPs alleviate the

need for re-planning, and allow fast execution.

Unfortunately, the fact that POMDPs produce a universal plan, combined with the fact

that the space of all information states is much larger than the state space itself, means that

3



1.2 POINT-BASED VALUE ITERATION

POMDPs are computationally much harder than other approaches. In fact, POMDP plan-

ning is PSPACE-complete, whereas propositional planning is only NP-complete. This com-

putational intractability is arguably the most important obstacle toward applying POMDPs

successfully in practice.

The main contribution of this thesis is to propose two related approaches—Point-based

value iteration (PBVI) and Policy-contingent abstraction (PolCA+)—which directly tackle com-

plexity issues in POMDP planning, and to demonstrate the impact of these approaches

when applied to real-world robot problems.

This thesis exclusively addresses the computational complexity involved in policy

generation (planning). We assume that the state spaces at hand are small enough (e. g.
�����

) that the information state can be calculated exactly. We also target domains for which

a model of the world’s dynamics, sensors, and costs/rewards is available.

1.2. Point-Based Value Iteration

As described above, POMDPs handle uncertainty by expressing plans over infor-

mation states, also called beliefs, instead of world states. Exact planning approaches for

POMDPs are designed to optimize the value function over all possible beliefs. In most

domains only a subset of beliefs can be reached (assuming a known initial belief). How-

ever even the set of reachable beliefs can grow exponentially with the planning horizon.

This means that the time/space requirements for computing the exact value function also

grow exponentially with the planning horizon. This can quickly become intractable even

for problems with only a few states, actions, and sensor observations.

Point-based value iteration (PBVI) is a new algorithm that was designed to address

this problem. Instead of learning a value function for all belief points, it selects a small

set of representative belief points, and iteratively applies value updates to those points

only. The point-based update is significantly more efficient than an exact update (quadratic

vs. exponential). And because PBVI updates both the value and value gradient, it can

generalize fairly well to unexplored beliefs, especially those close to the selected points.

This thesis presents a theoretical analysis of PBVI, which shows that it is guaranteed

to have bounded error with respect to the exact value function. While an error bound is

generally in and of itself a useful assessment of performance, in the case of PBVI it also

provides us with additional insight. In particular, the bound can be used to determine how

to best select the number and placement of belief points necessary to find a good solution.

The complete PBVI algorithm is designed as an anytime algorithm, interleaving steps

of value iteration and steps of belief set expansion. It starts with an initial set of belief
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points for which it applies a first series of backup operations. Based on this preliminary

solution, it selects new belief points to be added to the set, and finds a better value function

based on the expanded set. By interleaving value backup iterations with expansions of the

belief set, PBVI offers a range of solutions, gradually trading off computation time and

solution quality.

Chapter 3 describes the PBVI algorithm in full detail. It derives and explains the er-

ror bound on the algorithm, including showing how it is useful for selecting belief points.

Finally, it presents empirical results demonstrating the successful performance of the al-

gorithm on a large (870 states) robot domain called Tag, inspired by the game of lasertag.

This problem is an order of magnitude larger than other problems previously used to test

scalable POMDP algorithms.

PBVI is a promising approximation algorithm for scaling to larger POMDP problems,

likely effective to solve problems up to
������� ��� �

states. However while this may be consid-

ered “large” in terms of POMDP problems, it is still a long way from being useful for most

real-world robot domains, where planning problems described with a few multi-valued

state features can require upward of
� ���

states. This highlights the need to take greater

advantage of structural properties when addressing very large planning domains.

1.3. Hierarchical POMDPs

Some of the most successful robot control architectures rely on structural assumptions

to tackle large-scale control problems (Brooks, 1986; Arkin, 1998). The Subsumption archi-

tecture, for example, uses a combination of hierarchical task partitioning and task-specific

state abstraction to produce scalable control systems. However it, and other similar ap-

proaches, are not designed to handle state uncertainty, which can have dramatic effects in

situations where state estimation is particularly noisy or ambiguous. Furthermore, these

approaches typically rely on human designers to specify all structural constraints (hierar-

chy, abstraction) and in some cases even the policies.

The second algorithm presented in this thesis, named PolCA+ (for Policy-Contingent

Abstraction) is a hierarchical decomposition approach specifically designed to handle large

structured POMDP problems. PolCA+ uses a human-designed task hierarchy which it tra-

verses from the bottom up, learning a state abstraction function and action-selection policy

for each subtask along the way. Though very much in the tradition of earlier structured ro-

bot architectures, PolCA+ also leverages techniques from the MDP literature to formalize

the hierarchical decomposition, extending these to the partially observable case.

5
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Chapter 4 of this thesis presents two versions of the algorithm. The first, from here

on referred to as PolCA, is specifically for MDP-type problems (i. e. assuming full state

observability). It is closest to the earlier hierarchical MDP approaches, and is included

to allow a thorough comparison with these other algorithms. The second, referred to as

PolCA+, is the POMDP version, with full ability to handle partial state observation, which

is of utmost importance for real-world problems. Both PolCA and PolCA+ share many sim-

ilarities with well-known MDP hierarchical algorithms (Dietterich, 2000; Andre & Russell,

2002) in terms of defining subtasks and learning policies. However there are two notable

differences, which are essential for addressing robotic problems.

First, to define subtasks, PolCA/PolCA+ uses a human-specified action hierarchy, in

combination with subtask-specific automatic state abstraction functions. This requires less

information from the human designer than earlier approaches: s/he must specify the ac-

tion hierarchy, but not the subtask-specific abstraction functions. In many cases, human

experts are faster and more accurate at providing hierarchies than they are at providing

state abstractions, so PolCA/PolCA+ benefits from faster controller design and deploy-

ment.

Second, PolCA/PolCA+ performs policy-contingent abstraction: the abstract states at

higher levels of the hierarchy are left unspecified until policies at lower levels of the hierar-

chy are fixed. By contrast, human-designed abstraction functions are usually policy-agnostic

(correct for all possible policies) and therefore cannot obtain as much abstraction. Humans

may sometimes (accidentally or on purpose) incorporate assumptions about policies into

their state abstraction functions, but because these are difficult to identify and verify, they

can easily cause problems in the final plan.

PolCA+ is the full-featured POMDP version of our hierarchical algorithm. It differs

from PolCA in a number of ways necessary to accommodate partial observability, includ-

ing how subtasks are defined, how they are solved, and how dependencies between them

are handled. First, when defining subtasks, the state abstraction must take partial observ-

ability into account, and therefore in some cases it is necessary to preserve additional state

variables which are subject to ambiguity. This further highlights the importance of auto-

matic state abstraction, since reasoning about which states may or not be confused could

be particularly difficult for a human designer.

Second, when defining subtasks, PolCA+ also applies automatic observation abstrac-

tion. To the best of our knowledge this is new to the POMDP literature (regardless of any

hierarchical context), and has important implications for POMDP solving in general since

the number of observations is an important factor in the exponential growth of reachable
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beliefs (as described in Section 1.1). In the context of PolCA+, automatic observation ab-

straction is useful to discard observations that are irrelevant to some specific tasks. For

example, when controlling an interactive robot, a subtask specialized to robot navigation

can safely ignore most speech input, since it is unlikely to contribute any useful informa-

tion to localization and path planning.

When solving subtasks PolCA+ can use any existing (non-structured) POMDP solver.

The choice of solver can vary between subtasks, based on their properties (e. g. size, per-

formance requirement, etc.). Ideally, each subtask would be sufficiently small to be solved

exactly, but in practice this rarely happens. The PBVI solver described in Chapter 3, which

has the ability to handle tasks on the order of
�����

states, can easily be applied to most

subtasks.

Finally, when combining local policies from each subtask in PolCA+ to form a global

policy, we must once again take into account partial observability. In this case, the impor-

tant consideration comes from the fact that we cannot even assume that subtask completion

is fully observable. This may seem like a small detail, but in practice, it has a profound

effect on our execution model. Most hierarchical approaches for fully observable domains

proceed with a subtask until it is completed, then return control to the higher-level subtask

that invoked it. In the case of PolCA+, the decision to proceed (or not) with a subtask must

be re-evaluated periodically, since there are no guarantees that subtask completion will be

observed. To accommodate this, we use top-down control at every step (also known as

polling execution). This means that at every time step we first query the policy of the top

subtask; if it returns an abstract action we query the policy of that subtask, and so on down

the hierarchy until a primitive action is returned. Since policy polling occurs at every time

step, a subtask may be interrupted before its subgoal is reached, namely when the parent

subtask suddenly selects another action.

Chapter 4 first presents PolCA (the fully observable version), including a full descrip-

tion of the automatic state abstraction, subtask solution, and execution model. We also

present results describing the performance of PolCA on standard structured MDP prob-

lems, and compare it with that of other hierarchical MDP approaches.

Chapter 4 then presents PolCA+ (the partially observable version), and describes in

detail the algorithmic components that perform state abstraction, observation abstraction,

subtask solution, and polling execution. The chapter also contains empirical results ob-

tained from applying the algorithm to a series of simulated POMDP problems.
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(a) Flo (b) Pearl

Figure 1.1. Nursebot platforms

1.4. Application Domain

The overall motivation behind the work described in this thesis is the desire to provide

high-quality robust planning for real-world autonomous systems, and in particular for

robots. On a more practical scale, our search for a robust robot controller has been in

large part guided by the Nursebot project. The goal of this project is to develop a mobile

robot assistant for elderly institutionalized people. Flo (left) and Pearl (right), shown in

Figure 1.1, are the main robotic platforms used throughout this project.

The long-term vision is to have a robot permanently based in a human-living envi-

ronment (personal home or nursing home), where it interacts with one or many elderly in-

dividuals suffering from mild cognitive and physical impairments, to help them preserve

their autonomy. Key tasks of the robot could include delivering information (reminders

of appointments, medications, activities) and guiding people through their environment

while interacting in socially appropriate ways. Designing a good robot controller for this

domain is critical since the cost of executing the wrong command can be high. Poor action

choices can cause the robot to wander off to another location in the middle of a conversa-

tion, or cause is to continue issuing reminders even once a medication has been taken. The

design of the controller is complicated by the fact that much of the human-robot interac-

tion is speech-driven. While today’s recognizers yield high recognition rates for articulate

speakers, elderly people often lack clear articulation or the cognitive awareness to place
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themselves in an appropriate position for optimal reception. Thus the controller must be

robust to high noise levels when inferring, and responding to, users’ requests.

Given these characteristics, this task is a prime candidate for robust POMDP planning.

However until recently, the computational intractability of POMDP planning would have

made it a poor choice of framework to address this new problem. By combining the al-

gorithms described in this thesis, PolCA+ to perform high-level structural decomposition

and PBVI to solve subtasks, we are able to address complex dialogue management and

robot control problems.

Chapter 5 describes the Nursebot planning domain in terms of the POMDP frame-

work. It discusses the structural properties and assumptions that make it suitable for

PolCA+, and show how we have solved the problem using our joint approach. It also

presents a sequence of simulation results analyzing the performance of our algorithms on

this large-scale planning domain.

As part of the Nursebot project, a POMDP-based high-level robot controller using

PolCA+ as its main robot control architecture has been deployed for testing in a nursing

home facility. Chapter 5 describes the design and deployment of this system. The results

show that the PolCA+ approach produces a planning algorithm capable of performing

high-level control of a mobile interactive robot, and as such was a key element for the

successful performance of the robot in the experiments with elderly users.

1.5. Thesis Contributions

The contributions of this thesis include both significant algorithmic development in

the area of POMDP planning, as well as novel approaches improving robustness to state

uncertainty for high-level robot control architectures.

The first algorithmic contribution is the PBVI algorithm, an approximation algorithm

for POMDP planning, which can handle problems on the order of
� ���

states. This is an

order of magnitude larger than problems typically used to test scalability of POMDP al-

gorithms. The algorithm is widely applicable, since it makes few assumptions about the

nature of the domain. Furthermore, because it is an anytime algorithm, it allows an effec-

tive trade-off between planning time and solution quality. Finally, a theoretical analysis

of the algorithm shows that it has bounded error with respect to the exact value function

solution.

The second algorithmic contribution of this thesis is the PolCA+ algorithm, a hier-

archical decomposition approach for structured POMDPs. This algorithm extends earlier
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hierarchical approaches (MDP and others) to domains with partial state observability, and

thus can be expected to have wide impact on large-scale robot control problems.

This thesis goes beyond these algorithmic contributions, and includes an important

experimental component, where the algorithms are deployed and evaluated in the context

of real-world robot systems. In addition to thoroughly demonstrating the effectiveness of

the proposed algorithms on realistic tasks, this is also meaningful in terms of state-of-the-

art robot control architectures. Our application of the PolCA+ controller in the context of

the Nursebot project provides a first instance of a robot using POMDP techniques at the

highest level of robot control to perform a task in a real-world environment.
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CHAPTER 2

Partially Observable Markov Decision Processes

P
ARTIALLY Observable Markov Decision Processes provide a general planning

and decision-making framework for acting optimally in partially observable

domains. They are well-suited to a great number of real-world problems

where decision-making is required despite prevalent uncertainty. They gen-

erally assume a complete and correct world model, with stochastic state transitions, im-

perfect state tracking, and a reward structure, and from that find an optimal way to oper-

ate in the world. This chapter first establishes the basic terminology and essential con-

cepts pertaining to POMDPs, and then reviews numerous algorithms—both exact and

approximate—that have been proposed to do POMDP planning.

2.1. Review of POMDPs

Formally, a POMDP is characterized by seven distinct quantities, denoted � ) � ).� )+$�� )
� )0� )0� . The first three of these are:

� States. The state of the world is denoted 	 , with the finite set of all states denoted

by � 3 ( 	 � )+	��,) � � � - . The state at time � is denoted 	�� , where � is a discrete time

index. The state is not directly observable in POMDPs, where an agent can only

compute a belief over the state space � .
� Observations. To infer a belief regarding the world’s state 	 , the agent can take

sensor measurements. The set of all measurements, or observations, is denoted
� 3 ( 
��9)0
 � ) � � � - . The observation at time � is denoted 
 � . Observation 
 � is usually

an incomplete projection of the world state 	 � , contaminated by sensor noise.
� Actions. To act in the world, the agent is given a finite set of actions, denoted
� 3 ( � � ) ���,) � � � ��� - . Actions stochastically affect the state of the world. Choosing

the right action as a function of history is the core problem in POMDPs.
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POMDPs are instances of Markov processes, that is, the world state 	 � renders independent

the future from the past (Pearl, 1988). It is commonly assumed that actions and observa-

tions are alternated over time. This assumption does not restrict the general expressiveness

of the approach, but is adopted throughout for notational convenience.

To fully define a POMDP, we have to specify the probabilistic laws that describe state

transitions and observations. These laws are given by the following distributions:
� The initial state probability distribution,

$ � ��	�� � 3 � � ��	 � 3 	,� ) (2.1)

is the probability that the domain is in state 	 at time �83 �
. This distribution is

defined over all states in � .
� The state transition probability distribution,

����	 ) � )0	�� � � 3 � �2��	 � 3 	����9	 �	� � 3 	 ) � �	� � 3 �2��
 � ) (2.2)

is the probability of transitioning to state 	 � , given that the agent is in state 	 and se-

lects action � , for any ��	 ) � )0	 � � . Since � is a conditional probability distribution, we

have ��
������ ����	 ) � )+	 � � 3 � )�
 ��	 ) � � . As our notation suggests, � is time-invariant,

that is, the stochastic matrix � does not change over time. For time-variant state

transition probabilities, the state 	 must include a time-related variable.
� The observation probability distribution,

����	 ) � ) 
2� � 3 � � � 
�� 3 
��9	
�	� � 3 	 ) ���	� � 3 � ��
 � ) (2.3)

is the probability that the agent will perceive observation 
 upon executing action
� in state 	 . This conditional probability is defined for all ��	 ) � ) 
2� triplets, for which

������� ����	 )0�*)0
�� 3 � )�
 ��	 )0� � .
Finally, the objective of POMDP planning is to optimize action selection, so the agent

is given a reward function describing its performance:
� The reward function. ����	 )0� � � � � � �����

, assigns a numerical value quantifying

the utility of performing action � when in state 	 . The goal of the agent is to max-

imize the sum of its reward over time. Mathematically, this is commonly defined

by a sum of the form:

� �"!#
��$ ��% �

�	� ��% � �'& ) (2.4)

where �
� is the reward at time � , ��� & is the mathematical expectation, and � where
�)( ��* �

is a discount factor, which ensures that the sum in Equation 2.4 is finite.
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These items together, the states � , actions � , observations � , reward � , and the three prob-

ability distributions � , � , and $ � , define the probabilistic world model that underlies each

POMDP.

2.1.1. Belief computation

The key characteristic that sets POMDPs apart from many other probabilistic models

(like MDPs) is the fact that the state 	�� is not directly observable. Instead, the agent can

only perceive observations ( 
 �,) � � � ) 
�� - , which convey incomplete information about the

world’s state.

Given that the state is not directly observable, the agent can instead maintain a com-

plete trace of all observations and all actions it ever executed, and use this to select its

actions. The action/observation trace is known as a history. We formally define

;A� � 3 ( � � )0
 �,) � � � )0

�	� �,)0� �	� �,)0

� - (2.5)

to be the history at time � .
This history trace can get very long as time goes on. A well-known fact is that this

history does not need to be represented explicitly, but can instead be summarized via a

belief distribution (Ästrom, 1965), which is the following posterior probability distribution:

$+�.��	�� � 3 � �2��	
� 3 	 � 
��+) ���	� �,) 
��	� ��)
� � �

)0� � �
� (2.6)

Because the belief distribution $ � is a sufficient statistic for the history, it suffices to condi-

tion the selection of actions on $ � , instead of on the ever-growing sequence of past obser-

vations and actions. Furthermore, the belief $ � at time � is calculated recursively, using only

the belief one time step earlier, $.�	� � , along with the most recent action �2�	� � and observation


� :

$ � ��	,� 3 %&��$ �	� � )0� �	� � )0
 � �
3 � 
 � ����	 � )0� �	� �,)0

� � ����	 ) ���	� ��)+	 � � $+�	� � ��	 � �

� 
 � 
�� ����	 � ) ���	� � ) 
�� � ����	 )0� �	� ��)0	 � � $+�	� � ��	 � � (2.7)

where the denominator is a normalizing constant.

This equation is equivalent to the decades-old Bayes filter (Jazwinski, 1970), and is

commonly applied in the context of hidden Markov models (Rabiner, 1989), where it is

known as the forward algorithm. Its continuous generalization forms the basis of Kalman

filters (Kalman, 1960).

It is interesting to consider the nature of belief distributions. For finite state spaces,

which will be assumed throughout this thesis, the belief is a continuous quantity. It is de-

fined over a simplex describing the space of all distributions over the state space � . For
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very large state spaces, calculating the belief update (Eqn 2.7) can be computationally chal-

lenging. Recent research has led to efficient techniques for belief state computation that

exploit structure of the domain (Dean & Kanazawa, 1988; Boyen & Koller, 1998; Poupart &

Boutilier, 2000; Thrun, Fox, Burgard, & Dellaert, 2000). However, by far the most complex

aspect of POMDP planning is the generation of a policy for action selection, which is de-

scribed next. For example in robotics, calculating beliefs over state spaces with
� � �

states

is easily done in real-time (Burgard, Cremers, Fox, Hahnel, Lakemeyer, Schulz, Steiner, &

Thrun, 1999). In contrast, calculating optimal action selection policies exactly appears to be

infeasible for environments with more than
��� �

states (Kaelbling et al., 1998), not directly

because of the size of the state space, but because of the complexity of the optimal policies.

2.1.2. Computing an Optimal Policy

The central objective of the POMDP perspective is to compute a policy for selecting

actions. A policy is of the form:

 ��$ � � � � ) (2.8)

where $ is a belief distribution and � is the action chosen by the policy  .

Of particular interest is the notion of optimal policy, which is a policy that maximizes

the expected future discounted cumulative reward:

 �� ��$+� � 3 �����	�
���
 � 
 ���#
��$ � % �

�	�*� % �
� � $+���
� (2.9)

There are two distinct but interdependent reasons why computing an optimal policy is

challenging.

The more widely-known reason is the so-called curse of dimensionality: in a problem

with � physical states,  is defined over all belief states in an � � � � � -dimensional continu-

ous space.

The less-well-known reason is the curse of history: POMDP policy optimization is in

many ways like breadth-first search in the space of belief states. Starting from the empty

history, it grows a set of histories (each corresponding to a reachable belief) by simulating

the POMDP. So, the number of distinct action-observation histories considered for policy

optimization grows exponentially with the planning horizon.

The two curses—dimensionality and history—are related: the higher the dimension of

a belief space, the more room it has for distinct histories. But, they often act independently:

planning complexity can grow exponentially with horizon even in problems with only a
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few states, and problems with a large number of physical states may still only have a small

number of relevant histories.

The most straightforward approach to finding optimal policies remains the value it-

eration approach (Sondik, 1971), where iterations of dynamic programming are applied to

compute increasingly more accurate values for each belief state $ . Let � be a value function

that maps belief states to values in
�

. Beginning with the initial value function:

� � ��$ � 3 � � �@ #

 ���

$9��	,� ����	 )0�2� ) (2.10)

then the � -th value function is constructed from the � � � � � -th by virtue of the following

recursive equation:

�A� ��$ � 3 �
���@
� #

 ���

$ ��	,� � ��	 ) � �&6�� #
� ���
� � � 
 � � )0$ � �A�	� � � %&��$,) � )0
�� � � ) (2.11)

where the function %&��$,)0� ) 
2� is the belief updating function defined in Equation 2.7. This

value function update maximizes the expected sum of all (possibly discounted) future pay-

offs the agent receives in the next � time steps, for any belief state $ . Thus, it produces a

policy that is optimal under the planning horizon � . The optimal policy can also be directly

extracted from the previous-step value function:

 �� ��$ � 3 �����	�
���@
� #

 ���

$9��	,� ����	 )0�2�&6�� #
�����
� � � 
 � � )+$ � � �	� �9� %&��$ ) � ) 
2� � �

� (2.12)

Sondik showed that the value function at any finite horizon � can be expressed by a

set of vectors: � � 3 ( � � ) � �,) � � � ) � � - . Each � -vector represents an � �"� -dimensional hyper-

plane, and defines the value function over a bounded region of the belief:

� �.��$ � 3 � � �� �����
#

 ���
� ��	,� $ ��	��

� (2.13)

In addition, each � -vector is associated with an action, defining the best immediate policy

assuming optimal behavior for the following � � � � � steps (as defined respectively by the

sets ( � �	� � ) � � � )+��� - ).
The � -horizon solution set, � � , can be computed as follows. First, we rewrite Equa-

tion 2.11

� �.��$ � 3 � � �@ ���
� #

 ���

����	 ) � � $ ��	,�&6�� #
����� � � �� ��� �	��


#

 ���

#

 � ���

����	 )0� )0	�� � ����	�� ) � ) 
2� � ��	�� � $ ��	,� �
� (2.14)

The value � � ��$ � cannot be computed directly for each belief $
� � (since there are

infinitely many), but the corresponding set � � can be generated through a sequence of

operations on the set � �	� � .
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The first operation is to generate intermediate sets � @�� �� and � @�� �� )�
7� � � )�
7
 � � (Step

1):

� @�� �� � � @�� � ��	,� 3 ����	 ) � � (2.15)

� @�� �� � � @�� �� ��	�� 3 � #
 � ���
�8��	 ) � )0	 � � ����	 � )0�*)0
�� � �� ��	 � �.)�
 � �� � � �	� �

where each � @�� � and � @�� �� is once again an � �"� -dimensional hyper-plane.

Next we create � @� (
 � � � ), the cross-sum 1 over observations, which includes one
� @�� � from each � @�� �� (Step 2):

� @� 3 � @�� �� ' � @�� � 
� ' � @�� ���� '
� � � (2.16)

Finally we take the union of � @� sets (Step 3):

� � 3 � @ ��� � @� � (2.17)

The actual value function �*� is extracted from the set � � as described in Equation 2.13.

Using this approach, bounded-time POMDP problems with finite state, action, and

observation spaces can be solved exactly given a choice of the horizon � . If the environ-

ment is such that the agent might not be able to bound the planning horizon in advance,

the policy  �� ��$ � is an approximation to the optimal one whose quality improves with the

planning horizon � (assuming
� ( � * �

).

As mentioned above, the value function � � can be extracted directly from the set � � .
An important result shows that for a finite planning horizon, this value function is a piece-

wise linear, convex, and continuous function of the belief (Sondik, 1971). The piecewise-

linearity and continuous properties are a direct result of the fact that � � is composed of

finitely many linear � -vectors. The convexity property can be attributed to the � ��� in

Equation 2.13. It is worth pointing out that the intermediate sets � @�� �� , � @�� �� and � @� are also

composed entirely of segments that are linear in the belief. This property holds for the

intermediate representations because they incorporate the expectation over observation

probabilities (Eqn 2.15).

Before proceeding any further, it is useful to consider a simple POMDP example first

proposed by Thrun, Fox and Burgard (In preparation) and go through the steps of con-

structing a value function solution.

EXAMPLE 2.1.1. Consider the 5-state problem illustrated in Figure 2.1. The agent starts in

state 	 � or 	�� with equal probability. When in those states, the observation function provides (noisy)

1The symbol 	 denotes the cross-sum operator. A cross-sum operation is defined over two sets, 
��
��������������������������
and ��� 
� ����! ����������"�! $#%�

, and produces a third set, &'� 
��(�*)+ ��������,)- ����������"�!�(�*). $#/�!���0)
 ����1���2)- ����������"���������1�3�'). $#4�

.
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2.1 REVIEW OF POMDPS

evidence of the current state. By taking action � � , the agent stochastically moves between 	 � and
	�� , whereas by taking action �4� the agent moves to 	�� or 	�� . State 	�� is an absorbing state. The

reward function is such that it is good (+100) to go through state s3 and bad (-100) to go through

state s4. The reward elsewhere is zero. A discount factor � 3 �
is assumed.

T(s, a1, s’) = 0.1  0.9   0    0    0
0.8  0.2   0    0    0
  0    0    0    0    1.0
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  0    0   0.1  0.9   0

−100

Figure 2.1. Simple POMDP example

To begin solving this problem, an initial solution set � � is extracted directly from the

reward function, by including one � -vector per action:

� � � � @ ��	�� 3 ����	 ) � � )�
7� � �
�

Figure 2.3a shows the initial value function � � . This figure only shows the first two di-

mensions (i. e. ����$ � for $ ��	 � �.)+$ ��	�� � ), even though the full value function is defined in five

dimensions (one per state). In this problem, the value function happens to be constant (for

any horizon � ) in the other dimensions, therefore it is sufficient to show only the first two

dimensions.

Figure 2.2a describes the steps leading to a horizon � 3 �
solution. The first step is

to project � � according to each action/observation pair, as described in Equation 2.15. The

second step describes the cross-sum operation (Eqn 2.16). In this case, because each � @�� ��
contains a single vector, the cross-sum reduces to a simple sum. The final step is to take the

union of the two � @ � as described in Equation 2.17. This produces the horizon � 3 �
solution

for this five-state problem. The corresponding value function is illustrated in Figure 2.3b.
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Figure 2.2. Exact value iteration
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Figure 2.3. Value function for first three iterations
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Figure 2.2b describes the construction of the horizon � 3 � value function. It begins by

projecting the � � vectors according to each action/observation pair. In this case, there are

two vectors in � � , therefore there will be two vectors in each set � @�� �� . Next, the cross-sum

operation takes all possible combinations of vectors from � @�� � �� and � @�� � �� and sums them

(in combination with � @�� �� ). In the case of � @ �� , this leads to four identical vectors, since

each set � @�� �� contains two copies of the same vector. The final step is to take the union of

� @ �� and � @ �� ; in this case it is safe to include only one copy of the vectors from � @ �� . The

set � � then contains five vectors, as illustrated in Figure 2.3c. Additional iterations can be

performed in this manner to plan over a longer horizon. This concludes the discussion of

this example.

In the worst case, the exact value update procedure described here requires time dou-

bly exponential in the planning horizon � (Kaelbling et al., 1998). To better understand

the complexity of the exact update, let � �"� be the number of states, � � � the number of ac-

tions, � � � the number of observations, and � � �	� � � the number of � -vectors in the previous

solution set. Then Step 1 creates � � ��� � � � � �	� � � projections and Step 2 generates � � � � � �	� � ��� � �
cross-sums. So, in the worst case, the new solution requires:

� � � � 3 ��� � � � � � �	� � � � � � � (2.18)

� -vectors to represent the value function at horizon � � �
; these can be computed in time

��� � �"� � � � � � � �	� � � � � � � .
It is often the case that a vector in � � will be completely dominated by another vector:

� ��� $"* ��� � $ ) 
 $
� (2.19)

Similarly, a vector may be fully dominated by a set of other vectors. This vector can then be

pruned away without affecting the solution. A quick look at the graphical representation

of � � in the example above (Fig. 2.3c) shows that two of its vectors can be eliminated since

they are dominated by other vectors.

Finding dominated vectors can be expensive. Checking whether a single vector is

dominated requires solving a linear program with � �"� variables and � � � � constraints. But,

it can be time-effective to apply pruning after each iteration to prevent an explosion of the

solution size. In practice, � � � � often appears to grow singly exponentially in � , even given

clever mechanisms for pruning unnecessary linear functions. This enormous computa-

tional complexity has long been a key impediment toward applying POMDPs to practical

problems.
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2.2. Existing POMDP Approaches

A number of approaches have been proposed to overcome the computational hur-

dle posed by exact POMDP planning. The rest of this section reviews the rich literature

of POMDP algorithms—both exact and approximate—which are available. Unless stated

otherwise, all methods assume a fully known model of the problem domain.

2.2.1. Exact Value Iteration Algorithms

The exact value iteration (VI) algorithm described in Section 2.1 is generally known

as the Enumeration algorithm (Sondik, 1971; Monahan, 1982). It was not the first exact

POMDP algorithm, but is probably the simplest to explain. Many early exact VI algorithms

propose variations on the same basic ideas.

Sondik’s (1971) One-Pass algorithm selects arbitrary belief points, constructs an � -

vector for that point, and a belief region over which the � -vector is dominant. The defini-

tion of regions is generally conservative, and thus the algorithm may re-define the same � -

vector for multiple adjacent regions. Cheng’s (1988) linear support algorithm works along

similar lines, but uses less constraining conditions to define the belief region. As a result,

it may define fewer belief regions, but checking the constraints on the region can be more

expensive.

Littman’s (1996) Witness algorithm uses an even more sophisticated approach: given

a belief point, it constructs the corresponding � -vector for a specific action and observation.

It then considers the region over which this vector is dominant, and looks for evidence (i. e.

a Witness point) where the vector is suboptimal. When it finds such a point, it can generate

the best vector at that point and so on until no new witnesses are found. This produces an

optimal solution.

The Incremental Pruning algorithm (Zhang & Liu, 1996; Cassandra, Littman, & Zhang,

1997) is a direct extension of the enumeration algorithm we described above. The principal

insight is that the pruning of dominated � -vectors (Eqn 2.19) can be interleaved directly

with the cross-sum operator (Eqn 2.16). The resulting value function is the same, but the

algorithm is more efficient because it discards unnecessary vectors earlier on.

The most recent (and most effective) exact VI algorithm for POMDPs interleaves point-

based value updates (much like Cheng’s algorithm), with full exact value backups (Zhang

& Zhang, 2001). Unlike in Cheng’s algorithm, the belief points for the point-based updates
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2.2 EXISTING POMDP APPROACHES

are selected heuristically and therefore are many fewer. The use of point-based value up-

dates mean that many fewer exact updates are needed, while the interleaved exact updates

guarantee that the algorithm converges to the optimal solution.

Despite the increasing degrees of sophistication exhibited by exact value iteration al-

gorithms, they are still completely impractical for problems with more than a few dozen

states and even fewer actions and observations. The main hurdle remains the (potentially

exponential) number of � -vectors generated with each value backup.

2.2.2. Grid-Based Value Function Approximations

There exists many approaches that approximate the value function using a finite set

of belief points along with their values. These points are often distributed according to a

grid pattern over the belief space, thus the name grid-based approximation. An interpolation-

extrapolation rule specifies the value at non-grid points as a function of the value of neigh-

boring grid-points.

Performing value backups over grid-points is relatively straightforward: dynamic

programming updates as specified in Equation 2.11 can be adapted to grid-points for a

simple polynomial-time algorithm. Given a set of grid points � , the value at each $�� � �
is defined by:

����$ � � 3 � � �@
� #

 ���

$ � ��	,� ����	 ) � � 6�� #
�����
� � � 
 � � )+$ � ��� %&��$ ) � ) 
2� � �

� (2.20)

If %&��$,) � )0
�� is part of the grid, then ��� %&��$,) � ) 
2� � is defined by the value backups. Otherwise,
� � %&��$,) � )0
�� � is approximated using an interpolation rule such as:

� � %&��$,)0�*)0
�� 3
� � �#
� $ �

� ��� � � ��$ �� � ) (2.21)

where
� ��� ��� �

and � � � �� $ � � ��� � 3 �
. This produces a convex combination over grid-points.

The two more interesting questions with respect to grid-based approximations are (1) how

to calculate the interpolation function; and (2) how to select grid points.
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2.2 EXISTING POMDP APPROACHES

In general, to find the interpolation that leads to the best value function approximation

at a point $ requires solving the following linear program:

Minimize
� � �#
� $ �

� ��� � � ��$ �� � (2.22)

Subject to $ 3
� � �#
� $ �

� ��� � $ �� (2.23)

� � �#
� $ �

� ��� � 3 �
(2.24)

�)( � ��� � ( � ) � ( � ( � � � � (2.25)

Different approaches have been proposed to select grid points. Lovejoy (1991a) con-

structs a fixed-resolution regular grid over the entire belief space. A benefit is that value

interpolations can be calculated quickly by considering only neighboring grid-points. The

disadvantage is that the number of grid points grows exponentially with the dimension-

ality of the belief (i. e. with the number of states). A simpler approach would be to select

random points over the belief space (Hauskrecht, 1997). But this requires slower interpo-

lation for estimating the value of the new points. Both of these methods are less than ideal

when the beliefs encountered are not uniformly distributed. In particular, many problems

are characterized by dense beliefs at the edges of the simplex (i. e. probability mass fo-

cused on a few states, and most other states have zero probability), and low belief density

in the middle of the simplex. A distribution of grid-points that better reflects the actual

distribution over belief points is therefore preferable.

Alternately, Hauskrecht (1997) also proposes using the corner points of the belief sim-

plex (e. g. [1 0 0 � � � ], [0 1 0 � � � ], � � � , [0 0 0 � � � 1]), and generating additional successor

belief points through one-step stochastic simulations (Eqn 2.7) from the corner points. He

also proposes an approximate interpolation algorithm that uses the values at � �"� � �
critical

points plus one non-critical point in the grid. An alternative approach is that of Brafman

(1997), which builds a grid by also starting with the critical points of the belief simplex, but

then uses a heuristic to estimate the usefulness of gradually adding intermediate points

(e. g. $ � 3 �
�

� $ � 6 �
�

� $ � , for any pair of points). Both Hauskrecht’s and Brafman’s methods—

generally referred to as non-regular grid approximations—require fewer points than Love-

joy’s regular grid approach. However the interpolation rule used to calculate the value at

non-grid points is typically more expensive to compute, since it involves searching over all

grid points, rather than just the neighboring sub-simplex.
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Zhou and Hansen (2001) propose a grid-based approximation that combines advan-

tages from both regular and non-regular grids. The idea is to sub-sample the regular fixed-

resolution grid proposed by Lovejoy. This gives a variable resolution grid since some parts

of the beliefs can be more densely sampled than others and by restricting grid points to lie

on the fixed-resolution grid the approach can guarantee fast value interpolation for non-

grid points. Nonetheless, the algorithm often requires a large number of grid points to

achieve good performance.

Finally, Bonet (2002) proposes the first grid-based algorithm for POMDPs with � -
optimality (for any ��� �

). This approach requires thorough coverage of the belief space

such that every point is within � of a grid-point. The value update for each grid point is fast

to implement, since the interpolation rule depends only on the nearest neighbor of the one-

step successor belief for each grid point (which can be pre-computed). The main limitation

is the fact that � -coverage of the belief space can only be attained by using exponentially

many grid points.

2.2.3. General Value Function Approximations

Another class of proposed POMDP planning algorithms focuses on directly approxi-

mating the value function. In the work of Parr and Russell (1995), discrete-state POMDPs

are solved by approximating the piecewise-linear continuous POMDP value function us-

ing a smooth and differentiable function that is optimized by gradient descent. Thrun

(2000) describes how continuous state POMDPs can be solved by using particle filtering

to do approximate tracking of the belief state and using a nearest-neighbor function ap-

proximation for the value function. While value function approximation is a promising

avenue for addressing large-scale POMDPs, it generally offers few theoretical guarantees

on performance.

2.2.4. MDP-Type Heuristics

MDP planning is a special case of POMDP planning, which assumes that the state is

fully observable at each time step. While it is clear that the optimal MDP solution will be

sub-optimal for partially observable domains, it can nonetheless lead to reasonably good

control in some situations. Many heuristic POMDP approaches use the exact MDP policy,

in combination with full exact belief tracking, to extract a control policy.
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These heuristics generally optimize an MDP solution by performing dynamic pro-

gramming updates on the Q-function:

������� ��	 ) � � 3 � ��	 ) � � 6�� #

 � ���

����	 )0� )0	 � � �
���@ � ��� ������� ��	 � )0� � � (2.26)

where � ����� ��	 )0� � represents the expected discounted sum of rewards for taking action �
in state 	 and is defined over all states 	 � � and actions � � � . All other terms are defined

as in Section 2.1. Whenever the state is fully observable, the exact MDP value function and

policy can extracted by maximizing the action selection:

� ����� ��	�� 3 � � �@ ��� � ����� ��	 )0�2� (2.27)

 ����� ��	�� 3 ��� ��� ���@ ���
� ����� ��	 )0� �

� (2.28)

When the state is only partially observable, the heuristic methods described below use

the Q-function to extract a belief-conditioned policy  ��$ � . The belief is typically tracked

according to Equation 2.7.

The simplest MDP-type heuristic for POMDP control is the Most-Likely State (MLS)

heuristic (Nourbakhsh, Powers, & Birchfield, 1995):

 ��	 � ��$ � 3 �����	� � �@ ���
� ����� � ��� ��� ���
 ��� $ ��	,� ) � �

� (2.29)

It has been used extensively in robot navigation applications. In fact, it is usually the com-

mon assumption underlying any approach that uses exact MDP planning for real-world

domains. As its name implies, it typically performs well when the uncertainty is localized

around a single most-likely state, but performs poorly when there is clear ambiguity since

it is unable to reason about actions that would explicitly resolve the uncertainty.

A similar approach is the voting heuristic (Simmons & Koenig, 1995):

 �

�
! ��� �

��$ � 3 ��� ��� � �@ ���
#

 ���

$ ��	,� � � �����	� � �@ � ���
������� ��	 ) � � �.) � � (2.30)

where � ��� � )0�2� 3 ( � ) if � 3 � ��� � ) else - ) (2.31)

which weighs the action choice by the probability of each state. In the case of uni-modal

belief distributions, the policy is the same as with the MLS heuristic. However some cases

with competing hypotheses may be better handled by the voting heuristic where consistent

action choices by many low-probability states could outweigh the choice of the most-likely

state.

The QMDP heuristic (Littman, Cassandra, & Kaelbling, 1995a) takes into account par-

tial observability at the current step, but assumes full observability on subsequent steps:

 ��
����� ��$ � 3 ��� ��� � �@ ���
#

 ���

$ ��	,� ������� ��	 )0� �
� (2.32)
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The resulting policy has some ability to resolve uncertainty, but cannot benefit from long-

term information gathering, or compare actions with different information potential. De-

spite this, it often outperforms the MLS heuristic by virtue of its ability to reason about at

least one step of uncertainty.

The Fast-Informed Bound FIB heuristic (Hauskrecht, 2000) uses a similar approach,

but incorporates observation weights into the calculation of the Q-function:

��� ��� ��	 ) � � 3 � ��	 ) � �&6�� #
����� � � �@ � ���

#

 � ���

����	 � )0�*)0
�� ����	 )0�*)+	 � � ��� ��� ��	 � ) � � � (2.33)

� � ��� ��$ � 3 �
���@ ���
#

 ���

$ ��	�� � � ��� ��	 ) � � (2.34)

 � ��� ��$ � 3 ��� ��� � �@ ���
#

 ���

$ ��	,� � � ��� ��	 ) � �
� (2.35)

The goal is to choose the best action conditioned on the expected observation probabilities,

in addition to the next state. The FIB value function, ��� ��� , has the nice property that it

is guaranteed to lie between the MDP value function (Eqn 2.27) and the exact POMDP

solution (Eqn 2.11). Hauskrecht (2000) shows promising experimental results obtained by

using this approach on a simulated 20-state maze domain. In many domains, it performs

on par with the QMDP heuristic.

2.2.5. Belief Space Compression

While the grid-based methods of Section 2.2.2 reduce computation by sparsely sam-

pling the belief state, there exists a related class of algorithms that explicitly looks at finding

lower dimensional representations of the belief space. These approaches tackle the POMDP

planning problem by first finding an appropriate sub-dimensional manifold of the belief

space, and then by learning a value function over that sub-dimensional space.

One such approach is called value-directed compression (Poupart & Boutilier, 2003).

It considers a sequence of linear projections to find the smallest linear sub-dimensional

manifold that is both consistent with the reward function, and invariant with respect to

transition and observation parameters. Since the algorithm finds a linear projection of

the belief space, exact POMDP planning can be done directly in the projected space, and

the full value function recovered through inverse projection. In practice, few domains

have low-dimensional linear sub-manifolds. In such cases, an approximate version of the

algorithm is also possible.

An alternative approach is the E-PCA algorithm (Roy & Gordon, 2003), which uses

Exponential-family Principal Component Analysis to project high-dimensional beliefs onto
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a low-dimensional, non-linear, manifold. By considering non-linear manifolds, this ap-

proach generally achieves much greater compression than linear compression techniques.

However, planning over a non-linear manifold is more complicated. Grid-based-type ap-

proaches can be adapted to produce a computationally-feasible solution (Roy, 2003), but it

does not offer any theoretical guarantees with respect to optimal performance.

Overall, these algorithms offer promising ways of overcoming the curse of dimension-

ality, and in particular the E-PCA has shown impressive success in planning over large-

scale domains. However planning over sub-dimensional manifolds is still subject to the

curse of history, and therefore may best be used in conjunction with history-reducing ap-

proaches, such as the ones proposed in this thesis, to offer maximum scalability.

2.2.6. History-Based Approaches

The main idea behind history-based methods is to move away from the concept of a

belief state, and instead express policies conditioned on sequences of recent observations.

The advantage of these methods is that they do not require model parameterization, but

rely strictly on observable quantities (actions, observations, rewards) to express and opti-

mize a control policy.

The UTree algorithm (McCallum, 1996) offers an approach in which the observation

histories are represented using a suffix tree with variable depth leaves, and where branches

are grown whenever a new observation sequence is not Markovian with respect to the

reward.

The more recent Predictive State Representation (PSR) (Littman, Sutton, & Singh, 2002;

Singh, Littman, Jong, Pardoe, & Stone, 2003) is based on a similar premise, but instead of

using history to condition action-choices, the policy is conditioned on test predictions, where

a test is a sequence of future observations. In this context, states are expressed strictly in

terms of probabilities of observation sequences. The set of core tests can be learned directly

from exploration data (Singh et al., 2003; Rosencrantz, Gordon, & Thrun, 2004).

A key advantage of these approaches is that they do not require a model of the do-

main. Instead, training data is required to learn the policy. However this can be problem-

atic for planning problems where exploration costs are high.

2.2.7. Structured Approaches

Many real-world domains have structure that can be exploited to find good policies

for complex problems. This is a common idea in planning, and has been richly exploited

by the MDP community. Leveraging of structure for POMDP planning is also found in

27



2.2 EXISTING POMDP APPROACHES

a number of hierarchical POMDP algorithms, where structure takes the form of multi-

resolution temporally abstract actions (which are in fact policies over primitive actions). In

this framework, the goal is to plan over subtasks by learning policies at different levels of

action abstraction.

Preliminary attempts at hierarchical partitioning of POMDP problems into subtasks

typically make strict assumptions about prior knowledge of low-level tasks and ordering,

which are substantially restrictive. The HQ-learning algorithm (Wiering & Schmidhuber,

1997) learns a sequence of subgoals, assuming that each subgoal is satisfied through a re-

active policy, and subgoal completion is fully observable. Castañon (1997) addresses a spe-

cific sensor management problem, for which he decomposes a multi-object detection prob-

lem into many single-object detection problems. He assumes a hierarchy of depth=2, where

each single-object problem (i. e. low-level subtask) is solved using a standard POMDP al-

gorithm, and these solutions are used to guide high-level coordination and resource allo-

cation such that the multi-object problem is satisfied. This does not obviously extend to

significantly different problems, such as those encountered in robot control.

Most recently, interesting hierarchical approaches to POMDPs have been proposed,

which rely heavily on exploration and training to learn policies for large POMDP problems.

One approach proposes a hierarchical extension of McCallum’s (1996) Utile Suffix Mem-

ory algorithm, which builds observation histories at variable time resolutions (Hernandez-

Gardiol & Mahadevan, 2001). Another approach extends the Hierarchical Hidden Markov

Model (Fine, Singer, & Tishby, 1998) to include actions, and thus accommodate POMDP

problems, thereby allowing various levels of spatial abstraction (Theocharous, Rohani-

manesh, & Mahadevan, 2001). Both of these approaches assume that termination condi-

tions are defined for subtasks, and can be detected during execution, which limits their

applicability to many POMDP problems. Furthermore, they are best suited to problems

where exploration and data collection are inexpensive.

Other structured POMDP approaches do not rely on hierarchical decomposition, but

instead derive their computational power from assuming a highly-independent factored

state representation (Boutilier & Poole, 1996; Boutilier et al., 1999). In this case, a set of or-

thogonal multi-valued features is used to represent state and/or action sets. One can then

use two-stage temporal Bayes nets with associated tree-structured conditional probability

tables (CPTs) to describe the dynamics and rewards of a factored state POMDP. The CPTs

can be manipulated directly to perform exact value iteration or policy iteration. While this

approach successfully reduces the POMDP state space representation, it does not directly
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2.2 EXISTING POMDP APPROACHES

reduce the size of the value function representation, which is the main obstacle to the effi-

cient optimization of POMDP solutions.

2.2.8. Policy Search Algorithms

Most methods described so far in this chapter focus on estimating a POMDP value

function, from which a policy can then be extracted. An alternate perspective is to di-

rectly optimize the policy, and this is explored in a number of algorithms. There are three

main considerations when designing a policy search algorithm. First, there is the ques-

tion of how the policy should be represented. The most often-used representations are the

finite-state machine and the parameterized policy class. Second, there is the question of

how candidate policies can be evaluated. And finally, there is the question of the actual

optimization step, describing which new candidate policies should be considered.

The first exact policy search algorithm for POMDPs is due to Sondik (1978). It repre-

sents policies as a mapping from polyhedral regions of the belief space to actions. However,

evaluating policies using this representation is extremely complex. Hansen (1998) suggests

representing the policy as a finite-state machine or policy graph instead. The policy graph

contains a set of nodes, each of which is labeled by an action. Node-to-node (directed)

transitions are labeled according to observation; each node has one outgoing transition for

each observation. It is worth pointing out that each policy node in a finite-state machine

has a corresponding distinct � -vector in the equivalent value function representation (e. g.

Fig. 2.3). Policy evaluation is much easier using this representation: it is sufficient to con-

struct the value function from the finite-state machine, which can be done by solving a set

of linear equations. Finally, policy improvement is carried-out by operating directly on the

policy graph (adding, removing, or re-labeling nodes). Empirical results show that this

approach converges faster than exact value iteration, in large part because it often requires

fewer iterations. In general, this approach is still overwhelmed by most problems beyond a

dozen states; there are exceptions, in particular some infinite-horizon problems which can

be controlled by a very simple policy graph (Peshkin, Meuleau, & Kaelbling, 1999).

In an attempt to improve scalability, approximate algorithms have been proposed.

Some of these restrict computation by applying policy search over a restricted class of

policies. One such approach used a generative model of the POMDP to alternately build

and evaluate trajectory trees (Kearns, Mansour, & Ng, 2000). This approach was extended

to reduce the number of trees required to guarantee a bound on the error of the policy’s

value (Ng & Jordan, 2000). In cases where the policy class is a differentiable function (e. g.

assuming a stochastic policy, or a continuous action space), gradient ascent can also be
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used to optimize the policy (Williams, 1992; Baird & Moore, 1999; Baxter & Bartlett, 2000;

Ng, Parr, & Koller, 2000; Kakade, 2002).

Finally, a recent approach named Bounded Policy Iteration (Poupart & Boutilier, 2004)

combines insights from both exact policy search and gradient search. This algorithm per-

forms a search over finite-state machines as described by Hansen (1998), but only over

controllers of a fixed size. Meanwhile whenever the search is stopped by a local minima,

the controller size is increased slightly and the search continues. This approach has demon-

strated good empirical performance on relatively large POMDP problems.

There are many reasons for preferring policy search approaches over value function

methods. They generalize easily to continuous state/action problems; stochastic policies

tend to perform better than (sub-optimal) deterministic ones; value function approxima-

tion often does not converge to a stable policy. Nonetheless, they suffer from some limita-

tions: selecting a good policy class can be difficult, and gradient-methods can get trapped

in local minima. Despite this, policy search techniques have been successfully applied in

real-world domains (Bagnell & Schneider, 2001).

2.3. Summary

This chapter describes the basic concepts in POMDP planning. It discusses the reasons

for the computational intractability of exact POMDP solutions, and presents a number of

existing algorithms that can overcome these difficulties with varying levels of success.

Despite the rich set of approaches available, we still lack solutions that simultane-

ously offer performance guarantee, and scalability. Most of the approaches that have been

successfully used in real-world domains lack performance guarantees, whereas those algo-

rithms that offer performance bounds typically have not scaled beyond small simulation

problems.

The next chapter presents a new algorithm, Point-Based Value Iteration (PBVI) which

offers both reasonable scalability (in the form of polynomial-time value updates) and an

error bound on its performance with respect to the optimal solution. PBVI draws inspira-

tion from many of the approaches discussed in this chapter, in particular grid-based ap-

proximations.
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CHAPTER 3

Point-Based Value Iteration

P
OMDPS offer a rich framework to optimize a control strategy. However, com-

putational considerations limit the usefulness of POMDPs in large domains.

These considerations include the well-known curse of dimensionality (where

the dimensionality of planning problem is directly related to the number of

states) and the lesser known curse of history (where the number of plan contingencies in-

creases exponentially with the planning horizon).

In this chapter, we present the Point-Based Value Iteration (PBVI) algorithm, which

specifically targets the curse of history. From a high-level stand-point, PBVI shares many

similarities with earlier grid-based methods (see Section 2.2.2). As with grid-methods,

PBVI first selects a small set of representative belief points, and then iteratively applies

value updates to those points. When performing value backups however, PBVI updates

both the value and value gradient; this choice provides better generalization to unexplored

beliefs, compared to interpolation-type grid-based approximations, which only update the

value. Another important aspect is the strategy employed to select belief points. Rather

than picking points randomly, or according to a fixed grid, PBVI uses exploratory stochas-

tic trajectories to sample belief points. This approach allows it to restrict belief points to

reachable regions of the belief, thus reducing the number of belief points necessary to find

a good solution compared to earlier approaches.

This chapter expands on these ideas. Sections 3.1 and 3.2 present the basic PBVI algo-

rithm. Section 3.3 then presents a theoretical analysis of PBVI, which shows that it is guar-

anteed to have bounded error, with respect to the optimal solution. Section 3.4 discusses

the appropriate selection of belief points. Section 3.5 presents an empirical evaluation of

the algorithm. Finally, Section 3.6 presents an extension of PBVI that partitions belief points

in a metric-tree structure to further accelerate planning.



3.1 POINT-BASED VALUE BACKUP

3.1. Point-Based Value Backup

PBVI relies on one very important assumption, namely that it is often sufficient to plan

for a small set of belief points, even when the goal is to get a good solution over a large

number of beliefs. Given this premise, it is crucial to understand what it means to plan for

a small set of points.

As explained in Section 2.1.2, a value function update can be implemented as a se-

quence of operations on a set of � -vectors. If we assume that we are only interested in up-

dating the value function at a fixed set of belief points, � 3 ( $ � )+$���) � � � )+$�� - , then it follows

that the value function will contain at most one � -vector for each belief point. The point-

based value function is therefore represented by the corresponding set ( � � ) � � ) � � � ) � � - .
Figure 3.1 shows two versions of a POMDP value function representation, one that

uses a point-based value function (on the left) and one that uses a grid (on the right).

As shown on the left, by maintaining a full � -vector for each belief point, PBVI can pre-

serve the piecewise linearity and convexity of the value function, and define a value func-

tion over the entire belief simplex. This is in contrast to interpolation-type grid-based ap-

proaches which update only the value at each belief grid point.

α 0

b2 b1 b0 b3b2 b1 b0 b3

V={ ,α 1 ,α 2}

Figure 3.1. Comparing POMDP value function representations

Given a � � �
-horizon plan, it is relatively straightforward to generate the � -horizon

� -vector for a given belief $ (Sondik, 1971; Cheng, 1988). In PBVI, we apply this procedure

to the entire set of points � such that we generate a full � -horizon value function.

Given a solution set � �	� � , we begin by modifying the exact backup operator (Eqn 2.14)

such that only one � -vector per belief point is maintained. The first operation is to generate

intermediate sets � @�� � and � @�� � )�
 � � ��)�
 
 � � (exactly as in Eqn 2.15) (Step 1):

� @�� � � � @�� � ��	,� 3 � ��	 ) � � (3.1)

� @�� � � � @�� �� ��	,� 3 � #
 � ���
����	 ) � )0	�� � ����	���) � ) 
2� ���� ��	�� � )�
 � �� � � �	� � �
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3.1 POINT-BASED VALUE BACKUP

Next, whereas performing an exact value update requires a cross-sum operation (Eqn 2.16),

by operating over a finite set of points, we can instead use a simple summation. We con-

struct � @��)�
&$ � � )�
7� � � (Step 2):

� @� 3 � @�� � 6 #� ��� ��� ��� ���
� ������� � �

#

 ���
� ��	,� $9��	,� �

� (3.2)

Finally, we find the best action for each belief point (Step 3):

� � � �����	�
���
� �� � �9@ ���

� #

 ��� �

@� ��	,� $ ��	,� � ) 
&$ � � � (3.3)

While these operations preserve only the best � -vector at each belief point $ � � , the

value function at any belief in the simplex (including $	�� � ) can be extracted from the set

� � :
� �.��$ � 3 � � �� �����

#

 ���
� ��	,� $ ��	��

� (3.4)

To better understand the complexity of a single point-based update, let � �"� be the

number of states, � � � the number of actions, � � � the number of observations, and � � �	� � � the

number of � -vectors in the previous solution set. As with an exact update, Step 1 creates
� � � � � ��� � �	� � � projections (in time � �"� � � � ��� � � � � �	� � � ). Steps 2 and 3 then reduce this set to at

most � � � components (in time � �"��� � � � � �	� � ��� � � � � � ). Thus, a full point-based value update

takes only polynomial time, and even more crucially, the size of the solution set � � remains

constant at every iteration. The point-based value backup algorithm is summarized in

Table 3.1.

� � =BACKUP( � , � �	� � ) 1
For each action � � � 2

For each observation 
 � � 3
For each solution vector � � � � �	� � 4
� @�� � ��	�� 3 � � 
������ ����	 )0� )0	 � � ����	 � ) � ) 
2� � � ��	 � � )�
&	 � � 5
� @�� � � � @�� � 6

End 7
End 8

End 9
For each belief point $ � � )�
 	 � � 10
� � � ��� ��� ��� @ ����
 � 
 ��� ����	 ) � � $9��	,� 6 � ����� � ��� � ��� ��� � 
 � 
 ��� � ��	,� $ ��	���
�
 11
If( � � �� � � ) 12
� � � � � 13

End 14
Return � � 15

Table 3.1. Point-based value backup

It is worth pointing out that this algorithm includes a trivial pruning step (lines 12-13),

whereby PBVI refrains from adding to � � any vector already included in it. As a result, it is
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often the case that � � � � ( � � � . This situation arises whenever multiple nearby belief points

support the same vector (e. g. $ � )0$ � in Fig. 3.1). This pruning step can be computed rapidly

and is clearly advantageous in terms of reducing the set � � .
3.2. The Anytime PBVI Algorithm

The complete PBVI algorithm is designed as an anytime algorithm, which interleaves

two main components: the value update step described in Table 3.1, and steps of belief

set expansion. We assume for the moment that belief points are chosen at random, uni-

formly distributed over the belief simplex. More sophisticated approaches to selecting

belief points are presented in Section 3.4 (with a description of the EXPAND subroutine).

PBVI starts with a (small) initial set of belief points to which it applies a first series of

backup operations. The set of belief points is then grown, a new series of backup operations

are applied to all belief points (old and new), and so on until a satisfactory solution is

obtained. By interleaving value backup iterations with expansions of the belief set, PBVI

offers a range of solutions, gradually trading off computation time and solution quality.

The full algorithm is presented in Table 3.2. The algorithm accepts as input an initial

belief point set ( � � � � � ), an initial value ( � � ), the number of desired expansions ( � ), and the

planning horizon ( � ). For problems with a finite horizon � , we run � value backups be-

tween each expansion of the belief set. In infinite-horizon problems, we select the horizon

so that

� ! � ������� � ����� � & * � )
where �����	� 3 � ��� 
 � @ ����	 )0� � and ����� � 3 ��

� 
 � @ � ��	 ) � � .

The complete algorithm terminates once a fixed number of expansions ( � ) have been

completed. Alternately, the algorithm could terminate once the value function approxima-

tion reaches a given performance criterion. This is discussed further in Section 3.3.

� =PBVI-MAIN( � ��� � � , � � , � , � ) 1
� = � ��� � � 2
� 3 � � 3
For � expansions 4

For � iterations 5
� 3 BACKUP( � , � ) 6

End 7
� ����� 3 EXPAND( � , � ) 8
� 3 � � � ����� 9

End 10
Return � 11

Table 3.2. Algorithm for Point-Based Value Iteration (PBVI)
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3.3. Convergence and Error Bounds

For any belief set � and horizon � , PBVI produces an estimate � �� . We now show that

the error between � �� and the optimal value function � � is bounded.

The bound depends on how densely � samples the belief simplex ! ; with denser

sampling, � �� converges to � � . Cutting off the PBVI iterations at any sufficiently large

horizon, we know that the difference between � �� and the optimal infinite-horizon � � is

not too large. The overall error in PBVI, � � � �� � � � � � � , is bounded by:

� � �� � � �� � � 6 � � �� � � � � �
�

The second term is bounded by � � � � �� � � � � (Bertsekas & Tsitsiklis, 1996). The remainder

of this section states and proves a bound on the first term.

We begin by defining the density � � of a set of belief points � to be the maximum

distance from any legal belief to � . More precisely:

� � 3 � � �� ����� � 
 �� � � � $ � $ � � �
�

Then, we can prove the following lemma:

LEMMA 3.3.1. The error introduced in PBVI when performing one iteration of value backup

over � , instead of over ! , is bounded by

� (
��� ���	� � � ��� � � � �

� � �

Proof: Let $ � � ! be the point where PBVI makes its worst error in value update, and
$ � � be the closest (1-norm) sampled belief to $ � . Let � be the vector that is maximal at $ ,
and � � be the vector that would be maximal at $ � . By failing to include � � in its solution set,

PBVI makes an error of at most � � � $ � � � � $ � . On the other hand, since � is maximal at $ ,
then � � � $ ( � � $ . So,

� ( � � � $ � � � � $ �
3 � � � $ � � � � $ � 6 � � � � $ � � � � $ � add zero( � � � $ � � � � $ � 6 � � $ � � � � $ � optimal at $
3 � � � � � � � ��$ � � $ � collect terms( � � � � � � � � $ � � $ � � Hölder inequality( � � � � � � � � � definition of � �( �����	��
 � ���	� 
������

� ��� see text

The last inequality holds because each � -vector represents the reward achievable start-

ing from some state and following some sequence of actions and observations. The sum of

rewards must fall between � ��� 

� �	� and � �	��


� ��� .
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THEOREM 3.3.1. For any belief set � and any horizon � , the error of the PBVI algorithm

� � 3 � � �� � � �� � � is bounded by

� � (
��� ���	� � � ��� � � � �� � � � � �

Proof:

� � 3 � � � �� � � �� � � � definition of � �
3 � ���: � ��	� � � : � ��	� � � � � �: denotes PBVI backup,

and : denotes exact backup( � � �: � ��	� � � : � ��	� � � � � 6�� � : � ��	� � � : � ��	� � � � � triangle inequality( � 6 � � : � ��	� � � : � ��	� � � � � definition of �( � 6�� � � � ��	� � � � ��	� � � � � contraction
3 � 6�� � �	� � definition of � �	� �( ������� 
 � ����� 
 �����

� �	� 6�� � �	� � lemma 3.3.1( ��� ��� 
 � � ��� 
 ��� �
� � �	� � � series sum

The bound described in this section depends on how densely � samples the belief

simplex ! . In the case where not all beliefs are reachable, we don’t need to sample all of !
densely, but can replace ! by the set of reachable beliefs "! (Fig. 3.2). The error bounds and

convergence results hold on "! . Nevertheless, it may be difficult to achieve a sufficiently

dense sampling of "! to obtain a reasonable bound. We speculate that it may be possible

to devise a more useful bound by incorporating forward-simulation on the selected points.

This would tighten the bound over those belief points that are in low-density areas but

which, with high probability, lead to high-density areas.

As a side note, it is worth pointing out that because PBVI makes no assumption re-

garding the initial value function � �� , the point-based solution � � is not guaranteed to

improve with the addition of belief points. Nonetheless, the theorem presented in this sec-

tion shows that the bound on the error between � �� (the point-based solution) and � � (the

optimal solution) is guaranteed to decrease (or stay the same) with the addition of belief

points. In cases where � �� is initialized pessimistically (e. g. � �� ��	,� 3 �������
� �	� )�
&	 ��� ), then

� �� will improve (or stay the same) with each value backup and addition of belief points.

This chapter has thus far skirted the issue of belief point selection, however the bound

presented in this section clearly argues in favor of dense sampling over the belief sim-

plex. While randomly selecting points according to a uniform distribution may eventually

accomplish this, it is generally inefficient, in particular for high dimensional cases. Further-

more, it does not take advantage of the fact that the error bound holds for dense sampling

over reachable beliefs. Thus we seek more efficient ways to generate belief points than at

random over the entire simplex. This is the issue explored in the next section.
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3.4. Belief Point Set Expansion

There is a clear trade-off between including fewer beliefs (which would favor fast

planning over good performance), versus including many beliefs (which would slow down

planning, but ensure better performance). This brings up the question of how many belief

points should be included. However the number of points is not the only consideration. It

is likely that some collections of belief points (e. g. those frequently encountered) are more

likely to produce a good value function than others. This brings up the question of which

beliefs should be included.

The error bound in Section 3.3 suggests that PBVI performs best when its belief set

is uniformly dense in the set of reachable beliefs. As shown in Figure 3.2, we can build a

tree of reachable beliefs. In this representation, each path through the tree corresponds to a

sequence in belief space, and increasing depth corresponds to an increasing plan horizon.

As shown in this figure, the set of reachable beliefs, "! , grows exponentially with the

planning horizon. Including all reachable beliefs would guarantee optimal performance,

but at the expense of computational tractability. Therefore, we must select a subset � � "! ,

which is sufficiently small for computational tractability, but sufficiently large for good

value function approximation.

The approach we propose consists of initializing the set � to contain the initial be-

lief $ � , and then gradually expanding � by greedily choosing new reachable beliefs that

improve the worst-case density as rapidly as possible.

b
1   0a o b

1   1a o b
1   qa ob

0   0a o b
0   1a o b

0   qa o
b

p   0a o b
p   1a o b

p   qa o

b
0

b
0   0   0   0a o  a o

b
0   0   p   qa o  a o b

0   1   0   0a o  a o b
0   1   p   qa o  a o

... ... ...

... ...

... ... ... ...

... ... ......

... ... ...

Figure 3.2. The set of reachable beliefs

To choose new reachable beliefs, PBVI stochastically simulates single-step forward

trajectories from those points already in � . Simulating a single-step forward trajectory for
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a given $ � � requires selecting an action and observation pair ���*)0
�� , and then computing

the new belief %&��$,) � )0
�� using the Bayesian update rule (Eqn 2.7).

Rather than selecting a single action to simulate the forward trajectory for a given
$ � � , PBVI does a one step forward simulation with each action, thus producing new

beliefs ( $ @ % )0$ @ 
 ) � � � - . Rather than accept all new beliefs ( $ @ % )+$ @ 
 ) � � � - , PBVI calculates the � �

distance between each $ @ and its closest neighbor in � . It then keeps only that point $ @ that

is farthest away from any point already in � .

We use the � � distance to be consistent with the error bound in Theorem 3.3.1. How-

ever the actual choice of norm doesn’t appear to matter in practice; we have used both � �

and � � in experiments and the results were practically identical.

Table 3.3 summarizes the belief expansion algorithm. As noted, the single-step for-

ward simulation procedure is repeated for each point $ � � , thereby generating one new

belief from each previous belief. This means that � at most doubles in size on each be-

lief expansion. Alternately, we could use the same forward simulation procedure to add a

fixed number of new beliefs, but since value iteration is much more expensive than belief

computation, it seems appropriate to double the size of � at each expansion.

� ��� � =EXPAND( � , � ) 1
� ����� = � 2
Foreach $ � � 3

Foreach � � � 4	 =rand ����� � � ��� � � @ � � b � 5	 � =rand ����� � � ��� � � @ � � T(s,a, � � ) 6
 =rand ����� � � ��� � � @ � � O(s’,a, � � ) 7$ @ =BELIEF-UPDATE( $,) � )0
 ) (Eqn 2.7) 8
End 9
� ��� ���
	 ��� @ ��� 	 � � � � � � 	�
 	 
 ��� � $ @ ��	,� � $ � ��	,� � 10

End 11
Return � ��� � 12

Table 3.3. Algorithm for belief expansion

3.5. Experimental Evaluation

This section looks at four POMDP simulation domains to evaluate the empirical per-

formance of PBVI. The first three domains—Tiger-grid, Hallway, Hallway2—are extracted

from the established POMDP literature. The fourth—Tag—is introduced as a new chal-

lenge for POMDP algorithms.
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3.5.1. Maze Problems

There exists a set of benchmark problems commonly used to evaluate POMDP plan-

ning algorithms (Cassandra, 1999). This section presents results demonstrating the per-

formance of PBVI on some of those problems. It also includes a comparison between

PBVI’s performance and that of alternate value approximation approaches such as the

QMDP heuristic (Littman et al., 1995a), a grid-based method (Brafman, 1997), and another

point-based approach (Poon, 2001). While these benchmark problems are relatively small

(at most 92 states, 5 actions, and 17 observations) compared to most robotics planning

domains, they are useful from an analysis point of view and for comparison to previous

work.

The initial performance analysis for PBVI focuses on three well-known problems from

the POMDP literature: Tiger-grid (also known as Maze33), Hallway, and Hallway2. All

three are maze navigation problems of various sizes. The problems are fully described

by Littman, Cassandra, and Kaelbling (1995b); parameterization is available from Cassan-

dra (1999).

Figure 3.3a presents results for the Tiger-grid domain. Replicating earlier experi-

ments (Brafman, 1997), test runs terminate after 500 steps (there’s an automatic reset every

time the goal is reached) and results are averaged over 151 runs.

Figures 3.3b and 3.3c present results for the Hallway and Hallway2 domains, respec-

tively. In this case, test runs are terminated when the goal is reached or after 251 steps

(whichever occurs first), and the results are averaged over 251 runs. This is consistent with

earlier experiments (Littman et al., 1995a).

All three figures compare the performance of three different algorithms:

1. QMDP as described in Section 2.2.4,

2. PBVI as described in this chapter,

3. Incremental Pruning as described in Section 2.2.1.

The QMDP algorithm can be seen as providing a good performance baseline; it finds

the best plan achievable without considering state uncertainty. For the three problems

considered, it finds a policy extremely quickly, but the policy is clearly sub-optimal.

At the other end of the spectrum, the Incremental Pruning algorithm can theoreti-

cally find an optimal policy, but for the three problems illustrated, this procedure would

take far too long. In fact, only a few iterations of exact value backups were completed in

reasonable time. In all three cases, the resulting short-horizon policy was worse than the

corresponding QMDP policy.
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Figure 3.3. PBVI performance on well-known POMDP problems
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As shown in Figure 3.3, PBVI provides a much better time/performance trade-off.

The policies it finds are better than those obtained with QMDP at the expense of longer

planning time. Nonetheless in all cases, PBVI is able to find a good policy in a matter of

seconds, and does not suffer from the same paralyzing complexity as Incremental Pruning.

While these results are promising, it is not sufficient to compare PBVI only to QMDP

and Incremental Pruning—the two ends of the spectrum—when there exists other approx-

imate POMDP approaches. Table 3.4 compares PBVI’s performance with previously pub-

lished results for three additional algorithms: a grid method (Brafman, 1997), an (exact)

value-directed compression (VDC) technique (Poupart & Boutilier, 2003), and an alternate

point-based approach by (Poon, 2001). While there exist many other algorithms (see Sec-

tion 2.2 for a detailed listing), these three were selected because they are representative and

because related publications provided sufficient information to either replicate the experi-

ments or re-implement the algorithm.

As shown in Table 3.4, we consider the same three problems (Tiger-grid, Hallway

and Hallway2) and compare goal completion rates, sum of rewards, policy computation

time, and number of required belief points, for each approach. We point out that the re-

sults marked [*] were computed by us; other results were likely computed on different

platforms, and therefore time comparisons may be approximate at best. Nonetheless the

number of samples (where provided) is a direct indicator of computation time. All results

Method Goal% Reward � Conf.Int. Time(s) � � �
Tiger-Grid (Maze33)
QMDP (Littman et al., 1995a)[*] n.a. 0.198 0.19 n.a.
Grid (Brafman, 1997) n.a. 0.94 n.v. 174
VDC (Poupart & Boutilier, 2003)[*] n.a. 0.0 24hrs+ n.a.
PBUA (Poon, 2001) n.a. 2.30 12116 660
PBVI[*] n.a. 2.25 � 0.14 3448 470
Hallway
QMDP (Littman et al., 1995a)[*] 47 0.261 0.51 n.a.
VDC (Poupart & Boutilier, 2003)[*] 25 0.113 24hrs+ n.a.
PBUA (Poon, 2001) 100 0.53 450 300
PBVI[*] 96 0.53 � 0.04 288 86
Hallway2
QMDP (Littman et al., 1995a)[*] 22 0.109 1.44 n.a.
Grid (Brafman, 1997) 98 n.v. n.v. 337
VDC (Poupart & Boutilier, 2003)[*] 15 0.063 24hrs+ n.a.
PBUA (Poon, 2001) 100 0.35 27898 1840
PBVI[*] 98 0.34 � 0.04 360 95
n.a.=not applicable n.v.=not available

Table 3.4. Results of PBVI for standard POMDP domains
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assume a standard (not lookahead) controller. In all domains we see that QMDP and the grid

method achieve sub-par performance compared to PBUA and PBVI. In the case of QMDP,

this is because of fundamental limitations in the algorithm. While the grid method could

theoretically reach optimal performance, it would require significantly longer time to do so.

Overall, PBVI achieves competitive performance, but with fewer samples than its nearest

competitor, PBUA. The reward reported for PBUA seems slightly higher than with PBVI

in Tiger-grid and Hallway2, but the difference is well within confidence intervals. How-

ever, the number of belief points—and consequently the planning time—is much lower

for PBVI. This can be attributed to the belief expansion heuristic used by PBVI, which is

described in Section 3.4. The fine details of the algorithmic differences between PBUA and

PBVI are discussed in greater detail at the end of this chapter (Section 3.7).

3.5.2. Tag Problem

While the previous section establishes the good performance of PBVI on some well-

known simulation problems, these are quite small and do not fully demonstrate the scala-

bility of the algorithm. To provide a better understanding of PBVI’s effectiveness for large

problems, this section presents results obtained when applying PBVI to the Tag problem,

a robot version of the popular game of lasertag. In this problem, the agent must navigate

its environment with the goal of searching for, and tagging, a moving target (Rosencrantz,

Gordon, & Thrun, 2003). Real-world versions of this problem can take many forms; we

are particularly interested in a version where an interactive service robot must find an

elderly patient roaming the corridors of a nursing home. This scenario is an order of mag-

nitude larger (870 states) than most other POMDP problems considered thus far in the lit-

erature (Cassandra, 1999), and was recently proposed as a new challenge for fast, scalable,

POMDP algorithms (Pineau, Gordon, & Thrun, 2003a; Roy, 2003).

This scenario can be formulated as a POMDP problem, where the robot learns a pol-

icy optimized to quickly find the patient. The patient is assumed to move stochastically

according to a fixed policy. The spatial configuration of the environment used throughout

this experiment is illustrated in Figure 3.4.

The state space is described by the cross-product of two position features, Robot 3
( 	 �9) � � � )+	 ��� - and Person 3 ( 	��9) � � � )+	 ��� )+	�� � � ��� - . Both start in independently-selected ran-

dom positions, and the scenario finishes when Person 3 	�� � � ��� . The robot can select from

five actions: ( North, South, East, West, Tag - . A reward of
� �

is imposed for each motion ac-

tion; the Tag action results in a 6 ���
reward if Robot 3 Person, or

� ���
otherwise. Throughout

the scenario, the Robot’s position is fully observable, and a Move action has the predictable
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deterministic effect, e. g.:

� � � ���9$�� � 3 	 � � � ���9$�� � 3 	 � ) � �,� � ;*� 3 � )

and so on for each adjacent cell and direction.

The position of the person, on the other hand, is completely unobservable unless both

agents are in the same cell. Meanwhile at each step, the person (with omniscient knowl-

edge) moves away from the robot with
� � 3 �

�

�
and stays in place with

� � 3 �
�

� , e. g.:

� � � ��� �9	�� � 3 	�� � � ��� � 	�� � 3 	����
	 ���9$�� � 3 	 � � 3 �
�

�

� � � ��� �9	�� � 3 	 � � � ��� � 	�� � 3 	����
	 ���9$�� � 3 	 � � 3 �
�

�

� �2� ��� � 	�� � 3 	 ��� � ��� �9	�� � 3 	 ��� 	 ���9$
� � 3 	��,� 3 �
�

�
�

Figure 3.5 shows the performance of PBVI on the Tag domain. Results are averaged

over 10 runs of the algorithm, times 100 different (randomly chosen) start positions for each
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run. It shows the gradual improvement in performance as samples are added (each shown

data point represents a new expansion of the belief set with value backups). The QMDP ap-

proximation is also tested to provide a baseline comparison. PBVI requires approximately

100 belief points to overcome QMDP, and the performance keeps on improving as more

points are added. These results show that PBVI can effectively tackle a problem with 870

states.

This problem is far beyond the reach of the Incremental Pruning algorithm. A single

iteration of optimal value iteration on a problem of this size could produce over
��� � � � -

vectors before pruning. Therefore, it was not applied.

This section describes one version of the Tag problem. In fact, it can be re-formulated

in a variety of ways to accommodate different environments, person motion models, and

observation models. Chapter 5 discusses variations on this problem using more realistic

robot and person models.

In addition to the empirical evidence presented here in support of PBVI, it is useful to

consider its theoretical properties. The next section discusses the convergence behavior of

the algorithm and derives theoretical bounds over its approximation error.

3.5.3. Validation of the Belief Set Expansion

Table 3.3 presents a very specific approach to the initial selection, and gradual expan-

sion, of the belief set. There are many alternative heuristics one could use to generate belief

points. This section explores three other possible approaches and compares their perfor-

mance with the standard PBVI algorithm.

In all cases, we start by assuming that the initial belief $ � (given as part of the model)

is the sole point in the initial set. We then consider four possible expansion methods:

1. Random (RA)

2. Stochastic Simulation with Random Action (SSRA)

3. Stochastic Simulation with Greedy Action (SSGA)

4. Stochastic Simulation with Exploratory Action (SSEA)

The RA method consists of sampling a belief point from a uniform distribution over the

entire belief simplex. SSEA is the standard PBVI expansion heuristic (Section 3.4). SSRA

similarly uses single-step forward simulation, but rather than try all actions, it randomly

selects an action � � � and automatically accepts the posterior belief $ @ unless it is already

in � . Finally, SSGA uses the most recent value function solution to pick the current best

(i. e. greedy) action at the given belief $ , and uses that action to perform a single-step
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forward simulation, which yields a new belief. Tables 3.5 and 3.6 summarize the belief

expansion procedure for SSRA and SSGA respectively.

� ����� =EXPAND � � � � � B )V � 1
� ����� = � 2
Foreach $ � � 3� =rand � � � � ��� � � A � 4	 =rand ����� � � ��� � � @ � � b � 5	 � =rand ����� � � ��� � � @ � � T(s,a, � � ) 6
 =rand ����� � � ��� � � @ � � O(s’,a, � � ) 7
� ����� =BELIEF-UPDATE( $,)0�*)0
 ) (Eqn 2.7) 8

End 9
Return � ����� 10

Table 3.5. Algorithm for belief expansion with random action selection

� ����� =EXPAND � � � � � B )V � 1
� ����� = � 2
Foreach $ � � 3� = ��� ��� � � � ��� � 	 � � � ��	�� $ ��	,� 4	 =rand ����� � � ��� � � @ � � b � 5	 � =rand ����� � � ��� � � @ � � T(s,a, � � ) 6
 =rand ����� � � ��� � � @ � � O(s’,a, � � ) 7
� ����� =BELIEF-UPDATE( $,)0�*)0
 ) (Eqn 2.7) 8

End 9
Return � ����� 10

Table 3.6. Algorithm for belief expansion with greedy action selection

We now revisit the Hallway, Hallway2, and Tag problems from Section 3.2 to compare

the performance of these four heuristics. For each problem, we apply PBVI as described in

Table 3.2, replacing in turn the EXPAND subroutine (line 9) by each of the four expansion

heuristics. The QMDP approximation is included as a baseline comparison. Figure 3.6

shows the computation time versus reward performance for each domain. In general,

the computation time is directly proportional to the number of belief points, therefore the

heuristic with the best performance is generally the one which can find a good solution

with the least number of belief points.

In Hallway and Hallway2, it is unclear which of the four heuristics is best. The ran-

dom heuristic—RA—appears slightly worse in the mid-range, and the greedy heuristic—

SSGA—appears best in the early range. However, all four approaches need about the same

amount of time to reach a good solution. Therefore, we conclude that in relatively small

domains, the choice of heuristics does not seem to affect the performance much.

In the larger Tag domain however, the situation is different. With the random heuris-

tic, the reward did not improve regardless of how many belief points were added, and
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therefore we do not include it in the results. The exploratory action selection (SSEA) ap-

pears to be superior to using random or greedy action selection (SSRA, SSGA). These re-

sults suggest that the choice of belief points is crucial when dealing with large problems.

SSEA seems more effective than the other heuristics at getting good coverage over the large

dimensional beliefs featured in this domain.

In terms of computational requirement, SSGA is the most expensive to compute.

However the cost of the belief expansion step is generally negligible compared to the cost

of the value update steps, therefore it seems best to use this superior (though more expen-

sive) heuristic.
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Figure 3.6. Belief expansion results
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3.6. Applying Metric-Trees to PBVI

The point-based algorithm presented in this chapter is an effective approach for scal-

ing up POMDP value function approximation. In PBVI, the value of each action sequence

is expressed as an � -vector, and a key step in the value update (Eqn 3.2) requires evaluating

many candidate � -vectors (set � ) at each belief point (set � ). This � � � (point-to-vector)

comparison is usually implemented as a sequential search (exhaustively comparing � � $
for every $ � � and every � � � @�� � ) and is often the main bottleneck in scaling PBVI to

larger domains.

The standard PBVI algorithm mostly ignores the geometrical properties of the belief

simplex. In reality, belief points exist in a highly-structured metric space, and there is much

to be gained from exploiting this property. For example, given the piecewise linearity

and convexity of the value function, it is more likely that two nearby points will share

similar values (and policies) than points that are far away. Consequently it could be much

more efficient to evaluate an � -vector only once over a set of nearby points, rather than

evaluating it by looking at each point individually.

Metric data structures offer a way to organize large sets of data points according to

distances between the points (Friedman, Bengley, & Finkel, 1977). By organizing the data

appropriately, it is possible to satisfy many different statistical queries over the elements

of the set, without explicitly considering all points. The metric-tree (Uhlmann, 1991) in

particular offers a very general approach to the problem of structural data partitioning. It

consists of a hierarchical tree built by recursively splitting the set of points into spatially

tighter subsets, assuming only that the distance between points is a metric.

This section presents an extension of the PBVI approach, in which a metric-tree struc-

ture is used to sort belief points spatially, and then to perform fast value function updates

over groups of points. Searching over points organized in a metric-tree requires far fewer

� � � comparisons than with an exhaustive search. This section describes the metric-tree

formalism, and proposes a new algorithm for building and searching a metric-tree over

belief points.

3.6.1. Building a Metric-Tree from Belief Points

The metric-tree is a hierarchical structure. We assume it has a binary branching struc-

ture, and define each node � by the following:
� a set of points, � � ;
� a center, ��� ;
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� a radius, � � ;
� a min-boundary vector, � ��� � ;
� a max-boundary vector, � ���	� ;
� a left child, �

	

;
� a right child, � � .

When building the tree, the top node is assumed to include all points. As the tree is refined,

points are partitioned into smaller clusters of nearby points (where smaller implies both

fewer points in � � and a tighter radius � � ). Throughout the tree, for any given node � ,

all points � � must fall within a distance � � of the center ��� . The left and right children,

�
	

and � � , point to further partitions in the data. The min/max boundary vectors, while

not essential to building the tree, are used for fast statistical queries as described below.

Assuming these components, we now describe how to build the tree.

Given a node � , the first step toward building children nodes �
	

and � � is to pick

two candidate centers (one per child) at opposite ends of the region defined by the original

node � :

�
	

� 3 � � �� ����� � � � � )0$ � (3.5)

� �� 3 �
���� ����� � � � 	� )+$ � � (3.6)

The next step is to re-allocate the points in � � between the two children (ties are broken

randomly):


 $ � � � � � 	� � $ if
� � � 	� )0$ � * � � � �� )+$ � (3.7)

� �� � $ if
� � � 	� )0$ � � � � � �� )+$ � �

This reallocation of points between the left and right nodes resembles a single-step approx-

imation to k-nearest-neighbor (k=2). It is fast to compute and generally effective. Other

approaches can be used to obtain a better balanced tree, but seem to have little impact on

the performance of the algorithm.

Finally, the center and radius of each child node can be updated to accurately reflect

its set of points:

�
	

� 3 Center � � 	� � � �� 3 Center � � �� � (3.8)

�
	
� 3 � ���� ������

� � � 	� )0$ � � �� 3 � � �� ������
� � � �� )+$ � � (3.9)

This procedure is repeated recursively until all leaf nodes contain a very small number of

points (e. g. less than 5).

The general metric-tree algorithm allows a variety of ways to calculate the center and

distance functions. This is generally defined as most appropriate for each instantiation of
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the algorithm. For example, we could use one of the points as center. A more common

choice is to calculate the centroid of the points:

Center � � � � � 3 �
� ��� � $9��	,�� ) 
 	 � � ) (3.10)

where n is the number of points in � � . This is what we use, both because it is fast to

compute, and because it appears to perform as well as other more complicated choices.

In terms of distance metric, there are a few important considerations. While the mag-

nitude of the radius determines the size of the region enclosed by each node, the type of

distance metric determines the shape of the region. We select the max-norm:
� � � � )0$ � � 3 � � �� ��� � � � � �

� $ � � �
� 3 � � �� ��� � �
���
 ��� � � � ��	,� � $ ��	���� ) (3.11)

because it defines an � �"� -dimensional hyper-cube of length ��� � � . This allows for fast

searching over the tree, as described in the next section.

Figure 3.7 gives a graphical illustration of the first two-levels of a tree, assuming a 3-

state problem. Given the set of points shown in (a), the top-level node shown in (b) contains

all points. The box has the appropriate center and radius as defined in Equations 3.10

and 3.11. When the tree is further refined, points are re-allocated accordingly to the left

and right nodes, and the center and radius are updated for each. This is illustrated in

Figure 3.7c. The full procedure for building a metric-tree over belief points is summarized

in Table 3.7.

P(s1)

P(s2)

nc

nr

n1

n2

n0

(a) Belief points. (b) Top-level node. (c) Level-1 left and right nodes

Figure 3.7. Example of building a tree
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� =BUILD-TREE( � ) 1
If � � � * � ;A� � 	,; ����� 2

Return NULL; 3

� � 3 � 4
� � ��	,� 3

� ��� � � � 
 �� )�
 	 � � 5
� � 3 �
��� � � � � � � � � $ � � � 6
� ��� �A��	,� 3 ��

� � ��� � $9��	,�.)�
 	 � � 7
� ���	� ��	,� 3 � � � � ��� � $ ��	,�.)�
&	 � � 8

$ 	 3 ��� ��� ��� � � � � � � � � $ � � � 9$ � 3 ��� ��� ��� � � � � � $ 	 � $ � � � 10

� 	 3�� 11
� � 3	� 12
For each point $ � � 13

If � � $ 	 � $ � � � * � � $ � � $ � � � 14
� 	 � $ 15

Else 16
� � � $ 17

End 18

�
	

= BUILD-TREE( � 	 ) 19
� � = BUILD-TREE( � � ) 20

��3 ( � � ) � � ) � � ) � ��� � ) � ���	� ) � 	 ) � � - 21
Return � 22

Table 3.7. Algorithm for building a metric-tree over belief points

As mentioned in the very beginning of this section, there are additional statistics that

we also store about each node, namely the boundary vectors � ��� � and � ����� . For a given

node � containing data points � � , we compute � ��� � and � ���	� , the vectors containing re-

spectively the min and max belief in each dimension:

� ��� � ��	�� 3 ��

�� ��� � $ ��	,�.)�
&	 � � � ���	�A��	,� 3 � � �� ��� � $ ��	,�.)�
 	 � � � (3.12)

Unlike the center and radius, which are required in order to build the tree, � ��� � and

� ����� are not essential to the definition of metric-trees, but rather are specific to using trees

in the context of belief-state planning. More specifically, they are necessary to evaluate
� -vectors over regions of the belief simplex. This is the topic discussed in the next section.

3.6.2. Searching over Sub-Regions of the Simplex

Once the tree is built, it can be used for fast statistical queries. In our case, the goal is

to compute ��� ��� ��� � ��� ��� � � � � $ � for all belief points. To do this, we consider the � -vectors

one at a time, and for each one decide whether a new candidate � � is better than any of
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the previous vectors ( � � � � � � � � � - . With the belief points organized in a tree, we can often

assess this quantity over sets of points by consulting a high-level node � , rather than by

assessing it for each belief point separately.

We start at the root node of the tree. There are four different situations we can en-

counter as we traverse the tree:

1. no single previous � -vector is best for all beliefs below the current node (Fig. 3.8a),

2. the newest vector � � dominates the previous best vector � � (Fig. 3.8b),

3. the newest vector � � is dominated by the best vector � � (Fig. 3.8c),

4. the newest vector � � partially dominates the previous best vector � � (Fig. 3.8d).

η
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(a) Case 1: � is a SPLIT node.

jα
iα

η
cη

r

(b) Case 2: ��� is DOMINANT.

αjαi

η
cη

r

(c) Case 3: ��� is DOMINATED.

iα
jα

η
cη

r

(d) Case 4: ��� is PARTIALLY DOMI-
NANT.

Figure 3.8. Evaluation of a new vector � at a node � for a 2-state domain
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In the first case, we proceed to the children of the current node without performing

any test on the current node. In the other three cases there is a single dominant � -vector at

the current node, and we need to perform a test to determine which of the three cases is in

effect. If we can prove that � � dominates (Case 2) or is dominated by (Case 3) the previous

one, we can prune the search and avoid checking the current node’s children; otherwise

(Case 4) we must check the children recursively.

We therefore require an efficient test to determine whether one vector, � � , dominates

another, � � , over the belief points contained within a node. The test must be conservative:

it must never erroneously say that one vector dominates another. It is acceptable for the

test to miss some pruning opportunities. The consequence is an increase in run-time as we

check more nodes than necessary, therefore this is best avoided whenever possible.

Consider "� 3 � � � � � � � . The test we seek must check whether "� � $ is positive or negative

at every belief sample $ under the current node. All positive means that � � dominates � �

(Case 2), all negative the reverse (Case 3), and mixed positive and negative means that

neither dominates the other (Case 4).

We cannot check "� � $ at every point, since this effectively renders the tree useless.

Instead, we test whether "� � $ is positive or negative over a convex region � which includes

all of the belief points in the current node. The goal is to find the smallest possible convex

region, since this will maximize pruning. On the other hand, the region must be sufficiently

simple that the test can be carried out efficiently.

We consider four types of region, as illustrated in Figure 3.9:

(a) axis-parallel bounding box defined by � ��� � ��	�� ( $ ��	�� ( � ���	� ��	,�.)�
 	 � � ;

(b) sub-simplex defined by $ ��	,� � � ��� � ��	,� )�
 	 � � and � 
 ��� $ ��	�� 3 �
;

(c) inverted sub-simplex defined by: $ ��	�� ( � ���	� ��	,�.)�
 	 � � and ��
 ��� $ ��	,� 3 �
;

(d) multi-sided box defined by the intersection of both sub-simplices defined

by: � ��� � ��	,� ( $ ��	,� ( � ���	� ��	,�.)�
 	 � � and ��
 ��� $ ��	,� 3 �
.

Let " $ denote a convex region. Then for each of these regions, we can check whether

"� � "$ is positive or negative in time ��� �2� (where � =#states). For the box (Fig. 3.9a), which

is the simplest of the regions, we can check each dimension independently as described in

Table 3.8. For the two simplices (Figs 3.9b, 3.9c), we can check each corner exhaustively as

described in Tables 3.9 and 3.10 respectively.

For the last shape (Fig. 3.9d), maximizing with respect to $ is the same as computing

� such that $ ��	�� 3 � ��� � ��	�� if "� ��	�� * � and $ ��	,� 3 � ���	� ��	,� if "� ��	,� � � . We can find � in
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Figure 3.9. Possible convex regions over subsets of belief points for a 3-state domain

expected time ������� using a modification of the median-find algorithm (Hoare, 1961). The

implementation for this last test is described in Tables 3.11 and 3.12.

While all regions can be checked in ��� �2� expected time, in practice not all algorithms

are equally fast. In particular, checking Region 4 (Fig. 3.9d) for each node tends to be

significantly slower than the others. While the smaller search region means less searching

in the tree, this is typically not sufficient to outweigh the larger per node cost. Empirical

results show that simultaneously checking the corners of regions (b) and (c) and then taking

the tightest bounds provides the fastest algorithm. This is the approach used to generate

the results presented in the next section. It is summarized in Table 3.13.
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���,/ � =CHECK-BOX( � , "� ) 1
�2� � 
 ��� � � = � 
 ��� "� ��	,� � � ��� �A��	�� 2
�2� � 
 ��� ��� = � 
 ��� "� ��	,� � � �����A��	�� 3
If ��� � 
 ��� ��� ( �

4
���,/ � =DOMINATED 5

Else If ��� � 
 ��� � � � �
6

���,/ � =DOMINANT 7
Else 8
���,/ � =PARTIALLY DOMINANT 9

Return ���,/ � 10
Table 3.8. Algorithm for checking vector dominance over region 1

����/ � 3 CHECK-SIMPLEX-UP( � , "� ) 1
��� � 
 � 3 � 
 ��� "� ��	,� � � ��� �A��	,� 2
��� � 
 ��� � � 3 �2� � 
 � 6 � ��� ����
 � 
 ��� "� ��	�� � � � � � � � � 
 ��� � ��� �A��	�� � 3
��� � 
 ��� ��� 3 �2� � 
 � 6 � ��� ��� � � 
 ��� "� ��	,� � � � � � � � ��
 ��� � ��� �A��	,� � 4
If �2� � 
 ��� ��� ( �

5
����/ � 3 DOMINATED 6

Else If �2� � 
 ��� � � � �
7

����/ � =DOMINANT 8
Else 9
����/ � 3 PARTIALLY DOMINANT 10

Return ���,/ � 11
Table 3.9. Algorithm for checking vector dominance over region 2

���,/ � 3 CHECK-SIMPLEX-DOWN( � , "� ) 1
�2� � 
 � 3 � 
 ��� "� ��	,� � � ���	� ��	,� 2
�2� � 
 ��� � � 3 �2� � 
 � 6 � ��� ����
 � 
 ��� "� ��	,� � � � � � � � � 
 ��� � ���	� ��	,� � 3
�2� � 
 ��� ��� 3 ��� � 
 � 6 � �����	� � � 
 ��� "� ��	,� � � � � � � � � 
 ��� � �����A��	�� � 4
If ��� � 
 ��� ��� ( �

5
���,/ � 3 DOMINATED 6

Else If ��� � 
 ��� � � � �
7

���,/ � 3 DOMINANT 8
Else 9
���,/ � 3 PARTIALLY DOMINANT 10

Return ���,/ � 11
Table 3.10. Algorithm for checking vector dominance over region 3
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� �,� � � � =FIND-CORNER( � , � ,
� �,� � � � ) 1

If � � �
�

�
1� � � 3 6 �
1

Else 1� � � 3 � �
1

� 3 � , the set of states 1
�2� � 
 � 3 � � � �

�

� � 1
While ��� � 
 � � �

�

�
1

/ � � � � 3 RAND � � � 1

� 3 � 1
� � 3�� 1
Forall 	 � �

1
If

� �,� � � �2��	,� * � �,� � � � � / � � � � � 1
If ( � � � � �

AND
� �,� � � � ��	�� � � ��� � ��	,� ) OR 1

( � � � * �
AND

� �,� � � � ��	,�"* � ���	�A��	,� ) 1
I � 	 1

Else If
� �,� � � �2��	,� � � �,� � � � � / � � � � � 1

� � � 	 1
End 1

	�
 	 3 ��
 � � � � ����� ��	�� � � ��� � ��	,� � 1
If 	�
 	 � �2� � 
 � 1
/ � � � � 3 RAND � � � 1

� 3 �
1

Else 1
� � / � � � � 1
Forall 	 � �

1
If � ���	�A��	,� � � ��� � � ��� � 
 � 1

� �,� � � � ��	,� 3 � �,� � � � ��	,� � ��� � 
 � 1
��� � 
 � 3 �

�

�
1

Else 1
� �,� � � � ��	,� 3 � ��� � 1
��� � 
 � 3 ��� � 
 � � � � ���	� ��	,� � � ��� � � 1

End 1
� 3 � � 1

End 1
Return

� �,� � � � 1
Table 3.11. Algorithm for finding corner in region 4
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���,/ � =CHECK-SIMPLEX-INTERSECTION( � , "� ) 1
For 	 � � 1

If "� ��	,� � �
1>9��	,� 3 � ���	� ��	,� 1

Else 1>9��	,� 3 � ��� � ��	,� 1
End 1
�2� � 
 � 3 � 
 ��� >9��	,� 1
� �,� � � � 3 FIND-CORNER( � , �2� � 
 � , � �,� � � � ) 1
�2� � 
 ��� ��� 3 ��
 ��� "� ��	�� � � �,� � � � ��	,� 1

For 	 � � 1
If "� ��	,� � �

1>9��	,� 3 � ��� � ��	,� 1
Else 1>9��	,� 3 � ���	� ��	,� 1

End 1
�2� � 
 � 3 � 
 ��� >9��	,� 1
� �,� � � � 3 FIND-CORNER( � , �2� � 
 � , � �,� � � � ) 1
�2� � 
 ��� � � 3 � 
 ��� "� ��	,� � � �,� � � �2��	,� 1

If �2� � 
 ��� ��� ( �
5

���,/ � 3 DOMINATED 6
Else If �2� � 
 � � � � � �

7
���,/ � 3 DOMINANT 8

Else 9
���,/ � 3 PARTIALLY DOMINANT 10

Return ����/ � 11
Table 3.12. Algorithm for checking vector dominance over region 4

���,/ � =CHECK-SIMPLEX-BOTH( � , "� ) 1
�2� � 
 � � 3 � 
 ��� "� ��	,� � � ��� �A��	,� 2
�2� � 
 ��� � � � 3 �2� � 
 � 6 � ��� ����
 � 
 ��� "� ��	,� � � � � � � � � 
 ��� � ��� � ��	,� � 3
�2� � 
 ��� ��� � 3 �2� � 
 � 6 � ��� ��� � � 
 ��� "� ��	,� � � � � � � � � 
 ��� � ��� � ��	,� � 4
�2� � 
 � � 3 � 
 ��� "� ��	,� � � ���	� ��	,� 2
�2� � 
 ��� � � � 3 �2� � 
 � 6 � ��� ����
 � 
 ��� "� ��	,� � � � � � � � ��
 ��� � ���	� ��	,� � 3
�2� � 
 ��� ��� � 3 �2� � 
 � 6 � ��� ��� � � 
 ��� "� ��	,� � � � � � � � ��
 ��� � ���	� ��	,� � 4
If 	 � � � �2� � 
 ��� ��� � ) ��� � 
 ��� ���*� � ( �

5
���,/ � =DOMINATED 6

Else If 	 ��� � ��� � 
 ��� � � � ) ��� � 
 ��� � � � � � �
7

���,/ � 3 DOMINANT 8
Else 9
���,/ � 3 PARTIALLY DOMINANT 10

Return ���,/ � 11
Table 3.13. Final algorithm for checking vector dominance
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3.6.3. Experimental Evaluation

This section presents the results of simulation experiments conducted to test the ef-

fectiveness of the tree structure in reducing computational load. The results also serve to

illustrate a few interesting properties of metric-trees when used in conjunction with point-

based POMDP planning.

We first consider six well-known POMDP problems and compare the number of � � �

(point-to-vector) comparisons required with and without a tree. The problems range in

size from 4 to 870 states. Four of them—Hanks, SACI, Tiger-grid (a.k.a. Maze33), and

Hallway—are described in (Cassandra, 1999). The Coffee domain is described in (Poupart

& Boutilier, 2003). Tag was first proposed in (Pineau et al., 2003a) and is described in

Section 3.5.2 above. While all these problems have been successfully solved by previous

approaches, the goal here is to observe the level of speed-up that can be obtained by lever-

aging metric-tree data structures.

Figure 3.10(a)-(f) shows the number of � � � comparisons required, as a function of

the number of belief points, for each of these problems. In Figure 3.11(a)-(b) we show

the computation time (as a function of the number of belief points) required for two of

the problems. In all cases, the No-Tree results were generated by applying the standard

PBVI algorithm (Section 3.2). The Tree results (which count comparisons on both internal

and leaf nodes) were generated by embedding the tree searching procedure described in

Section 3.6.2 within the same point-based POMDP algorithm. For some of the problems,

we also show performance using an � -tree, where the test for vector dominance can reject

(i. e. declare � � is dominated, Figure 3.8c) a new vector that is within � of the current best

vector.

These results show that, in various proportions, the tree can cut down on the number

of comparisons, and thus reduce POMDP computational load. The � -tree is particularly

effective at reducing the number of comparisons in some domains (e. g. SACI, Tag). The

much smaller effect shown in the other problems may be attributed to a poorly tuned � (we

used � 3 �
�

� �
in all experiments). The question of how to set � such that we most reduce

computation, while maintaining good control performance, tends to be highly problem-

dependent.

In keeping with other metric-tree applications, our results show that computational

savings increase with the number of belief points. It is interesting to see the trees pay-

ing off with relatively few data points (most applications of KD-trees start seeing benefits
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(d) Tiger-grid, � ��� =36
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(e) Hallway, � ��� =60
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Figure 3.10. Number of ����� comparisons with and without metric-trees
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Figure 3.11. Planning time for PBVI algorithm with and without metric-tree

with 1000+ data points). This may be partially attributed to the compactness of our con-

vex test region (Fig. 3.9d), and to the fact that we do not search on split nodes (Fig. 3.8a);

however, it is most likely due to the nature of our search problem: many � -vectors are

accepted/rejected before visiting any leaf nodes, which is different from other metric-tree

applications. We are particularly encouraged to see trees having a noticeable effect with

very few data points because, in some domains, good control policies can also be extracted

with few data points.

We notice that the effect of using trees is negligible in some mid-size problems (e. g.

Tiger-grid), while still pronounced in others of equal or larger size (e. g. Coffee, Tag). This is

likely due to the intrinsic dimensionality of each problem. For example, the coffee domain

is known to have an intrinsic dimensionality of 7 (Poupart & Boutilier, 2003). And while we

do not know the intrinsic dimensionality of the Tag domain, many other robot applications

have been shown to produce belief points that exist in sub-dimensional manifolds (Roy &

Gordon, 2003). Metric-trees often perform well in high-dimensional datasets with low in-

trinsic dimensionality; this also appears to be true of metric-trees applied to vector sorting.

While this suggests that our current algorithm is not as effective in problems with intrinsic

high-dimensionality, a slightly different tree structure or search procedure could be more

effective in those cases.

3.7. Related Work

There are several approximate value iteration algorithms that are related to PBVI. In

particular, there are many grid-based methods that iteratively update the values of discrete
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belief points, and thus are quite similar to PBVI. These methods differ in how they partition

the belief space into a grid, and in how they update the value function.

Some methods update only the value at each point (Brafman, 1997; Zhou & Hansen,

2001). More similar to PBVI are those approaches that update both the value and gradient

at each grid point (Lovejoy, 1991a; Hauskrecht, 2000; Poon, 2001). The actual point-based

value update is essentially the same between all of these approaches and PBVI. However

the overall algorithms differ in a few important aspects.

Whereas Poon only accepts updates that increase the value at a grid point (requiring

special initialization of the value function), and Hauskrecht always keeps earlier � -vectors

(causing the set to grow too quickly), PBVI does not have these restrictions.

An important contribution of PBVI is the theoretical guarantees it provides: the theo-

retical properties described in Section 3.3 are more widely applicable and provide stronger

error bounds than what was available prior to this work.

In addition, PBVI has a powerful approach to belief point selection. Many earlier algo-

rithms suggested using random beliefs, or (like Poon’s and Lovejoy’s) require the inclusion

of a large number of fixed beliefs such as the corners of the probability simplex. In con-

trast, PBVI favors selecting only reachable beliefs (and in particular those belief points that

improve its error bounds as quickly as possible). While both Hauskrecht and Poon did

consider using stochastic simulation to generate new points, neither found simulation to

be superior to random point placements. We hypothesize this may be due to the smaller

size of their test domains. Our empirical results clearly show that with a large domain,

such as Tag, PBVI’s belief-selection is an important factor in the algorithm’s performance.

Finally, a very minor difference is the fact that PBVI builds only � � � � � � � � �	� ��� projec-

tions, versus � � � � � � � � � (Poon, 2001; Zhang & Zhang, 2001), and thus is faster whenever

multiple points support the same � -vector.

The metric-tree approach to belief point searching and sorting is a novel use of this

data structure. Metric-trees have been used in recent years for other similar
� � � com-

parison problems that arise in statistical learning tasks. In particular, instances of metric

data structures such as KD-trees, ball-trees and metric-trees have been shown to be useful

for a wide range of tasks (e. g. nearest-neighbor, kernel regression, mixture modeling),

including some with high-dimensional and non-Euclidean spaces (Moore, 1999).

New approaches building directly on PBVI have been proposed subsequent to this

work. This includes an algorithm Vlassis and Spaan (2004) in which point-based value

updates are not systematically applied to all points at each iteration. Instead, points are

sampled randomly (and updated) until the value of all points has been improved; updating
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the � -vector at one point often also improves the value estimate of other nearby points.

This modification appreciably accelerates the basic PBVI algorithm for some problems.

3.8. Contributions

This chapter describes a new point-based algorithm for POMDP solving. The main

contributions pertaining to this work are summarized in this section.

Anytime planning. PBVI alternates between steps of value updating and steps of

belief point selection. As new points are added, the solution improves, at the expense of

increased computational time. The trade-off can be controlled by adjusting the number of

points. The algorithm can be terminated either when a satisfactory solution is found, or

when planning time is elapsed.

Exploration. PBVI proposed a new exploration-based point selection heuristic. The

heuristic uses a reachability analysis with stochastic observation sampling to generate be-

lief points that are both reachable and likely. In addition, distance between points is con-

sidered to increase coverage of the belief simplex.

Bounded error. PBVI is guaranteed to have bounded approximation error. The error is

directly reduced by the addition of belief points. In practice, the bound is often quite loose.

However, improvements in the bound can indicate improvements in solution quality.

Improved empirical performance. PBVI has demonstrated the ability to reduce plan-

ning time for a number of well-known POMDP problems, including Tiger-grid, Hallway,

and Hallway2. By operating on a set of discrete points, PBVI can perform polynomial-time

value updates, thereby overcoming the curse of history that paralyzes exact algorithms.

The exploratory heuristic used to select points allows PBVI to solve large problems with

fewer belief points than previous approaches.

New problem domain. PBVI was applied to a new POMDP planning domain (Tag),

for which it generated an approximate solution that outperformed baseline algorithms

QMDP and Incremental Pruning. This new domain has since been adopted as a test case

for other algorithms (Vlassis & Spaan, 2004; Poupart & Boutilier, 2004).

Metric-tree extension. A metric-tree extension to PBVI was developed, which sorts

and searches through points according to their spatial distribution. This allows the mod-

ified PBVI to search over sub-regions of the belief simplex, rather than over individual

points, thereby accelerating planning over the basic PBVI algorithm.

3.9. Future Work

While PBVI has demonstrated the ability to solve problems on the order of
��� �

states,

many real-world domains far exceed this. In particular, it is not unusual for a problem to
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be expressed through a number of multi-valued state features, in which case the number of

states grows exponentially with the number of features. This is of concern because each

belief point and each � -vector has dimensionality � �"� (where � �"� is the number of states)

and all dimensions are updated simultaneously. This is an important issue to address to

improve the scalability of point-based value approaches.

There are various existing attempts at overcoming the curse of dimensionality, which

are discussed in Section 2.2.5. Some of these, in particular the exact compression algorithm

of (Poupart & Boutilier, 2003), can be combined with PBVI. However, preliminary experi-

ments in this direction have yielded little performance improvement. Other techniques—

e. g. (Roy & Gordon, 2003)—cannot be combined with PBVI without compromising its

theoretical properties (as discussed in Section 3.3). The challenge therefore is to devise

function-approximation techniques that both reduce the dimensionality effectively, while

maintaining the convexity properties of the solution.

A secondary (but no less important) issue concerning the scalability of PBVI pertains

to the number of belief points necessary to obtain a good solution. While problems ad-

dressed thus far can usually be solved with ��� � � � � number of belief points, this need not be

true. In the worse case, the number of belief points necessary may be exponential (in the

plan length). The work described in this thesis proposes a good heuristic (called SSEA) for

generating belief points, however this is unlikely to be the definitive answer to belief point

selection. In practical applications, a carefully engineered trade-off between exploratory

(i. e. SSEA) and greedy (i. e. SSGA) action selection may yield better results. An interesting

alternative may be to add those new reachable belief points that have the largest estimated

approximation error. In more general terms, this relates closely to the well-known issue of

exploration policies, which arises across a wide array of problem-solving techniques.
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CHAPTER 4

A Hierarchical Approach to POMDPs

I
T is well-known in the AI community that many solution techniques can be greatly

scaled by appropriately leveraging structural information. A very common way

to use structural information is to follow a divide-and-conquer scheme, where a

complex (structured) problem is decomposed into many smaller problems that can

be more easily addressed and whose solution can be recombined into a global one.

Until recently, there was no such divide-and-conquer approach for POMDPs. In this

chapter, we present a new algorithm for planning in structured POMDPs, which is called

PolCA+ (for Policy-Contingent Abstraction). It uses an action-based decomposition to par-

tition complex POMDP problems into a hierarchy of smaller subproblems. Low-level sub-

tasks are solved first, and their partial policies are used to model abstract actions in the

context of higher-level subtasks. This is the policy-contingent aspect of the algorithm (thus

the name). At all levels of the hierarchy, subtasks need only consider a reduced action,

state, and observation space. This structural decomposition leads to appreciable computa-

tional savings, since local policies can be quickly found for each subtask.

The chapter begins with a discussion of the structural assumptions proper to PolCA+.

Section 4.2 then presents the new algorithm in the special case of fully observable MDPs.

This version is called PolCA, to avoid confusion with the more general POMDP version

known as PolCA+. We differentiate between the two cases because PolCA possesses some

important theoretical properties which do not extend to PolCA+; these are discussed in

Section 4.2.4. Section 4.3 presents the full PolCA+ algorithm for structured POMDP plan-

ning. It also contains empirical results demonstrating the usefulness of the approach on a

range of problems.



4.1 HIERARCHICAL TASK DECOMPOSITIONS

While this chapter presents a novel approach for handling hierarchical POMDPs, there

exists a large body of work dealing with the fully observable case, namely the hierarchi-

cal MDP. Of particular interest are MAXQ (Dietterich, 2000), HAM (Parr & Russell, 1998),

ALisp (Andre & Russell, 2002), and options (Sutton, Precup, & Singh, 1999), whose objec-

tives and structural assumptions are very similar to PolCA’s. Section 4.4 offers an in-depth

discussion of the differences and similarities between these and PolCA.

4.1. Hierarchical Task Decompositions

The key concept in this chapter is that one can reduce the complexity of POMDP plan-

ning by hierarchically decomposing a problem. Assuming the overall task is such that it

naturally maps into a hierarchy of subtasks, then a planner should take advantage of that

structure by solving individual subtasks separately, rather than jointly. The computational

gains arise from the fact that solving � subtasks can be more efficient that solving a single

task that is � times as large.

The fundamental assumption behind hierarchical POMDPs is that the task exhibits

natural structure, and that this structure can be expressed by an action hierarchy. To better

understand the concept of action hierarchy, it is useful to introduce a simple example.

EXAMPLE 4.1.1. Consider a vacuuming robot that lives in a two-room environment (Fig. 4.1),

one of which (room2) has to be kept clean. The robot can move deterministically between the rooms,

it can also vacuum, as well as wait (presumably when the vacuuming is done). Whenever the

robot vacuums room2, there is a reasonable chance (
� � 3 �

�

� ) that as a result of this the room

will be clean, there is also the possibility (
� � 3 �

�

� ) that the room will not be clean, and there

is a small probability (
� � 3 �

�

�
) that the robot will accidentally leave the room. The state space

is expressed through two fully-observable binary variables: 	 � � � � � 3 ( � � � 	 � ) � � � 	 � - describes

the robot’s current position, 	 
 � @ � � 
 3 ( � � � ��� )0> � � � � - describes the current state of room2. For

example, Figure 4.1 illustrates state 	 � � � � � 3 � � � 	 �
, 	 
 � @ � � 
 3 � ��� ��� . The action set contains

four actions: � 3 ( � � < � ) � ��?A; � ) ���2> 
 
 	 )��4� � �+- . The state-to-state transitions are indicated in

Figure 4.2 (deterministic self-transitions are not shown). The robot receives a reward of
� �

for

applying any action, with the exception of the � � � � action, which is free whenever the room is clean:
� ��	 
 � @ � � 
 3 > � � � � )0� 3 �4� � � � 3 �

.
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Figure 4.1. Robot vacuuming task
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Figure 4.2. Robot vacuuming task transition model
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Figure 4.3. Robot vacuuming task hierarchy
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As shown in Figure 4.3, an action hierarchy is represented by a tree. At the top level,

the root of the tree represents the overall task, as defined by the POMDP (e. g. the � > �
task in Fig. 4.3). At the bottom level, each individual leaf corresponds to a primitive ac-

tion � � � (e. g. � 3 (�� � < � )0� ��?A; � )0� �2> 
 
 	 )��5� � �+- ). These primitive actions represent

the lowest level of policy choice. In between, all internal nodes in the tree represent sub-

tasks (e. g.
� � � � ). Subtasks, denoted ; , are defined over limited sets of other subtasks

and/or primitive actions, as specified by their children in the tree. For example subtask
; � � � � � � has action set � � ��� � 3 (�� � < � ) � ��? ; �+- , and subtask ; � � �4> � has action set
� � � � 35( � � � � )0� �2> 
 
 	 )��5� � �+- .

It is worth noting that each internal node in the hierarchy has a double interpretation.

Relative to its children, it specifies a task that involves a limited set of subtasks and/or

primitive actions. Relative to tasks higher up in the hierarchy, it specifies an abstract action,

namely the action of invoking this very subtask. This is the case of
� � � � , which appears

in the action set of subtask � > � , but is also a subtask unto itself.

The hierarchical approach discussed in this chapter depends on three important as-

sumptions related to domain knowledge. First and foremost, it assumes that the hierar-

chical subtask decomposition is provided by a designer. This constitutes prior knowledge

brought to bear on the domain to facilitate planning. This assumption is consistent with

prior work on hierarchical MDPs (Parr & Russell, 1998; Sutton et al., 1999; Dietterich, 2000;

Andre & Russell, 2002), as discussed near the end of this chapter.

Second, each subtask in the hierarchy is assumed to have local (non-uniform) reward.

This is common in hierarchical MDPs (Dietterich, 2000), and is necessary in order to opti-

mize a local policy for each subtask. In general, the local reward is equal to the true reward
� ��	 ) � � . In subtasks where all available actions have equal reward (over all states), we

must add a pseudo-reward to specify the desirability of satisfying the subgoal. A common

choice is to let the states that satisfy the subtask’s goal have a pseudo-reward of
�
. This is

the case of the
� � � � subtask above, where both � � < � and � ��? ; � have reward � 3 � �

. In

this case, we propose "� � ��� � ��	 � � � � � 3 � � � 	 � � 3 �
since that is the subtask goal. The � > �

subtask on the other hand does not require a pseudo-reward since �5� � � and ���2> 
 
 	 have

different reward signals. Pseudo-rewards do not alter the reward received at execution

time. They are simply used as shaping constraints during policy optimization. They are

unnecessary in most multi-goal robot problems where each subtask contains one or many

different goals (e. g. the Nursebot domain described in Chapter 5). However, they are

needed for some multi-step single-goal domains.
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Finally, PolCA+ assumes a known POMDP model of the original flat (non-hierarchical)

problem. In the case of the robot vacuuming task, the dynamics of the domain are illus-

trated in Figure 4.2. In general, the model can be estimated from data or provided by a

designer. While this is a departure from reinforcement-learning methods, it is consistent

with most work on POMDP approximations. More importantly, it greatly contributes to

the effectiveness of PolCA+ since it allows us to automatically discover state and observa-

tion abstraction for each subtask. The state and observation reduction follows directly from

the action reduction, and therefore can be discovered automatically as an integral part of

PolCA+. This leads to important computational advantage, without any performance loss,

since the value of a given subtask often depends only on a subset of all state/observation

features.

Getting back to the example above, it seems obvious that the
� � � � subtask need only

consider the 	 � � � � � state feature (since the effects of both � � < � and � ��?A; � are independent

of the room’s state of cleanliness). At first glance, both state features appear useful for the

top-level subtask; this is formally determined below when we discuss PolCA+’s procedure

for automatic state abstraction.

The notion of task hierarchies raises two fundamental questions: how can we exploit

task hierarchies in POMDP planning, and how can we combine many subtask-specific

plans when it comes time for plan execution. The first question is non-trivial in that nodes

in the hierarchy represent tasks relative to their children, but actions relative to their par-

ents. This raises an important issue, namely how can we tie in the value functions of low-

level subtasks when optimizing high-level subtasks. The second question is also non-trivial

in that a decision has to be made at plan-execution time as to which subtask is responsible

for selecting the final primitive action to be executed by the agent. These questions will be

examined in depth in this chapter.

Though PolCA+ was developed specifically with the goal of solving POMDPs, it can

also address the specific case of MDP problem solving. In the next section, we start by

introducing the simpler MDP formulation known as PolCA, which shares some similari-

ties with earlier hierarchical MDP algorithms. In the subsequent section, we present the

complete (and more general) POMDP formulation known as PolCA+.
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4.2 POLCA: A HIERARCHICAL APPROACH TO MDPS

4.2. PolCA: A Hierarchical Approach to MDPs

The Markov decision process (MDP) is a special case of the POMDP, where the current

state of the world is assumed to be fully observable at every time step. An MDP is defined

to be a 4-tuple
� 3 ( � )0� ) � ) � - , where � )0� ) � ) � have the same meaning as in POMDPs

(namely � is the state set, � is the action set, � defines transition probabilities and � defines

costs/rewards). Under the full-observability assumption of MDPs, a unique observation is

emitted by each state. Thus, it is not necessary to consider observation probabilities during

planning, and belief tracking is trivial.

For each subtask, the goal of hierarchical POMDP planning is to optimize a corre-

sponding local policy:

DEFINITION 4.2.1. Given ; , a subtask with action set � = , we say that  = , the policy defined

over action subset � = , is a LOCAL POLICY.

PolCA relies on a set of formal structural assumptions. First, that there exists a task

graph : , where each leaf node represents a primitive action � , from the original MDP action

set � . Each internal node has the dual role of representing both a distinct subtask (we

use notation ; for a subtask) whose action set is defined by its immediate children in the

hierarchy, as well as an abstract action (we use a bar, as in "� , to denote abstract actions) in

the context of the above-level subtask. A subtask ; is formally defined by
��� = 3 ( "� � ) � � � )0��� ) � � � - , the set of actions that are allowed in subtask ; . Based on

the hierarchy, there is one action for each immediate child of ; .
� "� = ��	 ) � � , the local reward function. Each subtask in the hierarchy must have local

(non-uniform) reward in order to optimize a local policy.

4.2.1. Planning Algorithm

Table 4.1 describes our hierarchical MDP planning algorithm. The main function is

called using the parameterized MDP model
�

as its first argument and the hierarchy :
as its second argument. It computes the set of local policies (one per subtask) using four

simple steps, each of which is explained in further detail below.

4.2.1.1. Step 1—Re-formulate structured state space. Because Steps 2-4 apply to

each subtask separately, it is highly likely that any given world state will have different

clustering assignments or final policy for different subtasks. Consequently, Step 1 refor-

mulates the state space by adding one more state variable to reflect the hierarchy state. This

idea was first suggested in the HAM framework (Parr & Russell, 1998). In our approach,

the hierarchy state can correspond to any of the internal nodes.
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4.2 POLCA: A HIERARCHICAL APPROACH TO MDPS

PLAN-PolCA(
�

, : ) 0
STEP 1: Re-formulate structured state space: :�� � 1
For each subtask ; � : , following a bottom-up ordering: 2

STEP 2: Set parameters: ����;�� 	 ) � )0;�� 	 � �.)0����;�� 	 ) � � 3
STEP 3: Minimize states: � � � = 4
STEP 4: Solve subtask:

� = �  �= 5
End 6

Table 4.1. Main PolCA planning function

The new state space :���� is equal to the cross product between the original state

space � 3 ( 	�� ) � � � )+	 � - and the hierarchy state : 3 ( ; � ) � � � )0; � - . The final structured

state space is :�� � 35( ; ��� 	 � ) � � � )+;���� 	 � ) � � � � � � )0; � � 	 � ) � � � )+; � � 	 � - .
4.2.1.2. Step 2—Set parameters. The purpose of the second step is to appropriately

translate the transition and reward parameters specified in
� 3 ( � )0� )0�8) � - to the struc-

tured problem representation. For any given subtask ; , with state set � 35( ;��*	 � )0;��*	���) � � �.-
and action set � = 3 ( � ��) � � � ) "� �A) � � �.- there are two cases to consider. For the primitive ac-

tions ( � �2) � � �.- , it is sufficient to copy the original transition and reward parameters from

the model in
�

. This is described in Equations 4.1-4.2. For the abstract actions ( "� � ) � � �.- ,
which invoke lower-level subtasks ( ; � ) � � � - , it is necessary to infer parameters based on

the policy of the corresponding subtask. This is described in Equations 4.3-4.4.

CASE 1 - PRIMITIVE ACTIONS: 
7� � � � =A)0� � � � , 
 ��	 � )0	 � � � � :

�8��;�� 	 � ) � � )0;�� 	 � � 3 ����	 � ) � � )0	 � � (4.1)

����;�� 	 � ) � � � 3 "� =*��	 � ) � � � (4.2)

CASE 2 - ABSTRACT ACTIONS: 
 "� � � ; , 
 ��	 � )0	 ��� � � :

����;�� 	 � ) "� � )0;�� 	 ��� 3 ����	 � )  �=
	 ��	 � �.)+	 ��� ) (4.3)

� ��;�� 	 � ) "� �9� 3 "� = ��	 � )  �=�	 ��	 � � � (4.4)

Equations 4.3-4.4 depend on  �=
	 —the final policy of subtask ; � —which enforces the

policy-contingent aspect of PolCA. Since parameter setting for "� � occurs after ; � has been

solved, state abstraction in ; needs to preserve sufficient information to represent the final

policy  �= 	 , but not any policy  = 	 .
4.2.1.3. Step 3—Minimize states. The goal of this step is to learn a minimization

function <9=*��	,� mapping individual states to clusters of states. State abstraction (also called

state clustering or model minimization) is used to reduce the size of the planning problem,

thereby accelerating solving. Automatic state abstraction is done on a subtask-per-subtask

basis, using an existing MDP model minimization algorithm (Dean & Givan, 1997). The
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4.2 POLCA: A HIERARCHICAL APPROACH TO MDPS

algorithm has three parts. In Part I, a set of overly-general state clusters are proposed;

Parts II and III are then applied repeatedly, gradually splitting clusters according to salient

differences in model parameters, until there are no intra-cluster differences. The formal

algorithm is as follows.

To infer < = ��	,� � > , the function mapping states ( ;�� 	 � )0;�� 	 � ) � � � - to the (expanding)

set of clusters � = 35( > � ) >��,) � � � - :
I - INITIALIZE STATE CLUSTERING: Let < = ��	 � � 3 < = ��	 ��� if

� ��;�� 	 � )0� � 3 ����;�� 	 � )0� �.)�
 � � � =
� (4.5)

II - CHECK STABILITY OF EACH CLUSTER: A cluster > � � = is deemed stable iff
#

���� � �

����; � 	 � ) � )0;�� 	 � � 3 #
���� � �
����;�� 	 � ) � )0;�� 	 � �.) 
 ��	 � )0	 ��� � > )�
 > � � � = )�
7� � � =

� (4.6)

III - IF A CLUSTER IS UNSTABLE, THEN SPLIT IT: Let

> � ( >���)0>�� � �9) � � � - ) (4.7)

such that Part II is satisfied (with corresponding re-assignment of < = ��	,�.)�
&	 � > ). This is

typically done by evaluating several cluster splits and greedily choosing the split that most

improves stability.

Once Part II returns no unstable cluster, the algorithm is terminated. MDP model

parameters are then re-expressed over clusters:

����; � > � )0� )0;�� > � � 3 #

 � � ���

����; � 	 ) � )+;�� 	 � � )�
7� � � = (4.8)

����;�� > � )0�2� 3 ����;�� 	 )0�2� ) for any 	 � > � )�
 � � � = � (4.9)

This algorithm exhibits the following desirable properties which were initially dis-

cussed in (Dean & Givan, 1997; Dean, Givan, & Leach, 1997):

1. All states in a given cluster have the same value.

2. Planning over clusters converges to the optimal solution.

3. The algorithm can be relaxed to allow approximate ( � -stable) state abstraction.

4. Assuming an MDP with a factored state space, all steps can be implemented such

that we can avoid fully enumerating the state space.

As an aside, it is also possible to compute an abstraction of < = ��	 )0� � (abstracting over
����	 ) � � ), instead of just < = ��	�� (which abstracts over ����	,� ). This is often used when hand-

crafting abstraction functions in hierarchical MDPs (Dietterich, 2000; Andre & Russell,

2002). To abstract � , we fix any policy that visits every state-action pair and make a new

MDP whose states are the state-action pairs of
�

and whose transitions are given by our

fixed policy. We then run the clustering algorithm on this new MDP. The advantage of
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abstracting � instead of � is that we can allow different state abstractions under different

actions, potentially resulting in an exponential reduction in the number of clusters.

4.2.1.4. Step 4—Solve subtask. The purpose of Step 4 is to learn the value function

and policy for subtask ; . The state clustering step described in Step 3 ensures that all states

in a cluster share the same value (see Property 1 above). Therefore, we can apply dynamic

programming updates over clusters:

� ��;�� > � � 3 � � �@ �����
� ����;�� > � ) � � 6�� #

� � ��� �
����; � > � )0� )0;�� > ��� � ��;�� > �
�	&

� (4.10)

The repeated application of this value update is guaranteed to converge. The final

value function solution is contained in the value function of the top subtask: � � ��; � � 	,� . In

practice, Steps 3 and 4 are often interleaved.

4.2.2. PolCA Planning: An example

We can now revisit the robot vacuuming domain (Example 4.1.1) and go through the

four steps of PolCA planning for this simple case. The model and hierarchy are reproduced

at the top of Figure 4.4.

In Step 1, the structured state space augments the 4-state problem by adding a subtask

identifier variable ; 35( � > � ) � � � � - . Moving on to Step 2, subtask ; � ��� � is considered first

because it is the lower-level one. It starts by undergoing parameterizing, where parameters

conditioned on actions (�� 3 � � < � )0� 3 � ��? ; �+- are translated from the original model to

this subtask. Next, the model minimization procedure reduces the state for ; � ��� � from four

states to two clusters, because state feature 	 
 � @ � � 
 can be safely ignored. Finally, value itera-

tion yields the local policy for this subtask, where as expected  ��; � ��� � � 	,� 3 � ��? ; � )�
&	 � � .

PolCA can now move on to subtask ; � � � . In the parameterization step, PolCA trans-

poses parameters from the original model to describe actions ( � 3 ���2> 
 
 	 )�� 3 �5� � �+-
and uses the policy of ;�� ��� � (illustrated in the bottom left corner) to model abstract action

( "� 3 � � � � - . In Step 3, clustering on subtask ; � � � leaves the state space intact, meaning

that all four states are necessary. In Step 4, value iteration yields the local policy for ; � � � ,
as illustrated in the bottom right corner of Figure 4.4. As expected, when the robot is in

room 1 and room 2 is dirty, the robot moves right. When in room 2, the robot applies the

vacuum action until it becomes clean. Whenever the room is clean, the robot simply waits.

Once we have generated policies for both subtasks, we have achieved a full hierarchi-

cal planning solution for this problem. This concludes our discussion of this example.
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Figure 4.4. Hierarchical planning for the robot vacuuming example
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4.2.3. Execution Algorithm

It is necessary to specify an execution algorithm that uses the collection of local policies

to extract a global policy. The hierarchical execution algorithm maps the current state 	 � to

a primitive action ��� to be executed by the agent. It does not pre-compute a global policy

explicitly, but rather uses an online recursive procedure to generate the next policy action

at each time step.

Execution corresponds to a trace down the subtask tree. The algorithm is described in

Table 4.2. The function is initially called using the root subtask ; � as the first argument and

the current state 	�� as the second argument. It starts by consulting the local policy for the

root task; this process yields a policy action, either abstract or primitive. In the case where

this is an abstract action, the policy of the corresponding lower-level subtask is consulted,

and so on down the hierarchy until a primitive action is selected. Once a primitive action

is selected, the execution trace is terminated and the action is applied by the agent.

It is important to emphasize that the full top-down trace through the hierarchy is

repeated at every time step. This is a departure from many hierarchical MDP planning

algorithms, which operate within a given subtask for multiple time steps until a terminal

state is reached. This common approach would be impractical in POMDPs where we can-

not guarantee detection of terminal states, and though this is not a concern for PolCA, it is

important to remember that PolCA was designed only as a special case of the more general

PolCA+ algorithm, where polling execution is crucial.

Polling execution can be more expensive than standard execution, because it requires

consulting multiple local policies at each time step. However, this is often offset by the fact

that each local policy is small relative to the (uncomputed) global policy. In general, policy

execution speed is not a serious concern for most POMDP applications.

EXECUTE-PolCA( ; , 	
� ) 0
Let ��� 3  = ��	
� � 1
While ��� is an abstract action (i. e. "�2� ) 2

Let ; be the subtask spanned by "�2� 3
Let ��� 3  = ��	
� � 4

End 5
Return ��� 6

Table 4.2. PolCA execution function
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4.2.4. Theoretical Implications

One very important reason why this chapter discusses PolCA in its MDP formulation

(separately from PolCA+) is because it holds theoretical properties that do not carry over

to the fully general POMDP case. To better discuss the theoretical performance of PolCA,

it is useful to introduce the following two definitions, which are adapted from Dietterich

(2000):

DEFINITION 4.2.2. Given
���

, the class of all policies consistent with hierarchy : , a policy
 � � ���

is said to be HIERARCHICALLY OPTIMAL if no other policy  � ���
achieves more

reward than  � .
DEFINITION 4.2.3. Given a subtask ; with action set � = , and

� = the class of all policies

available in ; , and assuming fixed policies for subtasks below ; in the hierarchy, then a policy
 �= � � = is said to be RECURSIVELY OPTIMAL if it achieves the most reward among all policies
 = � � = . A set of subtask policies is recursively optimal if all policies are recursively optimal with

respect to their children.

The main difference between the two cases is a function of context. A recursively

optimal solution guarantees optimality of a subtask’s local policy, conditioned on that of

its descendants. This is obtained when subtask policies are optimized without regard to

the context in which each subtask is called. In contrast, hierarchical optimality guarantees

optimality over the set of all policies consistent with the hierarchy. This is achieved by

keeping track of all possible contexts for calling subtasks, which is key when subtasks have

multiple goal states. In general, hierarchical optimal implies recursive optimality, though

the reverse is not true. There is a trade-off between solution quality and representation:

while in some domains hierarchical optimality offers a better solution, this comes at the

expense of lesser state abstraction. Thus, recursive optimality is often more scalable.

Theorem 1: Recursive optimality for PolCA. Let
� 3 ( � )0� ) � ) � - be an MDP and

let : 3 ( ; � ) � � � )+; � - be a subtask graph with well-defined terminal states and pseudo-reward

functions. Then, the planning algorithm of Table 4.1 computes  �� , a recursively optimal policy for
�

that is consistent with : .

Proof: Let us first prove that Theorem 1 holds for the case where the planning algo-

rithm is applied without state abstraction (i. e. Step 3 in Table 4.1). This is done using struc-

tural induction, which requires first showing that the policy of any lowest-level subtask is

recursively optimal, and then that assuming this, the policy of any higher-level subtask is

also recursively optimal.
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We first consider ; , a low-level subtask containing only primitive actions � = 35( � � ) � � )
� � � - and no abstract action. Applying Steps 2 and 4 from Table 4.1 yields a local policy  �= .
By convergence of value iteration (which we apply in Step 4), this policy must be optimal

with respect to its action set � = . Furthermore, because it is hierarchically optimal, it must

also be recursively optimal.

Now consider ; , a higher-level subtask containing action set � = 3 ( ��� ) � � ) � � � ) "� �A)
"� � )
� � � - , where abstract actions ( "� �2) "� � ) � � � - are associated with corresponding subtasks

( ; ��)0; � ) � � �.- . Assume that these subtasks have respective policies (  �= 	 )  �=�� ) � � � - , all of

which have been shown to be recursively optimal. Then, applying Steps 2 and 4 yields

a policy  7= . We now use a proof by contradiction to show that  �= is also recursively opti-

mal.

Assume there exists a policy  �= whose value differs from that of  �= by � , such that� 	 � � where:

� 
��� ��	,� 3 � 
��� ��	,�&6 � � (4.11)

and consequently:

�	��
��
�� ��������
�!���")����� � 
�� �

�!�
���(�
�#" ��$�% �� ���#" ��&' � �	��
��
�� ��(�)�!�

�1�*�")+�,�� � 
��-�
���
�!���
�." �/$ % �� �!�." �0&' )21��

(4.12)

Now, substituting Equation 4.11 into Equation 4.12 and simplifying:

�	��
��
�� �� �����
�!���%)3�2�� � 
�� �

�!�
�!���
� " � � $4% �� �!� " �")�15��&' 6 �	��
�*
�� �� �)�!�

�1�*�")+�2�� � 
�� �
�!�
�!���
� " ��$�% �� ��� " �0&' )�1

(4.13)

�	��
��
�� ��������
�!����)��2�� � 
��-�

�!�
�1���
�#" ��$ % �� ���#" ��&' )��71 6 �	��
�*
�� ��(�)�!�

�1�*�")+�2�� � 
�� �
�!�
�!���
�#" ��$ % �� ���#" �0&' )�1

(4.14)�71 6 1��
(4.15)

For the general case
� ( � * �

this can only hold if ��3 �
, and so we can say that

� 
7�� ��	�� 3 � 
��� ��	,� , and similarly  �= ��	,� 3  �= ��	�� )�
&	 ��� . Thus, we conclude that  �= must

be recursively optimal.

The extension of this proof to the case with state abstraction depends strictly on the

proof of Dean and Givan (1997), which shows that the model minimization algorithm pre-

serves policy quality.

We terminate this section by pointing out that PolCA achieves recursive optimality,

rather than the stronger hierarchical optimality, specifically because it fixes low-level sub-

task policies prior to solving higher-level subtasks. Nonetheless by restricting PolCA to

this weaker form of optimality, it is often possible to achieve much greater state abstrac-

tion. This observation is not limited to PolCA. Work on the MAXQ formalism (Dietterich,
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2000), which is also limited to recursive optimality, showed similar scalability. This issue is

further explored in the experimental section below.

4.2.5. MDP Simulation Domain: Taxi Problem

We conclude this section by presenting a comparison of PolCA with competing hierar-

chical MDP algorithms: HSMQ (Dietterich, 2000), MAXQ (Dietterich, 2000) and ALisp (An-

dre & Russell, 2002). For this, we select the Taxi domain, a commonly used problem in the

hierarchical MDP literature first proposed by Dietterich (2000). The overall task (Fig. 4.5) is

to control a taxi agent with the goal of picking up a passenger from an initial location, and

then dropping him/her off at a desired destination.

The taxi domain is represented using four features: ( X, Y, Passenger, Destination - .
The X, Y represent a 5x5 grid world; the passenger can be at any of: ( Y, B, R, G, taxi - ; the

destination is one of: ( Y, B, R, G - . The taxi agent can select from six actions: ( N, S, E, W,

Pickup, Putdown - . The initial state is selected randomly, however it is fully observable and

transitions are deterministic. Motion actions have a uniform
� �

reward. Reward for the

Pickup action is
� �

when the agent is at the passenger location, and
� ���

otherwise. Reward

for the Putdown action is 6 � � when the agent is at the destination with the passenger in

taxi, and
� ���

otherwise.

Figure 4.6 represents the MAXQ control hierarchy used for this domain. The struc-

tured state space for this domain—called Taxi1—is formed by five features: ( X, Y, passen-

ger, destination, H - , where : 3 ( ; � � � � )+; � � � )0; � � � )0; � @ � ��� � )0; � @ � � � � )+; � @ � � ��� )0; � @ � � � � - .
In addition, we consider a second domain—Taxi2—which is identical to Taxi1, except

that the passenger can now start from any location on the grid, compared to only ( Y, B, R,

G - in Taxi1.

Without any structural assumption, representing the solution for Taxi1 and Taxi2 re-

quires respectively 3000 Q-values (500 states x 6 primitive actions) and 15600 Q-values

(2600 states x 6 primitive actions). Figures 4.7 and 4.8 compare state abstraction results for

each task, in terms of the number of parameters necessary to learn the solution. This gives

a direct indication of the computation time for each algorithm.

In the results below, PolCA-Q indicates the standard PolCA algorithm, modified to

cluster on Q-values (see end of Section 4.2.1.3), since all other approaches considered also

have the ability to cluster on Q-values, rather than on � ��	,� .
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In both versions of the problem, all four approaches (HSMQ, MAXQ, ALisp and

PolCA) yield considerable savings, compared to the full set of parameters required for an

optimal MDP solution. The abstraction results for Q-learning, HSMQ, MAXQ and ALisp

in Taxi1 are published results (Dietterich, 2000; Andre & Russell, 2002); Taxi2 results are

hand-crafted following a careful reading of each algorithm.

In both tasks, HSMQ requires many more parameters than MAXQ, ALisp or PolCA,

in large part because it only abstracts away full state features (e. g. destination is irrelevant

in ; � � � ).
Taking a closer look at the differences between MAXQ, ALisp, and PolCA, we see that

in the Taxi1 task, the number of parameters required are very comparable (632 values for

MAXQ, 744 for ALisp and 621 for PolCA). ALisp requires a few additional parameters than

the other two because it represents external completion costs � � . Meanwhile PolCA gets

further abstraction in low-level subtasks (e. g. ; � @ � ��� � ) because it automatically exploits

spatial symmetry in the domain, something the other approaches fail to do.

In the case of the Taxi2 task, the results illustrate the advantage of PolCA in prob-

lems where subtasks have multiple termination conditions. In this domain, both MAXQ

and ALisp require many more parameters to capture the completion costs, � � , of subtasks
; � @ � ��� � and ; � � � , since the subtask can terminate in a large number of states (i. e. the pas-

senger can be in any of the 25 cells). PolCA on the other hand uses both symmetry in the

domain and constrained subtask ordering to achieve significantly more state abstraction.

All algorithms produce the same hierarchically-optimal policy on both of these tasks.

4.2.6. Conclusion

This concludes the discussion of the PolCA approach. The next section generalizes

the concepts presented above to the case of partially observable domains, in the context

of the PolCA+ approach. The experimental evaluation accorded to PolCA+ is much more

extensive as it is the major focus of this chapter.

4.3. PolCA+: Planning for Hierarchical POMDPs

This section constitutes the cornerstone of this chapter. It presents the full PolCA+ al-

gorithm, a POMDP generalization of the fully observable PolCA introduced in Section 4.2.

Much of the algorithm remains unchanged from its MDP formulation, however some im-

portant modifications are necessary to accommodate partial observability.
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Any attempt at proposing a hierarchical POMDP approach must overcome two obsta-

cles. First, both planning and execution must be expressed with respect to beliefs, as op-

posed to states. Second, it is unreasonable to assume that terminal states (subgoals or oth-

erwise) can be detected, which is a key assumption of many hierarchical MDP approaches.

(This is not to say that terminal states cannot be specified, but that in the general POMDP

case, they cannot be fully observed. The distinction is useful because in some cases the ter-

minal states must be specified in the process of determining the pseudo-reward function).

The structural assumptions necessary for hierarchical POMDP planning are identical

to the hierarchical MDP assumptions. Formally stated, given a task hierarchy : , each

internal node represents a separate POMDP subtask ; defined by:
��� = 3 ( "� � ) � � � ) � � ) � � � - , the set of actions which are allowed in subtask ; . Based on

the hierarchy, there is one action for each immediate child of ; .
� "� = ��	 ) � � , the local reward function. Each subtask in the hierarchy must have local

(non-uniform) reward in order to optimize a local policy.

As in hierarchical MDPs, we also require a model of the domain, in this case a POMDP

model:
� 35( � ) ��)+� )0$ � ) � )+� ) � - .

4.3.1. Planning Algorithm

The POMDP formulation of the planning algorithm remains largely unchanged from

the MDP version (Table 4.1). Nonetheless there are a few notable differences. First, the

parameter-setting step is extended to include observation probabilities. Next, the state

abstraction algorithm is complicated slightly by the need to consider observation probabil-

ities when clustering states. We also introduce automatic observation abstraction. Finally,

the actual subtask solving uses appropriate POMDP techniques.

Table 4.3 presents the hierarchical POMDP planning algorithm. The main function is

called using the POMDP model
� 3 ( � ) � ).� )+$ � ) � )0� )0� - as the first argument and the

hierarchical constraints : 3 ( ; � ) � � � )0; � - as the second argument.

PLAN-PolCA+(
�

, : ) 0
STEP 1: Re-formulate structured state space: :�� � 1
For each subtask ; � : , following a bottom-up ordering 2

STEP 2: Set parameters: ����;�� 	 )0� )0;�� 	 � �.)+����;�� 	 )0�*)0
�� ) ����; � 	 )0�2� 3
STEP 3: Minimize states: � � � = 4
STEP 3b: Minimize observations: � � � = 5
STEP 4: Solve subtask:

� = �  �= 6
End 7

End 8
Table 4.3. Main PolCA+ planning function
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4.3.1.1. Step 1—Re-formulate structured state space. The first step is identical in

both MDP and POMDP formulations (Section 4.2.1.1). Simply stated, a new state space
: � � is equal to the cross product between the original state space � 3 ( 	�� ) � � � )0	 � - and

hierarchy state : 3 ( ; � ) � � � )0; � - .
4.3.1.2. Step 2—Set parameters. This step translates the POMDP parameters spec-

ified in
� 3 ( � ) ��)+� )0$ � ) � )0� ) � - to the structured state space : � � . The specification of

the reward and transition parameters is identical to the MDP case (Section 4.2.1.2), and we

now add the specification of the observation parameters.

Given a POMDP
� 3 ( � ) � ).� )+$ �9) � )+� ) � - , to set parameters for subtask ; we use

Equations 4.16–4.22:

$ ����;�� 	 � � 3 $ ����	 � � (4.16)

CASE 1 - PRIMITIVE ACTIONS: 
7� � � � =A)0� � � � , 
 ��	 � )0	 � � � � , 
7
 � � :

�8��;�� 	 � ) � ��)0;�� 	 ��� 3 ����	 � ) � �2)0	 ��� (4.17)

����; � 	 � ) � � )0
�� 3 ����	 � ) � � ) 
2� (4.18)

����;�� 	 � ) � � � 3 "� =*��	 � ) � � � (4.19)

CASE 2 - ABSTRACT ACTIONS: 
 "� � � � =A)0� � �� � , 
 ��	 )0	 � � � � , 
7
 � � :

����;�� 	 � ) "� � )0;�� 	 ��� 3 ����	 � )  ��=
	 ��	 � �.)+	 ��� ) (4.20)

����;�� 	 � ) "� � )0
�� 3 ����	 � )  �= 	 ��	 � �.)0
�� ) (4.21)

� ��;�� 	 � ) "� � � 3 "� =*��	 � )  �= 	 ��	 � � � (4.22)

As explained in Section 4.2.1.2, "� � is an abstract action available in subtask ; , where "� � sub-

sumes subtask ; � and  �= 	 ��	,� is the policy of ; � at state 	 . Unlike in the special-case MDP

version, where parameter assignment preserved (recursive) optimality, the parameter as-

signment used here for abstract actions constitutes an approximation. The approximation

arises in the treatment of abstract actions. An action "� � is modeled according to the policy

at each state - when in the general case the policy can vary over the entire belief.

4.3.1.3. Step 3—Minimize states. The state clustering procedure for POMDPs ex-

tends the MDP model minimization by Dean and Givan (1997) to also consider observation

probabilities when checking for stability between clusters. As in MDPs (Section 4.2.1.3), the

automatic state abstraction algorithm starts by selecting a set of initial clusters based on re-

ward parameters. The cluster partition is then gradually refined according to differences

in transition and observation parameters.
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To infer < =A��	,� � > , the function mapping states ( ;�� 	�� )0;�� 	 � ) � � � - to the (expanding)

set of clusters �&= 35( > �9) > � ) � � � - :
I - INITIALIZE STATE CLUSTERING: see Equation 4.5.

II - CHECK STABILITY OF EACH CLUSTER: A cluster > � � = is deemed stable iff

#

 � � � �

����;�� 	 � ) � )+;�� 	�� � ����; � 	���) � )0
�� 3 #
 � � � �
�8��;�� 	 � ) � )+;�� 	�� � ����;�� 	���) � )0
�� ) (4.23)


 ��	 � )0	 � � � > )�
 > � � �&=A)�
7� � � =A)�
7
 � �
�

III - IF A CLUSTER IS UNSTABLE, THEN SPLIT IT: see Equation 4.7

4.3.1.4. Step 3b—Minimize observations. This step automatically determines a

clustering function ?A@= ��
�� over observations. Observations can be clustered whenever they

have similar emission probabilities, since it means that they provide equivalent informa-

tion. As with state clustering, automatic observation abstraction is done on a subtask-per-

subtask basis. However, in the case of observations, rather than learn a single clustering

function per subtask, we learn one clustering function per action per subtask. This can

mean greater model reduction in cases where multiple observations have similar emission

probabilities with respect to some actions, but not all. Observation abstraction is especially

useful to accelerate problem solving since the complexity of even one-step exact POMDP

planning is exponential in the number of observations (Eqn 2.18).

To find the set of clusters � @= 3 ( B � )+B � ) � � �.- , we start by assigning each observation

to a separate cluster. We can then greedily merge any two clusters B and B � that provide

equivalent information:

�
� s.t.

#

 � �

����;�� 	 ) � )0
 � � 3 �
#

 � �

����; � 	 )0�*)0
 � � ) 
 � � B7)�
 � � B ��)�
7� � � =
� (4.24)

until there are no two clusters that meet this criteria.

It is important to point out that this approach does not only merge observations with

identical emission probabilities, but also those with proportionally equivalent emission prob-

abilities. This is appropriate because observations in POMDPs serve as indicators of the

relative likelihood of each state.

4.3.1.5. Step 4—Solve subtask. This step focuses on optimizing the POMDP value

function and policy for subtask ; . In the case of POMDPs, unlike in MDPs, the solving is

delayed until after the compact state and observation sets, � = and �4@= , have been found.
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The state and observation abstraction functions are first used to re-define the POMDP

parameters in terms of clusters:

$ � ��> � 3 #

 � �

$ � ��	,�.) 
 > � � = (4.25)

��� >9) � ) > � � 3 #

 � � �

����; � 	 )0� )0;�� 	 � �.)�	 � > ) 
 � >9) > � � � � = ) 
7� � � = (4.26)

����> ) � )+BA� 3 #

�� � �
#
��� �

����; � 	���) � )0
�� )�
 B � � @= ) 
7> � � = ) 
7� � � = (4.27)

����> ) � � 3 � ��;�� 	 ) � �.)�	 � > ) 
7> � � = ) 
7� � � =
� (4.28)

Planning over clusters of states and observations can be realized by using any POMDP

solver. For very small problems, it is possible to find an exact solution, using for example

the Incremental Pruning algorithm (Cassandra et al., 1997). For larger domains, approx-

imate algorithms are preferable. For example we have used the PBVI algorithm (Chap-

ter 3), the Augmented-MDP algorithm (Roy & Thrun, 2000), and the QMDP fast approxi-

mation (Littman et al., 1995a).

On a side-note, when combining PolCA+ with the PBVI approximation, it is crucial

to always generate belief points using the full action set � rather than the subtask-specific

subset � = . Failing to do so would cause a subtask to optimize its local policy only over

beliefs that are reachable via its own action set, despite the fact that the subtask may be

invoked in very different situations. The computational overhead of generating points is

negligible and therefore this does not reduce the time gain of the hierarchy.

4.3.2. POMDP Policy Execution with Task Hierarchies

The only significant change in hierarchical POMDP execution, compared to the MDP

case, is the fact that POMDPs require belief updating at every time step, prior to consulting

the policy. Given that each subtask ; uses a different state clustering � = , it follows that its

local policy  = is expressed over a local belief.

DEFINITION 4.3.1. Given a subtask ; , we say that $ = � > � , the belief defined over clusters > �
� = , is a LOCAL BELIEF.

Rather than update the local belief for each subtask separately, using the latest pair
� ���	� � ) 
�� � , we instead update the global belief $.�.��� according to Equation 2.7. As the policy

lookup traverses the tree, the local belief for each subtask, $ =� ��� , is extracted from the global

belief:

$ =� ��> � 3 # 
 � �
$ � ��	�� ) 
7> � �&= ) (4.29)
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resulting in a simple marginalization according to each subtask’s state clustering function.

Table 4.4 describes the complete hierarchical POMDP execution algorithm. The func-

tion is initially called using the root subtask ; � as the first argument and the current global

belief $ � as the second argument. This completes our exposition of the general PolCA+

algorithm.

EXECUTE-PolCA+( ; , $ � ) 0
Let $ =� ��> � 3 � 
 � � $ � ��	,�.) 
 > � �&= 1
Let � � 3  7= ��$ =� � 2
While � � is an abstract action (i. e. "� � ) 3

Let ; be the subtask spanned by "� � 4
Let $ =� � > � 3 � 
 � � $ � ��	�� )�
 > � �&= 5
Let � � 3  = ��$ =� � 6

End 7
Return � � 8

End 9
Table 4.4. PolCA+ execution function

4.3.3. Theoretical Implications

Unlike in MDPs, where the solution can be to shown to be recursively optimal, few

theoretical claims can be made regarding the quality of the hierarchical POMDP solution

found by PolCA+. In fact, we can easily demonstrate that the final solution will generally

be sub-optimal, simply by considering Equations 4.20–4.22. This way of parameterizing

abstract actions constitutes an approximation for the simple reason that the subtask policy
 = is only considered at the corners of its belief state (i. e. when the belief is restricted to

a single state—  = ��	,� ). This ignores any other policy action that may be called in beliefs

where there is uncertainty (i. e. $ ��	,� * � )�
 	 � � ). The approximation is necessary to ensure

that subtask ; can be treated as a standard POMDP, where by definition parameters are

assumed to be linear in the belief (e. g. � ��$,) � � 3 � 
 ��� $ ��	�� ����	 ) � � , and so on for ����$,)0� )0$ � � ,
����$,)0�*)0
�� ). Despite this approximation, the empirical results presented in the next section

demonstrate the usefulness of the approach for a wide range of POMDP problems.

Embedded in our hierarchical POMDP planning algorithm are two important new

model minimization procedures. First, there is a POMDP extension of the state minimiza-

tion algorithm by Dean and Givan (1997). Second, there is a separate algorithm to perform

observation minimization. It is important to demonstrate that those algorithmic proce-

dures are sound with respect to POMDP solving, independent of any hierarchical context.
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THEOREM 4.3.1. Exact POMDP state abstraction. Let
� 3 ( � ) � ).� )+$ � ) � )+� ) � - be a

POMDP. Then, the state minimization algorithm of Section 4.3.1.3 preserves sufficient information

to learn  � , the optimal policy for
�

.

Proof: We consider two states 	 � and 	 � , with matching cluster assignments:

> 3 < ��	 � � 3 < ��	 �
�

obtained by the POMDP state clustering algorithm of Section 4.3.1.3. We use a proof by

induction to show that any two beliefs $ 3 ( $ �9) � � � )+$ � )+$ � ) � � �.- and $ � 3 ( $ �9) � � � )+$ �� )+$ �� ) � � �.-
that differ only in their probability over states 	 � and 	 � will have identical value ����$ � 3
� ��$ � � .

First, we consider the value at time � 3 �
:

� � ��$ � 3 � ���@ ���
��
$ ��	 � � ����	 � ) � �&6�$ ��	 ��� � ��	 � ) � � 6 #


 ��� � 
��$�� 
 � � 
 ��� $ ��	,� ����	 )0� �	�
 (4.30)

� � ��$ � � 3 � ���@ ���
��
$ � ��	 � � ����	 � ) � �&6�$ � ��	 � � ����	 � ) � �&6 #


 ��� � 
��$�� 
 � � 
 � � $ ��	,� � ��	 ) � �	�
 � (4.31)

Assuming that < ��	 � � 3 < ��	 �
� , then by Equation 4.5 we can substitute � ��	 ��� � ����	 � � in

Equation 4.31:

� � ��$ � � 3 � � �@ ���
��
��$ ����	 � �&6�$ ����	 ��� �A����	 � )0� � 6 #


 ��� � 
��$�� 
 � � 
 ��� $9��	,� ����	 )0�2� �
 � (4.32)

And, because � 
 ��� $ ��	,� 3 �
, we can substitute ��$ � ��	 � � 6 $ � ��	 � � � � ��$ ��	 � � 6 $9��	 � � � in

Equation 4.32:

� �2��$ � � 3 � ���@ ���
��
��$ ��	 � �&6�$ ��	 � � �A����	 � ) � � 6 #


 ��� � 
��$�� 
 � � 
 � � $ ��	,� � ��	 ) � �	�
 ) (4.33)

leading to the conclusion that:

���2��$ � 3 � � ��$ � �
� (4.34)

Next, we assume that the values at time � � �
are equal:

� �	� � ��$ � 3 � �	� � ��$ � �
� (4.35)

Finally, we must show that the values at time � are equal:

� � ��$ � � 3 � � �@ ���
� #

 ���

$ � ��	,� ����	 ) � � 6�� #
�����
� �2��
 � � )0$ � � � �	� � ��$ �	� � � � (4.36)

� � ��$ �� � 3 � � �@ ���
� #

 ���

$ �� ��	,� ����	 ) � � 6�� #
�����
� �2��
 � � )0$ �� � � �	� � ��$ ��	� � � �

� (4.37)
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By using Equation 4.34 we can substitute: � 
 ��� $ �� ��	,� � ��	 ) � � � � 
 ��� $ � ��	,� ����	 ) � � in

Equation 4.37:

�A�.��$ �� � 3 � � �@ ���
� #

 ���

$.�+��	,� ����	 ) � � 6�� #
�����
� �2��
 � � )0$ �� � �A�	� �9��$ ��	� � � �

� (4.38)

Next, we use the POMDP stability criterion (Eqn 4.23) in conjunction with Equa-

tion 4.35 and the belief update equation (Eqn 2.7) to infer that $ ��	� � 3 $ �	� � , conditioned

on each observation 
 � � , and therefore:

�A�.��$ �� � 3 � � �@ ���
� #

 ���

$.�+��	,� ����	 ) � � 6�� #
�����
� �2��
 � � )0$.� � �A�	� �9��$+�	� � � � ) (4.39)

leading to the conclusion that � �.��$ � 3 � � ��$ � � .

THEOREM 4.3.2. Exact POMDP observation abstraction. Consider two POMDPs
� 3 ( � )0� )+� )0$ � ) � )+� ) � - and

� � 3 ( � ) ��)+� � )+$ � ) � )0� � ) � - with respective optimal solutions �
and � � , where � 3 ( 
�� ) 
 � ) � � � )0
 � ) 
 � � � ) 
 � � � - , � � 35( 
��9) 
 � ) � � � ) 
 � )0B - , and

� � � � such that

� � ��	 ) � )+BA� 3 ����	 ) � ) 
 � � � � 6�����	 ) � ) 
 � � � �.)�
 	 � �
� (4.40)

If
�

� � � such that:

����	 ) � ) 
 � � � � 3 �*����	 )0� ) 
 � � � �.)�
 	 � � ) (4.41)

meaning that 
 � � � and 
 � � � having matching cluster assignment B .

Then

� ��$ � 3 � ����$ �.)�
 $ � � � (4.42)

Proof: Using a proof by induction, first consider:

���2��$ � 3 � � �@ ���
� #

 ���

$ ����	,� ����	 )0� � �
� �� ��$ � 3 � � �@ ���

� #

 ���

$ ����	,� ����	 )0� � �
and it therefore follows that: � � ��$ � 3 � �� ��$ �

� (4.43)

We now assume that:

� �	� � ��$ � 3 � ��	� � ��$ �
� (4.44)

Before proceeding with the proof for � � ��$ � 3 � �� ��$ � , we first establish that:

%&��$ ) � )0BA� 3 %&��$ ) � ) 
 � � �
� � (4.45)

We consider
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%&��$,)0�*)+BA� ��	,� 3 c � 
�� ����	 � ) � )+BA� ����	 ) � )0	 � � $ ��	 � � Eqn 2.7
3 c � 
 � ������	 � )0� ) 
 � � � �&6�����	 � )0� ) 
 � � � � � ����	 ) � )0	 � � $ ��	 � � Eqn 4.40
3 c � 
�� � � 6 � � ����	 � )0�*)0
 � � � � ����	 )0�*)+	 � � $9��	 � � Eqn 4.41
3 c’ ��
�� ����	 � ) � ) 
 � � � � ����	 ) � )0	 � � $ ��	 � � normalizing constant
3 %&��$,)0�*)0
 � � � � ��	,�.)�
 	 � � Eqn 2.7.

Similar steps can be used to show that:

%&��$,)0� ) 
 � � � � 3 %&��$,) � ) 
 � � � � � (4.46)

Now, we proceed to show that:

� �.��$ � 3 � �� ��$ �
� (4.47)

We begin with

V � ��$ � 3 � � � @ ��� 
 � 
 ��� $ ��	,� ����	 )0� �&6�� � ����� � � � 
 � � )0$ � �A�	� � � %&��$,)0�*)0
�� � 

Eqn 2.11
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 ��� $9��	,� ����	 )0�2� 6�� ��� $�� � % ������� � � � � � � 
 � � )0$ � �A�	� � � %&��$,)0�*)0
�� �6�� � �	� � � %&��$,) � )0
 � � � � � � 
 ��� ����	 )0� ) 
 � � � � $ ��	��6�� � �	� � � %&��$,) � )0
 � � � � � � 
 ��� ����	 )0� ) 
 � � � � $ ��	���

expanding

3 � � � @ ����� � 
 ��� $9��	,� ����	 )0�2� 6�� � � $�� � % ������� � � � � � � 
 � � )0$ � � �	� � � %&��$,)0�*)0
�� �6�� �A�	� � � %&��$,) � )0
 � � � � � � 
 ��� ����	 )0� ) 
 � � � � $ ��	��6�� � �	� � � %&��$,) � )0
 � � � � � � 
 ��� ������	 ) � )0B � � ����	 ) � ) 
 � � � �A$ ��	,� 

Eqn 4.40
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 ��� $9��	,� ����	 )0�2� 6�� � � $�� � % ������� � � � � � � 
 � � )0$ � � �	� � � %&��$,)0�*)0
�� �6�� �A�	� � � %&��$,) � )0
 � � � � � � 
 ��� ����	 )0� ) 
 � � � � $ ��	��6�� �A�	� � � %&��$,) � )0
 � � � � � � 
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Eqn 4.46

3 � � � @ ����� ��
 ��� $9��	,� ����	 )0�2� 6�� ��� $�� � % ������� � � � � � � 
 � � )0$ � �A�	� � � %&��$,)0�*)0
�� �6�� �A�	� � � %&��$,) � )0
 � � � � � � 
 ��� ����	 )0� )0BA� $ ��	,� 

simplifying

3 � � � @ ����� ��
 ��� $9��	,� ����	 )0�2� 6�� ��� $�� � % ������� � � � � � � 
 � � )0$ � �A�	� � � %&��$,)0�*)0
�� �6�� �A�	� � � %&��$,) � )+BA� � � 
 ��� ����	 ) � )+BA� $ ��	,� 

Eqn 4.45

3 � � � @ ��� 
 � 
 ��� $ ��	,� ����	 )0� �&6�� � ������� � � � 
 � � )+$ � � �	� � � %&��$,) � ) 
2� � 


3 V’ � ��$ �
Eqn 2.11

We conclude that no loss of performance results from clustering observations that satisfy

Equation 4.24.
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The remainder of this chapter explores the empirical performance of PolCA+. We

consider a number of contrasting POMDP problems, and compare the PolCA+ algorithm

with other well-established POMDP solving algorithms, both exact and approximate.

4.3.4. Simulation Domain 1: Part-Painting Problem

The first task considered is based on the part-painting problem described by Kushm-

erick, Hanks, and Weld (1995). It was selected because it is sufficiently small to be solved

exactly. It also contains very little structure, and is therefore a valuable sanity test for a

structured algorithm such as PolCA.

The objective of this domain is to process a part which may, or may not, be flawed.

If the part is flawed, it must be rejected, and alternately if the part is not flawed it must

be painted and then shipped. The POMDP state is described by a Boolean assignment of

three state features: flawed= ( 0,1 - , blemished= ( 0,1 - , painted= ( 0,1 - . Not all assignments are

included, in fact the state set includes only four states: ( unflawed-unblemished-unpainted,

unflawed-unblemished-painted, flawed-unblemished-painted, flawed-blemished-unpainted - . In ad-

dition, the domain has four actions: A= ( inspect, paint, ship, reject - and two observations:
� = ( blemished, unblemished - .

Shipping an unflawed-unblemished-painted part yields a 6 �
reward; otherwise shipping

yields a
� �

reward. Similarly, rejecting a flawed-blemished-unpainted piece yields a 6 �
re-

ward, and otherwise rejecting yields a
� �

reward. Inspecting the part yields a noisy obser-

vation. Finally, painting the part generally has the expected effect:

� � ��	 � @ � � � � � 3 � � � 3�/ � � � � )+	 � @ � � � � � 3 � � 3 �
� � ) (4.48)

� �2��	 � @ � � � � � 3 � � � 3�/ � � � � )0	 � @ � � � � � 3 � � 3 �
�

�
� (4.49)

and in the case of a blemished part, generally hides the blemish:

� � ��	 � � � � � 
 = � � 3 � � � 3�/ � � � � )+	 � � � � � 
 = � � 3 � � 3 �
� � ) (4.50)

� � ��	 � � � � � 
 = � � 3 � � � 3�/ � � � � )0	 � � � � � 
 = � � 3 � � 3 �
�

�
� (4.51)

a0

a1Inspect Reject

Paint Ship

Figure 4.9. Action hierarchy for part-painting task
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PolCA+ operates by leveraging structural constraints. Figure 4.9 shows the action

hierarchy considered for this task. Though there are many possible hierarchies, this seemed

like a reasonable choice given minimum knowledge of the problem.

As explained in Section 4.3.1.5, PolCA+ uses a value function estimator as a sub-

component. For this experiment, four different choices are considered: Incremental Prun-

ing (Section 2.2.1), PBVI (Chapter 3), QMDP (Section 2.2.4, Eqn 2.32) and MLS (Section 2.2.4,

Eqn 2.29). We test PolCA+ in combination with each of the four different planners.

Table 4.5 contains the results of these experiments. The main performance metrics

considered are the computation time and the value accumulated over multiple simula-

tion trials. The reward column presents the (discounted) sum of rewards for a 500-step

simulation run, averaged over 1000 runs. This quantifies the online performance of each

policy. Clearly, the choice of solver can have a large impact on both solution time and

performance. An exact solver such as Incremental Pruning generally affords the best solu-

tion, albeit at the expense of significant computation time. In this case, PolCA+ combined

with any of Incremental Pruning, PBVI, or QMDP finds a near-optimal solution. The good

performance of the QMDP can be attributed to the fact that this domain contains a single

information-gathering action.

In addition, for a problem of this size, we can look directly at the policy yielded by

each planning method. As indicated in the Policy column, the different algorithms each

learn one of three policies. Figure 4.10 illustrates the corresponding policies (nodes show

actions; arrows indicate observations when appropriate; dotted lines indicate a task reset,

which occurs after a part has been rejected or shipped).

Policy  � is clearly very poor: by rejecting every part, it achieves the goal only 50% of

the time. On the other hand, optimal policy  � and near-optimal policy  �

both achieve the

goal 75% of the time (failing whenever action inspect returns an incorrect observation). In

fact,  � and  �

are nearly identical (within a discount factor, � 3 �
� � � ) since the reward for

a paint action is always zero. Nonetheless, the optimal policy  � yields a higher reward by

virtue of its faster reset rate. The effect of the approximation introduced when modelling

abstract action "� � (in Fig. 4.9) is seen in policy  �

.

Finally, as reported in Table 4.5, using a hierarchical decomposition in conjunction

with Incremental Pruning can actually cause the computation time to increase, compared

to straightforward Incremental Pruning. This occurs because the problem is so small and

because it offers no state or observation abstraction; results on larger problems presented

below clearly show the time savings attributed to hierarchical assumptions.
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Problem Solution CPU time Reward Policy� �"�=4, � � �=4, � � �=2 (secs)

Incremental Pruning 2.6 3.3  �
PolCA+ w/Incremental Pruning 21.6 3.2  �

PolCA+ w/PBVI 2.5 3.2  �

PolCA+ w/QMDP * �
�

� �
3.2  �

PolCA+ w/MLS * �
�

� �
-0.97  �

Table 4.5. Performance results for part-painting task

Inspect

RejectBlemished

Unblemished Paint Paint Ship

Reject

Inspect

RejectBlemished

Unblemished Paint Ship

π

π

−

+

*

π

Figure 4.10. Policies for part-painting task
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4.3.5. Simulation Domain 2: Cheese-Taxi Problem

This section addresses a robot navigation task that is a cross between the taxi problem

presented in Section 4.2.5 and another problem called the cheese maze (McCallum, 1996).

The problems are combined to join the state uncertainty aspects proper to the cheese maze

and the hierarchical structure proper to the taxi task.

The problem features a taxi agent operating in a world that has the configuration of the

cheese maze (Fig. 4.11), where the agent must pickup a passenger located at state s10 and

then proceed to deliver the passenger to a (randomly selected) destination, either s0 or s4.

The state space is represented using 33 discrete states, formed by taking the cross-product

of two state variables: taxi locations ( s0, s1, � � � , s10 - and destinations ( s0, s4, s10 - . The

agent has access to seven actions: ( North, South, East, West, Query, Pickup, Putdown - , and

can perceive ten distinct observations: ( o1, o2, o3, o4, o5, o6, o7, destinationS0, destinationS4,

null - .

S1 S2 S3 S4

S7

S9S10

S6S5

S8

O4O2O3O1 O2

O6 O7

O5 O5

O6

O5

S0

Figure 4.11. State space for the cheese-taxi task

One of the first seven observations is received whenever a motion action is applied,

partially disambiguating the taxi’s current location. As defined by McCallum (1993), this

observation is a localization signature indicating wall placement in all four directions im-

mediately adjacent to the location. According to this convention, states ( s5, s6, s7 - look

identical, as do respectively ( s1, s3 - and ( s8, s9 - ; finally states s0, s2 and s4 have unique

identifiers. The two observations ( destinationS0, destinationS4 - are provided (without noise)

in response to the Query action, fully disambiguating the taxi destination state variable, but

only when the passenger is onboard. The null observation is received after the Pickup and

Putdown actions.

The state transition model encodes the effect of both deterministic motion actions, and

a stochastic destination choice. For example, motion actions have the expected transition

effects:

� � ��	 � 3 s2 � � 3 North )0	 3 s6 � 3 � )
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and so on. The choice of passenger destination (s0 or s4) is randomly selected when the

passenger is picked-up. And whenever the taxi has the passenger onboard and is in cells s2

or s6, there is a small probability that the passenger will change his/her mind and suddenly

select the other destination:
� � � � � 	 � � � � � � � � 3 s0 � � 3 North ) � � > � � � � � 3 s6 ) � � 	 � � � � � � � � 3 s0 � 3 �

� � �A)
� � � � � 	 � � � � � � � � 3 s0 � � 3 North ) � � > � � � � � 3 s6 ) � � 	 � � � � � � � � 3 s4 � 3 �

�

� � )

and so on. This possibility is added simply to increase the difficulty of the task.

The agent incurs a
� �

reward for any motion or query action. A final reward of 6 � � is

received for delivering the passenger at the correct location. A
� ���

reward is incurred for

applying the Pickup or Putdown action incorrectly.

There are two sources of uncertainty in this problem. First, as in McCallum’s original

cheese maze task, the initial location of the taxi is randomly distributed over maze cells

( s0, s1, � � � , s9 - and can only be disambiguated by taking a sequence of motion actions.

Second, the passenger’s destination can only be observed by using the Query action.

The transition and reward parameters used here are consistent with the original taxi

task; the observations parameters (with the exception of the Query action) are borrowed

directly from the original cheese maze. Finally, we also adopt the taxi task’s usual hierar-

chical action decomposition, as shown in Figure 4.6.

This problem, unlike the previously considered part-painting problem, requires the

use of a pseudo-reward function in subtasks with a uniform reward (e. g. ; � @ � ��� � has a

uniform reward function � � @ � ��� � ��	 )0�2� 3 � � )�
 ��	 ) � � ). Thus, we reward achievement of

partial goals in the ; � @ � ��� � subtask by using the pseudo-reward function:
"� � @ � � � � � ��	 3 � � ) � � 3 � )�
 � � � � @ � � � � �

and similarly for � � and � � � . This is identical to the pseudo-reward function used in the

original problem formulation (Dietterich, 2000).

Figure 4.12 presents results for the cheese-taxi domain, for each of the POMDP solving

algorithms. Figure 4.12a illustrates the sum of rewards to accomplish the full task, aver-

aged over 1000 trials, whereas Figure 4.12b illustrates the computation time necessary to

reach the solution. These figures include results for two different hierarchical POMDP so-

lutions (PolCA+ and HPOMDP). PolCA+ is the full algorithm as described in Section 4.3.1,

with exact solving of subtasks. HPOMDP uses the same hierarchical algorithm, but with-

out any state or observation abstraction.
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Figure 4.12. Results for solving the cheese-taxi task
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The QMDP policy and the truncated exact POMDP policy perform equally poorly. In

the case of QMDP, this is due to its inability to disambiguate the final destination. The

QMDP policy correctly guides the agent to pickup the passenger, but it never drops off

the passenger at either location. Meanwhile the exact POMDP algorithm is theoretically

able to find the shortest action sequence, but it would require much longer planning time

to do so. It was terminated after over 24 hours of computation, having completed only 5

iterations of exact value iteration.

PolCA+ and HPOMDP produce the same policy. Following this policy, the agent cor-

rectly applies an initial sequence of motion actions, simultaneously disambiguating the

taxi’s original position and making progress to the passenger’s station at � � � . Once the

passenger location is reached, the agent applies the Pickup action and navigates to � � be-

fore applying the Query action. It then proceeds to the correct passenger destination.

The computation time comparison is shown in Figure 4.12b. It should be pointed out

that the exact POMDP solution was truncated after many hours of computation, before it

had converged to a solution. The Root and Put subtasks in both PolCA+ and HPOMDP

were also terminated before convergence. In all cases, the intermediate solution from the

last completed iteration was used to evaluate the algorithm and generate the results of

Figure 4.12a.

As expected, results for both HPOMDP and PolCA+ are identical in terms of perfor-

mance (since PolCA+ used lossless state and observation abstraction), but require a longer

solution time in the case of HPOMDP. Both PolCA+ and HPOMDP use the action decom-

position of Figure 4.6.

The computation time data in Figure 4.12b allows us to distinguish between the time

savings obtained from the hierarchical decomposition (the difference between POMDP and

HPOMDP) versus the time savings obtained from the automated state/observation ab-

straction (the difference between HPOMDP and PolCA+). In this domain, the hierarchy

seems to be the dominant factor. In terms of abstraction, it is worth noting that in this

domain, the savings come almost entirely from state abstraction. The only observation ab-

straction available is to exclude zero-probability observations, which has only negligible

effect on computation time. The state abstraction savings on the other hand are apprecia-

ble, due to symmetry in the domain and in the task objective.

We conclude that the PolCA+ algorithm is able to solve this problem, where partial ob-

servability features prominently. The action decomposition and state abstraction combine

to provide a good solution in reasonable time.
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4.3.6. Simulation Domain 3: A Game of Twenty-Questions

One of the main motivating applications for improved POMDP planning is that of ro-

bust dialogue modeling (Roy, Pineau, & Thrun, 2000). When modeling a robot interaction

manager as a POMDP, as we do in the next chapter, the inclusion of information-gathering

actions is crucial to a good policy, since human-robot interactions are typically marred by

ambiguities, errors and noise. In this section, we consider a new POMDP domain that is

based on an interactive game called Twenty-questions (Burgener, 2002), also known as “An-

imal, Vegetable, or Mineral?” This simple game provides us with a stylized (and naturally

scalable) version of an interaction task. Studying this game allows for systematic compar-

ative analysis of POMDP-based dialogue modeling, before moving to a real-world imple-

mentation. This is an extremely valuable tool given the difficulty of staging real human-

robot dialogue experiments. For these reasons, we believe that this domain can play a

useful role for the prototyping of dialogue management systems, much like the role that

the often-used maze navigation task has played for robot navigation domains.

The game Twenty-questions is typically formulated as a two-player game. The first

player selects a specific object in his/her mind, and the second player must then guess

what that object is. The second player is allowed to ask a series of yes/no questions, which

the other person must answer truthfully (e. g. Is it an animal? Is it green? Is it a turtle?). The

second player wins a round if s/he correctly identifies the object within twenty questions

(thus the name of the game).

When modeling the game as a POMDP, the goal is to compute a POMDP policy that

correctly guesses the object selected by the user. We represent each possible object as a state.

The action space involves two types of actions: guesses and questions. There is one guess per

object in the state space (e. g. Is it a turtle?). The list of questions serves to disambiguate

between state-objects (e. g. Is it green? Is it a fruit? Is it a mineral?), though noisy answers

can complicate the matter. The observation space contains only three items: ( yes, no, noise - ,
corresponding to possible verbal responses from the non-POMDP player who picked the

object. This POMDP domain can easily be scaled by adding more objects: each new object

automatically adds one state and one action, and information-eliciting questions can also

be added as necessary. This example is a prototypical information-contingent POMDP,

characterized by a large action space (relative to the state space), which includes a variety

of information-gathering actions.
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With respect to model parameterization, the conventional rules of the game prescribe

that state transitions be restricted to self-transitions, since the game usually assumes a sta-

tionary object. Given this stationarity assumption, it is likely that a decision-tree (Quinlan,

1986) could successfully solve the problem. To make it more interesting as a POMDP do-

main, we add a small probability of randomly transitioning from the current state-object

to another one, in effect allowing the first player to change his/her mind about the target

object in the middle of play. Though not traditionally part of this game, adding stochastic-

ity in the state transitions makes this a much more challenging problem (in the same way

that chasing a moving target is harder than seeking a fixed one). We assume that after each

question, the state stays the same with probability
�
� � , and uniformly randomly changes

to any of the other states with cumulative probability
�
�

�
.

The reward is consistently
� �

for all question-actions, whereas guess-actions yield a 6 �

reward if the guess is correct and a
� � � reward otherwise. The task is reset every time the

policy selects a guess-action. Finally, the observation probabilities for each question-action

noisily reflect the state, for example:

� � � 3 �
� 	 � 	 3 � 
 � � � � ) � 3 ?2� ��� � � � 3 �

�

� � )
� � � 3 � �)� 	 3 � 
 � � � � ) � 3 ?2� ��� � � � 3 �

�

� )
� � � 3 � � � 	 � � 	 3 � 
 � � � � ) � 3 ?2� ��� � � � 3 �

�

� �
�

We implemented a 12-object version of this domain. The POMDP representation con-

tains 12 states (one per object), 20 actions (12 guesses + 8 questions), and 3 observations

(yes, no, noise). We considered two alternate hierarchical decompositions for this domain.

Figure 4.13a illustrates the first decomposition (referred to as D1). In this case, the do-

main is decomposed into four subtasks, with some action redundancy between subtasks.

Preliminary experiments with this decomposition quickly showed that most of the compu-

tation necessary to apply hierarchical planning was spent in solving subtask ; vegetable.1 We

therefore proposed the second decomposition (referred to as D2), which is illustrated in

Figure 4.13b. This decomposition further partitions the action space of the ; vegetable subtask,

to produce two new lower-level subtasks: ; real-vegetable and ; fruit.

The PolCA+ planning algorithm was applied twice, once for each decomposition.

Policies were also generated using alternate algorithms, including QMDP (Section 2.2.4),

FIB (Section 2.2.4), and Incremental Pruning (Section 2.2.1). For this domain, the perfor-

mance of each policy was evaluated in simulation using 1000 independent trials. Trials

failing to make a guess after 100 time steps were terminated.

1It is a convention of this game to let all plant-related objects be identified as “vegetables”.
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Figure 4.13. Action hierarchies for twenty-questions domain
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Figure 4.14. Simulation results for the twenty-questions domain
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Figure 4.14a shows the sum of rewards for each run, averaged over the 1000 trials and

plotted as a function of the number of value iteration updates completed. In the case of

the hierarchical planners (PolCA+D1, PolCA+D2), the full number of iterations was com-

pleted for each subtask. The QMDP and FIB results are plotted as constants, representing

optimized performance. These results clearly illustrate the failures of the QMDP and FIB

algorithms when faced with a POMDP domain where explicit information-gathering is re-

quired. Looking closely at the policies generated by QMDP and FIB, we note that they are

unable to differentiate between the various question-actions, and therefore randomly select

questions until the belief is sufficiently certain to make a guess. This certainty threshold is

slightly lower for the FIB algorithm, thus explaining its slightly less dismal performance.

The QMDP algorithm on the other hand is never able to take a correct guess, and in each

trial spends 100 time steps asking random questions without any useful effect. As ex-

pected, the performance of Incremental Pruning (in terms of accumulated reward) exceeds

that of the approximate methods. For the hierarchical approach, both D1 and D2 converge

within approximately 20 iterations, but converge to slightly sub-optimal policies. Further-

more, we note that the additional structural assumptions in D2 cause a greater loss of

performance, compared to D1.

Figure 4.14b presents the same results as in Figure 4.14a, but now plotting the reward

performance as a function of computation time. All POMDP computations, including for

hierarchical subtasks, assume a pruning criterion of �43 �
�

� . This graph clearly shows the

computational savings—note the log(time) x-axis—obtained through the use of hierarchical

structural assumptions. By comparing D1 and D2 we can also see the trade-off resulting

from different structural assumptions.

We conclude that PolCA+’s hierarchical decomposition preserves sufficient richness

in representation to successfully address dialogue-type POMDPs. Furthermore, through

careful the design of the hierarchy, one can effectively control the trade-off between perfor-

mance and computation. Other possible approaches to solve this problem which we have

not investigated include the even-odd POMDP (Bayer Zubek & Dietterich, 2000), prefer-

ence elicitation (Boutilier, 2002), and decision trees (Quinlan, 1986). However, the stochas-

ticity in state transitions make decision trees a poor choice for this specific formulation of

the twenty-questions domain.
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4.4. Related Work

Various techniques have been developed that exploit intrinsic properties of a domain

to accelerate problem-solving. Hierarchical decomposition techniques in particular accel-

erate planning for complex problems by leveraging domain knowledge to set intermediate

goals. They typically define separate subtasks and constrain the solution search space.

This insight has been exploited in classical planning, starting with abstraction for

STRIPS-like planners (Sacerdoti, 1974), and followed by the well-studied hierarchical task

networks (HTNs) (Tate, 1975). In HTNs, the planning problem is decomposed into a net-

work of tasks. High-level abstract tasks are represented through preconditions and effects,

as well as methods for decomposing the task into lower-level subtasks. Low-level tasks

contain simple primitive actions. In general, HTN planning has been shown to be unde-

cidable. More recent algorithms combine HTN structural assumptions with partial-order

planners, in which case problems are decidable (Barrett & Weld, 1994; Ambros-Ingerson &

Steel, 1988). HTN planning has been used in large-scale applications (Bell & Tate, 1985).

However it is best suited for deterministic, fully observable domains.

The two dominant paradigms for large-scale MDP problem solving are based on func-

tion approximation and structural decomposition. PolCA belongs to the second group. The

literature on structural decomposition in MDPs is extensive and offers a range of alter-

native algorithms for improved planning through structural decomposition (Singh, 1992;

Dayan & Hinton, 1993; Kaelbling, 1993; Dean & Lin, 1995; Boutilier, Brafman, & Geib, 1997;

Meuleau, Hauskrecht, Kim, Peshkin, Kaelbling, Dean, & Boutilier, 1998; Singh & Cohn,

1998; Wang & Mahadevan, 1999). A common strategy is to define subtasks via partitioning

the state space. This is not applicable when decomposing POMDPs where special attention

has to be paid to the fact that the state is not fully observable. For this reason, but also be-

cause action reduction has a greater impact than state reduction on planning complexity in

POMDPs (Eqn 2.18), PolCA+ relies on a structural decomposition of the task/action space.

Approaches most related to PolCA include MAXQ (Dietterich, 2000), HAM (Parr &

Russell, 1998), ALisp (Andre & Russell, 2002), and options (Sutton et al., 1999). These

all favor an action-based decomposition over a state-based partition. As in PolCA, these

approaches assume that the domain knowledge necessary to define the subtask hierarchy is

provided by the designer. Subtasks are formally defined using a combination of elements,

including: initial states, expected goal states, fixed/partial policies, reduced action sets,

and local reward functions.
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In the options framework, subtasks consist of fixed-policy multi-action sequences.

These temporally abstract subtasks, when incorporated within the reinforcement-learning

framework, can accelerate learning while maintaining the guarantee of hierarchical op-

timality. The options framework has been extended to include automatic state abstrac-

tion (Jonsson & Barto, 2001) and thus improve its scalability. An important impediment in

applying it to real-world domains is its inability to handle partial observability.

Parr and Russell’s Hierarchy of Abstract Machines (HAM) defines each subtask using

a non-deterministic finite-state controller. HAM can be optimized using either (model-

based) dynamic programming or (model-free) reinforcement-learning to produce a hierar-

chically optimal solution. HAM does not explicitly leverage possibilities for state abstrac-

tion, which is a concern for scalability. The other limitation is the fact that HAM cannot

easily handle partial observability.

Dietterich’s MAXQ method probably shares the most similarities with PolCA. It as-

sumes an action hierarchy like PolCA’s, and defines each subtask using a combination of

termination predicate (e. g. end state—which PolCA does not require) and local reward

function (which PolCA requires). Both MAXQ and PolCA take advantage of state abstrac-

tion. MAXQ assumes a hand-crafted abstraction whereas PolCA automatically finds the

abstraction. We believe the automatic decomposition is preferable because 1) it prevents

user-introduced errors and 2) applied in a policy-contingent way (i. e. only once lower-

level subtasks have been solved) it yields more abstraction. The implication, however, is

that MAXQ can operate in a model-free RL setting. PolCA on the other hand requires a

full model to learn the abstraction and to optimize its policy. Both approaches achieve

a recursively optimal policy. The main advantage of PolCA (in addition to the automated

policy-contingent state abstraction) is its natural extension to partially observable domains.

Finally, in Andre and Russell’s ALisp, structural constraints take the form of partially

specified agent programs. The partial specification is formulated as choice points where

reduced action sets (with both primitive and abstract actions) are considered. It is most

promising in that it subsumes MAXQ, HAM and options. However, it has not been ex-

tended to the partial observability case.

Most of the structural approaches discussed here were formulated specifically for

MDPs. Nonetheless they share many similarities with PolCA+, in particular with regards

to structural assumptions. Recent years have seen the development of a few hierarchical

POMDP approaches (Hernandez-Gardiol & Mahadevan, 2001; Theocharous et al., 2001;

Wiering & Schmidhuber, 1997; Castañon, 1997). However these are quite different from

PolCA+ in terms of structural assumptions. They are discussed in Section 2.2.7.
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4.5. Contributions

This chapter describes a hierarchical decomposition approach for solving structured

MDP and POMDP problems. PolCA/PolCA+ share significant similarities with previous

hierarchical MDP algorithms. However, we improve on these approaches in a number of

ways that are essential for robotic problems.

Model minimization. First, PolCA requires less information from the human de-

signer: s/he must specify an action hierarchy, but not the abstraction function. The au-

tomatic state abstraction is performed using an existing algorithm (Dean & Givan, 1997),

which had not been previously used in the context of hierarchies. As part of this work,

the algorithm of Dean and Givan was also extended to the partially observable (POMDP)

case. The automated state clustering algorithm described in Section 4.2.1.3 tends to be

useful in MDPs only if it can be applied without requiring full enumeration of the state

space. This is necessary because otherwise the complexity of the clustering algorithm is

equivalent to that of the planning algorithm, and therefore impractical given those large

problems for which hierarchical planning is most needed. In general, it is often possible to

obtain an � -stable clustering solution without fully enumerating the state space. In the case

of POMDPs, the exponential complexity of computing a solution (Eqn 2.18) means that

using a clustering algorithm that is polynomial in the size of the domain is by no means

prohibitive compared to planning costs. Thus, it is always feasible to compute a lossless

clustering of states. Nonetheless, a coarser and approximate clustering may be preferable

since it further reduces the size of the problem, and therefore the planning time.

Observation abstraction. This chapter describes a novel approach to performing ob-

servation minimization. This is new to the POMDP literature. It is particularly useful for

real-world applications where a large number of distinct observations can effectively be

condensed in a few bits of useful discriminative information.

Policy-contingent abstraction. PolCA introduces the notion of policy-contingent ab-

straction. This hypothesizes that the abstract states at higher levels of the hierarchy should

be left unspecified until policies at lower levels of the hierarchy are fixed. By contrast,

the usual approach of specifying a policy-agnostic (i. e. correct for all possible policies)

abstraction function often cannot obtain as much model reduction. The benefit of policy-

contingent abstraction is faster planning time. The downside is the possible cost in per-

formance (discussed in Section 4.2.4) which comes from fixing some aspects of the global

policy before learning others.
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POMDP hierarchical planning. Finally, PolCA extends easily to partially observable

planning problems, which is of utmost importance for robotic problems. In MDPs, prob-

lem solving usually requires time quadratic in the size of the state space, which gives an

indication of the savings one might attain through an optimal decomposition. In POMDPs,

the complexity of calculating policies is much larger: typically exponential in the problem

size. Thus, the potential savings one may attain through the structural decomposing of a

POMDP problem are much larger.

4.6. Future Work

The algorithms described in this chapter make several key assumptions. The most

important is the reliance on a human designer to provide the structural decomposition be-

forehand. Research on the simpler MDP paradigm has shown promise for finding good

decompositions automatically (Pickett & Barto, 2002; Hengst, 2002; Ryan, 2002; McGov-

ern & Barto, 2001; Thrun & Schwartz, 1995). The question of automatically finding task

hierarchies for POMDPs remains open.

A second assumption concerns the fact that the hierarchical planning algorithm pre-

sented in this paper requires having non-trivial local reward functions in each subtask.

While this poses no problem for multi-goal domains where the reward function naturally

provides local reward information, it is a concern when dealing with single goal domains

where, for example, only the final goal completion is rewarded. The taxi task (Section 4.2.5)

is an example of such a problem. Such cases require the use of a pseudo-reward function.

This property is shared with a rich body of work on MDPs (though exceptions exist), and

can be thought of as another opportunity to bring to bear background knowledge a human

designer might have. Nonetheless it may be useful to automatically extract subtasks with

their local reward information. This is clearly related to the question of automatic sub-

task discovery. In the future, it is also possible that work on reward shaping (Ng, Harada,

& Russell, 1999) will offer some insight into automatically defining appropriate pseudo-

reward functions.

To conclude, PolCA+ combines action-decomposition with automated state and obser-

vation abstraction to offer a highly-structured approach to POMDP planning. In general,

the prevalence of abstraction is a direct result of imposing the hierarchy. We predict that a

better understanding of the interaction between action hierarchies and state/observation

abstraction may lead to better ways of exploiting structure in problem solving, as well as

inspire new methods for automatically discovering action hierarchies.
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CHAPTER 5

EXPERIMENTS IN ROBOT CONTROL

H
IGH-level robot control has been a popular topic in AI, and decades of

research have led to a reputable collection of robotic software architec-

tures (Arkin, 1998; Brooks, 1986). Yet, very few of these architectures are

robust to uncertainty. This chapter examines the role that POMDP plan-

ning can play in designing and fielding robust robot architectures.

The PolCA+ approach described in Chapter 4 offers a new perspective on robot archi-

tectures. Like most architectures, it provides guidelines for specifying and/or optimizing

local controllers, as well as the framework to bring them together. However, unlike its pre-

decessors, these activities are coordinated in such a way as to overcome uncertainty in both

sensors and effectors. This is not a trivial task, especially when the uncertainty can occur

across controller boundaries. PolCA+ is uniquely equipped to provide a scalable, robust,

and convenient solution to the problem of high-level robot control.

The primary application domain for this work is that of a nursing assistant robot. The

goal is to field an autonomous mobile robot that can serve as assistant and companion to an

elderly person with physical and cognitive disabilities. From a technical standpoint, one

of the key challenges with this project is to design a system that goes far beyond simple

path planning, to also include control pertaining to user interaction, activity scheduling,

and large-scale navigation. Section 5.1 describes how PolCA+ can be used to produce a

multi-level structured approach in which to cast this problem.

While PolCA+ provides the backbone for structural decision-making, it offers some

flexibility regarding how specific subtasks are solved. At the lower level of control, some

of the tasks that arise from the hierarchy are still relatively large. For example, one aspect

of the nursing home problem requires the robot to find a person wandering in the envi-

ronment. Over a large area, this can require a large state space. Such a subtask cannot
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be solved exactly, but offers ample opportunity to apply the PBVI algorithm of Chapter 3.

This topic is covered in Section 5.2.

Section 5.3 concludes the chapter with a discussion of related work in the area of robot

architectures.

While earlier chapters of this thesis focused on algorithmic development for POMDP

planning, this chapter provides an in-depth look at the impact that these techniques can

have in real-world applications. The experimental results presented here conclusively

demonstrate the effectiveness of PolCA+ and PBVI for optimizing complex robot con-

trollers.

5.1. Application Domain: Nursebot Project

The primary application domain is that of a mobile robotic assistant, designed to assist

elderly individuals experiencing mild cognitive and physical impairments with their daily

activities. In this case, a POMDP-based high-level robot controller was implemented on-

board a robot platform and used to select appropriate actions and reason about perceptual

uncertainty. The experiments described here were conducted as part of a larger project ded-

icated to the development of a prototype nursing assistant robot (Montemerlo, Pineau, Roy,

Thrun, & Verma, 2002; Pollack, Engberg, Matthews, Thrun, Brown, Colbry, Orosz, Peint-

ner, Ramakrishnan, Dunbar-Jacob, McCarthy, Montemerlo, Pineau, & Roy, 2002; Pineau,

Montermerlo, Pollack, Roy, & Thrun, 2003b). The overall goal of the project is to develop

personalized robotic technology that can play an active role in providing improved care

and services to non-institutionalized elderly people.

From the many services a nursing-assistant robot could provide (Engelberger, 1999;

Lacey & Dawson-Howe, 1998), the work reported here considers the task of reminding

people of events and guiding them through their living environment. Both of these tasks

are particularly relevant for the elderly community. Decreased memory capacity is a com-

mon effect of age-related cognitive decline, which often leads to forgetfulness about rou-

tine daily activities (e. g. taking medications, attending appointments, eating, drinking,

bathing, toileting) thus the need for a robot that can offer cognitive reminders. In addition,

nursing staff in assisted living facilities frequently need to escort elderly people walking,

either to get exercise, or to attend meals, appointments or social events. The fact that many

elderly people move at extremely slow speeds (e. g. 5 cm/sec) makes this one of the most

labor-intensive tasks in assisted living facilities. It is also important to note that the help

provided is often not strictly of a physical nature. Rather, nurses often provide important

cognitive help, guidance and motivation, in addition to valuable social interaction.
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Several factors make these tasks challenging ones for a robot to accomplish success-

fully. First, many elderly have difficulty understanding the robot’s synthesized speech;

some have difficulty articulating appropriate responses in a computer-understandable way.

In addition, physical abilities vary drastically across individuals, social behaviors are far

from uniform, and it is especially difficult to explicitly model people’s behaviors, expecta-

tions, and reactions to the robot.

The robot Pearl (shown in Fig. 5.1) is the primary test-bed for the POMDP-based be-

havior management system. It is a wheeled robot with an onboard speaker system and

microphone for speech input and output. It uses the Sphinx II speech recognition sys-

tem (Ravishankar, 1996) and the Festival speech synthesis system (Black, Talor, & Caley,

1999). It also has two onboard PCs connected to the Internet via wireless Ethernet.

Figure 5.1. Pearl, the robotic nursing assistant, interacting with elderly people at a
nursing facility

In this domain, the PolCA+ framework of Chapter 4 can be used to build and optimize

a high-level decision-making system that operates over a large set of robot activities, both

verbal and non-verbal. Key actions include sending the robot to pre-selected locations,

accompanying a person between locations, engaging the person in a conversation, and of-

fering both general information and specific cognitive reminders. This task also involves

the integration of multiple robot-based sensors into the POMDP belief state. Current sen-

sors include laser readings, speech recognition, and touch-screen input. These can exhibit

significant uncertainty, attributed in large part to poor speech recognition, but also to noisy

navigation sensors and erroneous human input.
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5.1.1. POMDP Modeling

To formally test the performance of the PolCA+ algorithm in this domain, consider

the following scenario. The robot Pearl is placed in an assisted living facility, where it

is required to interact with elderly residents. Its primary goal is to remind them of, and

take them to, scheduled physiotherapy appointments. Its secondary goal is to provide

them with interesting information. In the course of the scenario, Pearl has to navigate to

a resident’s room, establish contact, possibly accompany the person to the physiotherapy

center, and eventually return to a recharging station. The task also requires the robot to

answer simple information requests by the test subject, for example providing the time

or the weather forecast. Throughout this process, Pearl’s high-level behavior (including

both speech and motion commands) is completely governed by the POMDP interaction

manager.

For this scenario, the robot interface domain is modeled using 576 states, which are

described using a collection of multi-valued state features. Those states are not directly

observable by the robot interface manager; however, the robot is able to perceive a number

of distinct observations. The state and observation features are listed in Table 5.1.

Observations are perceived through different modalities; in many cases the listed ob-

servations constitute a summary of more complex sensor information. For example, in the

case of the laser range-finder, the raw laser data is processed and correlated to a map to

determine when the robot has reached a known landmark (e. g. Laser=robotAtHome). Simi-

larly, in the case of a user-emitted speech signal, a keyword filter is applied to the output of

the speech recognizer (e. g. “Give me the weather forecast for tomorrow.”
�

Speech=weather).

In general, the speech recognition and touchscreen input are used as redundant sensors

to each other, generating very much the same information. The Reminder observations are

received from a high-level intelligent scheduling module. This software component, devel-

oped by McCarthy and Pollack (2002), reasons temporally about the user’s activities, pref-

erences and behaviors, with the goal of issuing appropriately timed cognitive reminders to

warn the person of upcoming scheduled events (e. g. medication, doctor’s appointment,

social activities, etc.).

In response to the observations, the robot can select from 19 distinct actions, falling

into three broad categories:
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State Features Feature values
RobotLocation home, room, physio
PersonLocation room, physio
PersonPresent yes, no
ReminderGoal none, physio, vitamin, checklist
MotionGoal none, toPhysio
InfoGoal none, wantTime, wantWeather
Observation Features Feature values
Reminder g none, g physio, g vitamin, g checklist
Speech yes, no, time, weather, go, unknown
Touchscreen t yes, t no, t time, t weather, t go
Laser atRoom, atPhysio, atHome
InfraRed user, no user
Battery high, low
Table 5.1. Component description for human-robot interaction scenario

� COMMUNICATE= ( RemindPhysio, RemindVitamin, UpdateChecklist, CheckPerson-

Present, TerminateGuidance, TellTime, TellWeather, ConfirmGuideToPhysio, Veri-

fyInfoRequest, ConfirmWantTime, ConfirmWantWeather, ConfirmGoHome, Con-

firmDone -
� MOVE= ( GotoPatientRoom, GuideToPhysio, GoHome -
� OTHER= ( DoNothing, RingDoorBell, RechargeBattery -

Each discrete action enumerated above invokes a scripted sequence of low-level oper-

ations on the part of the robot (e. g. GiveWeather requires the robot to first look up the fore-

cast using its wireless Ethernet, and then emit SpeechSynthesis=“Tomorrow’s weather should be

sunny, with a high of 80.”). The actions in the Communicate category involve a combination of

redundant speech synthesis and touchscreen display, such that the selected information or

question is presented to the test subject through both modalities simultaneously. Given the

sensory limitations common in our target population, the use of redundant audio-visual

communication is important, both for input to, and output from, the robot. The actions in

the Move category are translated into a sequence of motor commands by a motion planner,

which uses dynamic programming to plan a path from the robot’s current position to its

destination (Roy & Thrun, 2002).

PolCA+ requires both an action hierarchy and model of the domain to proceed. The

hierarchy (shown in Fig. 5.2) was designed by hand. Though the model could be learned

from experimental data, the prohibitive cost of gathering sufficient data from our elderly

users makes this an impractical solution. Therefore, the POMDP model parameters were

selected by a designer. The reward function is chosen to reflect the relative costs of applying

actions in terms of robot resources (e. g. robot motions actions are typically costlier than
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Figure 5.2. Action hierarchy for Nursebot domain

spoken verification questions), as well as reflecting the appropriateness of the action with

respect to the state. For example:

� positive rewards are given for correctly satisfying a goal, e. g.

R( ��� �����	��

� ��� �	����
�� � ����� )= �����
if ���� "!#� 
 ! �$� !��&%$�'�(!*)�+�,-� 
 !&.0/�!	12!��430! � ��� 
 ! � �657+�,-� 
 !&.0) ��� ��! � 38! � �9� 
 ! � �:5;+�,-� 
 !*<

� large negative rewards are given for applying an action unnecessarily, e. g.

R( ��� ���;

�9� �4!	)�+�,-� 
 ! )= =�>��*�
if ���� "!#� 
 ! �$� !��&%$� � ! �$� <

� small negative rewards are given for verification questions, e. g.

R( ���@?�! �$A�
����B����
��9� �(!*)�+�,-� 
 ! )= =�C
given any state condition.

The problem domain described here is well within the reach of existing MDP algo-

rithms. However, the main challenge is the fact that the robot’s sensors are subject to sub-

stantial noise, and therefore the state is not fully observable. Noise in the robot’s sensors

arise mainly from its speech recognition software. For example, a robot may easily mistake

phrases like “get me the time” and “get me my medicine”, but whereas one involves motion,

the other does not. Thus, considering state uncertainty is of great importance in this do-

main. In particular, it is important to trade-off the cost of asking a clarification question,

versus that of accidentally executing the wrong command. Uncertainty also arises as a re-

sult of human behavior, for example when a user selects the wrong option on the touch
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pad, or changes his/her mind. Finally, and to a much lesser degree, noise arises from in

the robot’s location sensors. In any of these eventualities, MDP techniques are inadequate

to robustly control the robot. The PolCA+ algorithm on the other hand can significantly

improve the tractability of POMDP planning, to the point where we can rely on POMDP-

based control for this real-world domain.

5.1.2. Experimental Results

Because of the difficulties involved with conducting human subject experiments, only

the final PolCA+ policy was deployed onboard the robot. Nonetheless, its performance can

be compared in simulation with that of other planners. We first compare state abstraction

possibilities between PolCA (which falsely assumes full observability) and PolCA+ (which

considers similarity in observation probabilities before clustering states). This is a direct

indicator of model reduction potential, and equivalently, planning time. Figure 5.3 shows

significant model compression for both PolCA and PolCA+ compared to the no-abstraction

case (NoAbs). Differences between PolCA and PolCA+ arise when certain state features,

though independent with respect to transitions and rewards, become correlated during

belief tracking through the observation probabilities.
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Figure 5.3. Number of parameters for Nursebot domain

Second, we compare the reward gathered over time by each policy. As shown in Fig-

ure 5.4, PolCA+ clearly outperforms PolCA in this respect. A closer look at the performance

of PolCA reveals that it often answers a wrong query because it is unable to appropriately

select among clarification actions. In other instances, the robot prematurely terminates an

interaction before the goal is met, because the controller is unable to ask the user whether
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Figure 5.4. Cumulative reward over time in Nursebot domain

s/he is done. In contrast, PolCA+ resorts to confirmation actions to avoid wrong actions,

and satisfy more goals. Also included in this comparison is QMDP (see Section 2.2.4). On

this task, it performs particularly poorly, repeatedly selecting to doNothing because of its

inability to selectively gather information on the task at hand.

In terms of computation time, PolCA+ reached its solution in 18 minutes. In compar-

ison, Incremental Pruning (an exact POMDP solver), could only complete 2 iterations of

value iteration in 24hrs, and thus would probably take many years to reach a reasonable

solution. The many-fold improvement found in PolCA+ is for the most part due to its

structural assumptions (hierarchy+abstraction); some of the improvement is also achieved

by using an AMDP solver at the highest level of the hierarchy (lower subtasks are solved

exactly). The PolCA solution was computed in only 4 seconds, whereas the (unstructured)

QMDP solution took 39 seconds.

The PolCA+ policy was the only one implemented onboard the robot. It was tested

during two days of experiments with elderly residents at a local nursing home. Through

the course of twelve interaction scenarios, Pearl was able to successfully deliver sched-

uled reminders, guide residents to physiotherapy appointments, and satisfy information

requests. The robustness of the PolCA+ policy to uncertainty was demonstrated by its use

of clarification questions whenever a user’s intentions were unclear.

Overall, the policy generated using PolCA+ successfully controlled the robot with-

out any human intervention, in all guidance experiments. As a result, all six test subjects

were able to complete the full experimental scenario after receiving only limited training

(a five-minute introduction session). All subjects were uniformly positive about the expe-

rience. Table 5.2 shows a typical interaction between the robot and user, in terms of the
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Table 5.2. A sample dialogue with a test subject

Observation Action Reward
(null) DoNothing -1
Reminder=g physio gotoPatientRoom 5
Laser=atRoom RingBell 5
Speech=yes RemindPhysio 50
Speech=unknown ConfirmGuideToPhysio -5
Speech=yes CheckBattery -5
Battery=high GuideToPhysio 50
Laser=atPhysio CheckUserPresent -1
IR=no user CheckUserPresent -1
IR=user CheckUserPresent -5
IR=user TerminateGuidance 50
Speech=unknown ConfirmDone -1
Speech=no VerifyInfoRequest -1
Speech=weather ConfirmWantWeather -1
Speech=unknown VerifyInfoRequest -1
Speech=weather ConfirmWantWeather -1
Speech=yes TellWeather 50
Speech=unknown ConfirmDone -1
Speech=yes GoHome 5
Laser=atHome RechargeBattery 20

observations received by the controller and the actions selected in response, as well as the

corresponding reward signals. Actions in bold font are clarification actions, generated by

the POMDP because of high uncertainty.

Step-by-step images corresponding to the interaction between Pearl and one of the

test subjects are shown in Figure 5.5. The sequence of images illustrates the major stages of

a successful delivery: Pearl picks up the patient outside her room, reminds her of a phys-

iotherapy appointment, walks the person to the department, and responds to a request

regarding the weather forecast. Throughout this interaction, communication took place

through speech and the touch-sensitive display.

5.1.3. Discussion

Throughout the experiment, speech recognition performance was particularly poor

due to the significant amount of ambient noise, however the redundancy offered by the

touch-screen allowed users to communicate with the dialogue manager without difficulty.

In addition, during early experiments, the robot lacked the ability to adapt its speed to that

of the person. While guiding someone with reduced mobility to the physiotherapy center,

it would simply run away because it could not monitor the person’s progress. This was

corrected by the addition of a second laser in the back of the robot, allowing it to adapt its

speed appropriately.

113



5.1 APPLICATION DOMAIN: NURSEBOT PROJECT

(a) Pearl approaching elderly (b) Reminding of appointment

(c) Guidance through corridor (d) Entering physiotherapy dept.

(e) Asking for weather forecast (f) Pearl leaves

Figure 5.5. Example of a successful guidance experiment
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This experiment constitutes encouraging evidence that, with appropriate approxima-

tions, POMDP control can be feasible and useful in real-world robotic applications.

5.2. Application domain: Finding Patients

The Nursebot domain described above covers a large spectrum of robot abilities. To

complete the full scenario, the robot must combine knowledge from a number of different

sensors, and prioritize goals between the various modules. In order to keep the problem

manageable, the focus is placed on high-level control. This means that many state variables

and control actions operate at very high-level resolution. For example, locations are iden-

tified through a number of landmarks (e. g. patient’s room, physiotherapy office, robot’s home

base), and motion commands operate at an equally high resolution (e. g. GoToPatientRoom,

GuideToPhysio, GoHome). While these assumptions can be sufficient for some relatively

structured interactions, in general it should be expected that the user can and will wander

around the facility.

This section takes a closer look at the question of how the robot can find a non-

stationary patient. This subtask of the Nursebot domain shares many similarities with

the Tag problem presented in Section 3.5.2. In this case, however, a robot-generated map of

a real physical environment is used as the basis for the spatial configuration of the domain.

This map is shown in Figure 5.6. The white areas correspond to free space, the black lines

indicate walls (or other obstacles) and the dark gray areas are not visible or accessible to

the robot. One can easily imagine the patient’s room and physiotherapy unit lying at either

end of the corridor, with a common area shown in the upper-middle section.

Figure 5.6. Map of the environment

The overall goal is for the robot to traverse the domain in order to find the missing

patient and then deliver a message. The robot must systematically explore the environ-

ment, reasoning about both spatial coverage and human motion patterns in order to find

the wandering person.

115



5.2 APPLICATION DOMAIN: FINDING PATIENTS

5.2.1. POMDP Modeling

The problem domain is represented jointly by two state features: RobotPosition, Per-

sonPosition. Each feature is expressed through a discretization of the environment. Most of

the experiments below assume a discretization of 2 meters, which means 26 discrete cells

for each feature, or a total of 676 states.

It is assumed that the person and robot can move freely throughout this space. The

robot’s motion is deterministically controlled by the choice of action (North, South, East,

West). The robot has a fifth action (DeliverMessage), which concludes the scenario when

used appropriately (i. e. when the robot and person are in the same location).

The person’s motion is stochastic and falls in one of two modes. Part of the time,

the person moves according to Brownian motion (e. g. moves in each cardinal direction

with
� � 3 �

�

�
, otherwise stays put). At other times, the person moves directly away from

the robot. The Tag domain of Section 3.5.2 assumes that the person always moves always

moves away the robot. This is not realistic when the person cannot see the robot. The

current experiment instead assumes that the person moves according to Brownian motion

when the robot is far away, and moves away from the robot when it is closer (e. g. * 4m).

In terms of state observability, there are two components: what the robot can sense

about its own position, and what it can sense about the person’s position. In the first case,

the assumption is that the robot knows its own position at all times. While this may seem

like a generous (or optimistic) assumption, substantial experience with domains of this

size and maps of this quality have demonstrated very robust localization abilities (Thrun

et al., 2000). This is especially true when planning operates at relatively high resolution (2

meters) compared to the localization precision (10 cm). While exact position information is

assumed for planning in this domain, the execution phase does update the belief using full

localization information, which includes positional uncertainty whenever appropriate.

Regarding the detection of the person, the assumption is that the robot has no knowl-

edge of the person’s position unless s/he is within a range of 2 meters. This is plausi-

ble given the robot’s sensors. However, even in short-range, there is a small probability

(
� � 3 �

�

� �
) that the robot will miss the person and therefore return a false negative.

In general, one could make sensible assumptions about the person’s likely position

(e. g. based on a knowledge of their daily activities), however we currently have no such

information and therefore assume a uniform distribution over all initial positions. The

person’s subsequent movements are expressed through the motion model described above.
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The reward function is straightforward: � 3 � �
for any motion action, � 3 ���

when

the robot decides to DeliverMessage and it is in the same cell as the person, and � 3 � ��� �

when the robot decides to DeliverMessage in the person’s absence. The task terminates

when the robot successfully delivers the message (i. e. � 3 � � ��� � � � � � 	�	�� ? � and 	 � � � � � 3
	 � � � 
 �	� ). We assume a discount factor of

�
� � � .

5.2.2. Experimental Results

The subtask described here, with its 626 states, is beyond the capabilities of exact

POMDP solvers. Furthermore, as will be demonstrated below, MDP-type approximations

are not equipped to handle uncertainty of the type exhibited in this task. The main purpose

of this section is therefore to evaluate the effectiveness of the PBVI approach described in

Chapter 3 to address this problem. While the results on the Tag domain (Section 3.5.2) hint

at the fact that PBVI may be able to handle this task, the more realistic map and modified

motion model provide new challenges.

PBVI is applied to the problem as stated above, alternating value updates and belief

point expansions until (in simulation) the policy is able to find the person on � � ��� of trials

(trials were terminated when the person is found or it exceeds 100 steps). The planning

phase required 40000 seconds (approx. 11 hours) on a 1.2 GHz Pentium II.

The resulting policy is illustrated in Figure 5.7. This figure shows six snapshots ob-

tained from a single run. In this particular scenario, the person starts at the far end of the

left corridor. The person’s location is not shown in any of the figures since it is not observ-

able by the robot. The figure instead shows the belief over person positions, represented

by a distribution of point samples (grey dots in Fig. 5.7). Each point represents a plausi-

ble hypothesis about the person’s position. The figure also shows the robot starting at the

far right end of the corridor (Fig. 5.7a). The robot moves toward the left until the room’s

entrance (Fig. 5.7b). It then proceeds to check the entire room (Fig. 5.7c). Once certain

that the person is nowhere to be found, it exits the room (Fig. 5.7d), and moves down the

left branch of the corridor, where it finally finds the person at the very end of the corridor

(Fig. 5.7e).

This policy is optimized for any start positions (for both the person and the robot).

The scenario shown in Figure 5.7 is one of the longer execution traces since the robot ends

up searching the entire environment before finding the person. It is interesting to compare

the choice of action between snapshots (b) and (d). The robot position in both is practically

identical. Yet in (b) the robot chooses to go up into the room, whereas in (d) the robot

chooses to move toward the left. This is a direct result of planning over beliefs, rather than
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over states. The belief distribution over person positions is clearly different between those

two cases, and therefore the policy specifies a very different course of action.

The sequence illustrated in Figure 5.7 is the result of planning with over 3000 belief

points. It is interesting to consider what happens with fewer belief points. Figure 5.8

shows such a case. The scenario is the same, namely the person starts at the far left end

of the corridor and the robot start at the far right end (Fig. 5.8a). The robot then navigates

its way to the doorway (Fig. 5.8b). It enters the room and looks for the person in a portion

of the room (Fig. 5.8c). Unfortunately an incomplete plan forces it into a corner (Fig. 5.8d)

where it stays until the scenario is forcibly terminated. Using this policy (and assuming

uniform random start positions for both robot and person), the person is only found in
� � � of trials, compared to � ��� using the policy shown in Figure 5.7. Planning in this case

was done with 443 belief points, and required approximately 5000 seconds.

Figure 5.9 looks at the policy obtained when solving this same problem using the

QMDP heuristic. Once again, six snapshots are offered from different stages of a specific

scenario, assuming the person started on the far left side and the robot on the far right side

(Fig. 5.9a). After proceeding to the room entrance (Fig. 5.9b), the robot continues down the

corridor until it almost reaches the end (Fig. 5.9c). It then turns around and comes back

toward the room entrance, where it stations itself (Fig. 5.9d) until the scenario is forcibly

terminated. As a result, the robot cannot find the person when s/he is at the left edge of the

corridor. What’s more, because of the running-away behavior adopted by the subject, even

when the person starts elsewhere in the corridor, as the robot approaches the person will

gradually retreat to the left and similarly escape from the robot. Planning with the QMDP

heuristic required 200 seconds.

Even though QMDP does not explicitly plan over beliefs, it can generate different pol-

icy actions for cases where the state is identical but the belief is different. This is seen when

comparing Figure 5.9 (b) and (d). In both of these, the robot is identically located, however

the belief over person positions is different. In (b), most of the probability mass is to the left

of the robot, therefore it travels in that direction. In (d), the probability mass is distributed

evenly between the three branches (left corridor, room, right corridor). The robot is equally

pulled in all directions and therefore stops there. This scenario illustrates some a strength

of QMDP. Namely, there are many cases where it is not necessary to explicitly reduce un-

certainty. However, it also shows that more sophisticated approaches are needed to handle

some cases.
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(a) t=1

(b) t=7

(c) t=12

(d) t=17

(e) t=29

Figure 5.7. Example of a PBVI policy successfully finding the patient

119



5.2 APPLICATION DOMAIN: FINDING PATIENTS

(a) t=1

(b) t=7

(c) t=10

(d) t=12

Figure 5.8. Example of a PBVI policy failing to find the patient
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(a) t=1

(b) t=7

(c) t=17

(d) t=27

Figure 5.9. Example of a QMDP policy failing to find the patient
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5.2.3. Discussion

These experiments conclusively demonstrate that PBVI is the appropriate tool for

solving large subtasks. A few issues are still outstanding.

As mentioned in Chapter 3, whenever PBVI is used to solve a subtask ; within PolCA+,

it is crucial that PBVI use belief points generated using the full set of actions ( � ), rather than

the reduced subtask specific action set ( � = ). Using the reduced set � = could produce a

useful solution in many instances. But it is likely that there exists some belief that is not

reachable using � = , from which the parent subtask could decide to call ; . In such an in-

stance, the local policy  = would perform very poorly.

The fact that the belief point expansion phase has to occur over the entire belief space

does not in any way reduce the savings gained from PolCA+’s hierarchy and abstraction

during the planning phase. Since planning is by far the slower of the two, this question of

global versus local belief expansion is a very minor issue with respect to computation time.

One obvious advantage of generating beliefs globally is that the belief points can then be

re-used for all subtasks.

5.3. Related work

PolCA+ is a new paradigm for robot control architectures. There is a rich literature

in this area, and some of the most successful robot systems rely on structural assumptions

very similar to PolCA+’s to tackle large-scale control problems (Arkin, 1998; Russell &

Norvig, 2002).

The Subsumption architecture (Brooks, 1986) builds scalable control systems by com-

bining simple reactive controllers. Complex tasks can be partitioned among a hierar-

chy of such controllers. A controller is usually expressed through a finite state machine,

where nodes contain tests used to condition action choice on sensor variables. Appropri-

ate controller-specific state abstraction can be leveraged to improve scalability. The Sub-

sumption architecture, and other similar approaches, rely on human designers to specify

all structural constraints (hierarchy, abstraction), and in some cases even the policies con-

tained in each finite state machine. This can require significant time and resources, and

often lead to sub-optimal solutions. Another limitation results from the fact that the test

nodes in the reactive controllers are usually conditioned on raw sensor input.

A related approach is the popular three-layer architecture (Firby, 1989; Gat, 1998). As

the name implies, it assumes a three-level hierarchy. At the bottom is the reactive layer,

which provides fast low-level control that is tightly coupled to recent sensor observations.

At the top is the deliberative layer where search routines handle global plans. In between
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those two is the executive layer, which tracks the internal state (based on sensor informa-

tion) and uses it to translate the goals from the top-level into low-level reactive behav-

iors. This general approach provides the basic architecture for a large number of robot

systems (Connell, 1991; Gat, 1992; Elsaessar & Slack, 1994; Firby, 1996; Bonasso, Firby, Gat,

Kortemkamp, Miller, & Slack, 1997).

GOLOG (Levesque, Reiter, Lesperance, Lin, & Scherl, 1997) is not strictly a robot ar-

chitecture, but rather a robotic programming language, which has been used for high-level

control of indoor robots. In GOLOG the task is expressed through a control program that

integrates reactivity and deliberation within a single framework. A designer must provide

a model of the robot and its environment. S/he also has the option of including partial

policies. A planning routine optimizes other action choices.

All the approaches discussed here assume full observability. This means that they are

best suited to domains where sensor data is sufficiently reliable and complete for good

decision-making. For domains where this is not the case, PolCA+’s ability to handle un-

certainty, perform automated state abstraction, and optimize policies, are significant im-

provements over earlier robot architectures.

5.4. Contributions

Using the structural framework of PolCA+, it is possible to build a flexible multi-

level robot control architecture that handles uncertainty obtained through both navigation

sensors (e. g. laser range-finder) and interaction sensors (e. g. speech recognition and

touchscreen). In combination with PBVI, it can solve even large subtasks. We believe

PolCA+’s ability to perform automated state abstraction and policy learning, as well as

handle uncertainty, are significant improvements over earlier robot architectures.

To the best of our knowledge, the work presented in this chapter constitutes the first

instance of a POMDP-based architecture for robot control. It was a key element for the

successful performance of the Nursebot in a series of experiments with elderly users.

5.5. Future work

The experiments described in this chapter are the early steps of the Nursebot project.

A substantial program of research and prototyping is necessary on the path toward having

fully autonomous robotic assistants living alongside elderly people.
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CHAPTER 6

CONCLUSION

T
HE problem of planning under uncertainty is relevant to a large number of

fields, from manufacturing to robotics to medical diagnosis. In the area of

robotics, it is generally understood to mean the ability to produce action poli-

cies that are robust to sensory noise, imprecise actuators and so on. This is

imperative for robot systems deployed in real-world environments. For example, a robot

designed as an assistant or companion for a human user clearly needs an action strategy

that allows it to overcome unpredictable human behavior and mis-communications, while

accomplishing its goal.

The Partially Observable Markov Decision Process offers a rich framework for per-

forming planning under uncertainty. It can be used to optimize sequences of actions with

respect to a reward function, while taking into account both effect and state uncertainty.

POMDPs can be used to model a large array of robot control problems. However, finding

a solution in reasonable time is often impossible, even for very small problems. One of the

key obstacles to increased scalability of POMDPs is the curse of history, namely the fact

that the number of information states grows exponentially with the planning horizon.

It is the focus of this thesis to develop computationally tractable solutions for large

POMDP problems, and to demonstrate their effectiveness in robotic applications. In sup-

port of this goal, this document describes two algorithms that exploit structural properties

to overcome the curse of history, and produce scalable approximate solutions for POMDP

problems.

6.1. PBVI: Point-based value iteration

The first of the two algorithms is named PBVI. It combines an explorative sampling

of the set of information states with fast point-based dynamic programming updates. Its

explorative belief-point selection ensures good coverage of the belief simplex, and therefore
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good performance under a wide range of uncertainty conditions with relatively few points.

The dynamic programming updates can be computed efficiently since they are expressed

over a fixed (small) number of points.

PBVI builds on a number of earlier approximation algorithms, which use similar

point-based dynamic programming updates. The main contribution here is in how such

point-based updates can be combined with an exploratory belief sampling heuristic. The

result is an anytime algorithm that produces solutions that have bounded error with re-

spect to the optimal.

Part of the appeal of PBVI is in the relative simplicity of the algorithm. It can be im-

plemented quickly, given a basic understanding of POMDPs. And other than the domain

model, the algorithm itself requires very few parameters to run.

It is an effective algorithm for solving POMDP problems on the order of
�����

states.

It can address a wide range of problems, with varying levels of uncertainty, from the lo-

calization uncertainty exhibited by the maze domains (Section 3.5.1), to the global search

required to find a missing person (Section 5.2).

It is less effective for problems requiring very large (multi-feature) state spaces, since

dynamic programming updates operate over the full-dimensional belief simplex. It does

not yet take advantage of dimensionality reduction or function-approximation techniques,

though these suggest a promising direction for future extensions.

PBVI’s current heuristic for selecting belief points is somewhat primitive: simulate

single-step forward belief propagation using all actions and keep the new belief that is

farthest from the current set of beliefs. It is remarkably effective compared to other equally

naive heuristics (e. g. simulate single-step forward belief propagation using a random

action). But, it is likely that more sophisticated and better performing techniques can be

devised. The objective, when selecting a new belief sampling heuristic, will be to find one

that reduces the number of belief points while preserving (or improving) solution quality.

6.2. PolCA+: Policy-contingent abstraction

The second algorithm, PolCA+, addresses complex problems by partitioning them

into smaller ones that can be solved quickly. The decomposition constraints are expressed

through an action-based subtask hierarchy. Each subtask is defined over a reduced set of

actions, states, and observations. Subtasks are solved individually, and their solutions are

re-combined (according to the hierarchy) to produce a global solution.
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PolCA+ builds on earlier hierarchical MDP approaches, which adopt a similar action-

based hierarchy. The main innovation of PolCA+ is two-fold. First, it introduces the con-

cept of policy-contingent abstraction. In short, this means that whenever a lower-level

subtask is solved before its parent, the parent subtask will be afforded greater state ab-

straction. Greater state abstraction generally means faster planning time. Second, PolCA+

insures that the elements required for partial observability are in place (single-step pa-

rameterization of abstract actions, observation abstraction, polling execution). The impact

of this approach is clear, namely increased robustness for partially observable domains,

which covers a large number of robotic tasks.

The driving force behind PolCA+ is the well-known principle of divide-and-conquer.

As such, PolCA+ is best suited for domains that exhibit natural structure. It gains com-

putational advantage through both the action hierarchy (which yields subtasks with small

action sets) and through subtask-specific state/observation abstraction. PolCA+ is most

effective when there are tight local couplings between actions and states. This means prob-

lems where certain actions affect certain states, and these nodes of inter-dependent states

and actions are relatively small.

Fortunately, many real-world domains possess such structure. A prime example is

that of the nursing assistant robot, which is discussed at length in this thesis. In that case,

the structure comes from the different modules featured in the robot (e. g. communication

interface, navigation, scheduling), each of which focuses on a small number of relevant

actions and state features. Applying PolCA+ to this domain produces a high-level robot

controller that can satisfy a number of tasks, while handling uncertainty pertaining to the

environment, the human user, and the robot itself. This domain is by no means unique.

Many other robots are faced with multi-task domains that could be addressed through

structural decomposition.

PolCA+ has much in common with some of the existing structured robot control archi-

tectures, for example the Subsumption architecture. The structural assumptions are similar,

and the overall goal is the same, namely to produce scalable robot controllers. However

PolCA+ brings additional insight, namely the realization that it is imperative to consider

uncertainty at all levels of control. It is not sufficient to rely on low-level reactive con-

trollers to handle unexpected events. Because it considers uncertainty at the highest-level

of control, PolCA+ provides a framework where one can effectively reason about global

uncertainty, as well as prioritize and switch between subtasks. In addition, PolCA+ is able

to automatically find state abstraction and optimize subtask policies, while other architec-

tures rely on designers to provide these.
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6.3 SUMMARY

6.3. Summary

Most POMDPs of the size necessary for good robot control are far too large to be

solved exactly. However, many problems naturally exhibit strong structural properties.

By designing algorithms that exploit such structure, it is possible to produce high quality

approximate solutions in reasonable time.

This thesis considers the leveraging of structural constraints in POMDPs from many

angles, from sparse belief space sampling, to explicit action hierarchy, to automatic state

minimization and observation abstraction. These provide powerful approximation possi-

bilities for POMDP solving. Taken together, these techniques are key to the design and

development of planning and control systems that are scalable, modular, and robust to

uncertainty.
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Ästrom, K. J. (1965). Optimal control of markov decision processes with incomplete state

estimation. Journal of Mathematical Analysis and Applications, 10, 174–205.

Bagnell, J. A., & Schneider, J. (2001). Autonomous helicopter control using reinforcement

learning policy search methods. In Proceedings of the 2001 IEEE International Conference

on Robotics & Automation (ICRA), pp. 1615–1620.

Baird, L. C., & Moore, A. W. (1999). Gradient descent for general reinforcement learning.

In Advances in Neural Information Processing Systems (NIPS), Vol. 11, pp. 968–974.

Barrett, A., & Weld, D. S. (1994). Task-decomposition via plan parsing. In Proceedings of the

Twelfth National conference on Artificial Intelligence (AAAI), pp. 1117–1122.

Baxter, J., & Bartlett, P. L. (2000). GPOMDP: An on-line algorithm for estimating perfor-

mance gradients in POMDP’s, with applications. In Machine Learning: Proceedings of

the 2000 International Conference (ICML), pp. 41–48.

Bayer Zubek, V., & Dietterich, T. (2000). A POMDP approximation algorithm that antici-

pates the need to observe. In Springer-Verlag (Ed.), Proceedings of the Pacific Rim Con-

ference on Artificial Intelligence (PRICAI); Lecture Notes in Computer Science, pp. 521–532,

New York.



Bibliography

Bell, C., & Tate, A. (1985). Using temporal constraints to restrict search in a planner. In

Proceedings of the Third Alvey IKBS SIG Workshop.

Bellman, R. (1957). Dynamic Programming. Princeton University Press.

Bertoli, P., Cimatti, A., & Roveri, M. (2001). Heuristic search + symbolic model checking =

efficient conformant planning. In Proceedings of the 17th International Joint Conference

on Artificial Intelligence (IJCAI), pp. 467–472.

Bertsekas, D. P., & Tsitsiklis, J. (1996). Neuro-Dynamic Programming. Athena Scientific.

Black, A., Talor, P., & Caley, R. (1999). The Festival speech synthesis system. 1.4 edition.

Blum, A. L., & Furst, M. L. (1997). Fast planning through planning graph analysis. Artificial

Intelligence, pp. 281–300.

Blythe, J. (1998). Planning under Uncertainty in Dynamic Domains. Ph.D. thesis, Carnegie

Mellon University, Department of Computer Science.

Bonasso, R. P., Firby, R. J., Gat, E., Kortemkamp, D., Miller, D. P., & Slack, M. G. (1997).

Experiences with an architecture for intelligent reactive agents. Journal of Experimental

and Theoretical AI, 9(2), 237–256.

Bonet, B. (2002). An epsilon-optimal grid-based algorithm for partially obserable Markov

decision processes. In Machine Learning: Proceedings of the 2002 International Conference

(ICML), pp. 51–58.

Bonet, B., & Geffner, H. (2001). Planning as heuristic search. Artificial Intelligence, 129, 5–33.

Boutilier, C. (2002). A POMDP formulation of preference elicitation problems. In Proceed-

ings of the Eighteenth National Conference on Artificial Intelligence (AAAI), pp. 239–246.

Boutilier, C., Brafman, R. I., & Geib, C. (1997). Prioritized goal decomposition of Markov

decision processes: Toward a synthesis of classical and decision theoretic planning.

In Proceedings of the 15th International Joint Conference on Artificial Intelligence (IJCAI),

pp. 1156–1162.

Boutilier, C., Dean, T., & Hanks, S. (1999). Decision-theoretic planning: Structural assump-

tions and computational leverage. Journal of Artificial Intelligence Research, 11, 1–94.

Boutilier, C., & Poole, D. (1996). Computing optimal policies for partially observable deci-

sion processes using compact representations. In Proceedings of the Thirteenth National

Conference on Artificial Intelligence (AAAI), pp. 1168–1175.

Boyen, X., & Koller, D. (1998). Tractable inference for complex stochastic processes. In

Proceedings of the Fourteenth Conference on Uncertainty in Artificial Intelligence (UAI),

pp. 33–42.

Brafman, R. I. (1997). A heuristic variable grid solution method for POMDPs. In Proceedings

of the Fourteenth National Conference on Artificial Intelligence (AAAI), pp. 727–733.

129



Bibliography

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE Journal of

Robotics and Automation, 2(1), 14–23.

Burgard, W., Cremers, A. B., Fox, D., Hahnel, D., Lakemeyer, G., Schulz, D., Steiner, W., &

Thrun, S. (1999). Experiences with an interactive museum tour-guide robot. Artificial

Intelligence, 114, 3–55.

Burgener, R. (2002). Twenty questions: The neural-net on the internet.

http://www.20q.net/index.html.

Cassandra, A. (1999). Tony’s POMDP page. http://www.cs.brown.edu/ re-

search/ai/pomdp/code/index.html.

Cassandra, A., Littman, M. L., & Zhang, N. L. (1997). Incremental pruning: A simple, fast,

exact method for partially observable Markov decision processes. In Proceedings of

the Thirteenth Conference on Uncertainty in Artificial Intelligence (UAI), pp. 54–61.
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