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Abstract

This paper describes a mobile robotic assistant, developed to assist elderly individuals with mild cognitive and physical
impairments, as well as support nurses in their daily activities. We present three software modules relevant to ensure successful
human–robot interaction: an automated reminder system; a people tracking and detection system; and finally a high-level
robot controller that performs planning under uncertainty by incorporating knowledge from low-level modules, and selecting
appropriate courses of actions. During the course of experiments conducted in an assisted living facility, the robot successfully
demonstrated that it could autonomously provide reminders and guidance for elderly residents.
© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The US population is aging at an alarming rate. At
present, 12.5% of the US population is of age 65 or
older [30]. It is widely recognized that this ratio will
increase as the baby-boomer generation moves into
retirement age. Meanwhile, the nation faces a signif-
icant shortage of nursing professionals. The Federa-
tion of Nurses and Health Care Professionals has pro-
jected a need for 450,000 additional nurses by the year
2008.

This acute need provides significant opportunities
for robotics and AI researchers to develop assistive
technology that can improve the quality of life of our
aging population, and help nurses become more effec-
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tive in their activities. TheNursebot projectwas con-
ceived in response to this challenge. It is formed by a
multi-disciplinary team of investigators from the fields
of health care, HCI/psychology, and AI/robotics. The
overall goal of the project is to develop mobile robotic
assistants that can assist nurses and elderly people in
their daily activities.

To this aim, the team has developed a prototype
autonomous mobile robot, shown inFig. 1 [22].
This robot primarily interacts with the world through
speech, visual displays, facial expressions and phys-
ical motion. It differs from earlier workplace robots
in that it goes beyond simply interacting with an
(often static) environment, to interacting with human
users and bystanders. Thus we leverage earlier tech-
nology for navigation, localization and mapping, and
specifically focus on developing new algorithmic ap-
proaches to track people, predict their behavior, and
react appropriately.
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Fig. 1. Nursebot Pearl.

From the many services a nursing-assistant robot
could provide[12,19], the work reported here consid-
ers the task of reminding people of events and guiding
them through their environments. Both of these tasks
are particularly relevant for the elderly community.
Decreased memory is a common effect of age-related
cognitive decline, which often leads to forgetfulness
about routine daily activities (e.g. taking medications,
attending appointments, eating, drinking, bathing, toi-
leting) thus the need for a robot that can offer cognitive
reminders. In addition, nursing staff in assisted liv-
ing facilities frequently need to escort elderly people
walking, either to get exercise, or to attend meals, ap-
pointments or social events. The fact that many elderly
people move at extremely slow speeds (e.g. 5 cm/s)
makes this one of the most labor-intensive tasks in as-
sisted living facilities. It is also important to note that
the help provided is often not strictly of a physical na-
ture. Rather, nurses often provide important cognitive
help, guidance and motivation, in addition to valuable
social interaction.

Several factors make this task a challenging one
for a robot to accomplish successfully. First, many
elderly have difficulty understanding the robot’s syn-
thesized speech, as well as articulating an appropri-
ate response in a computer-understandable way. In
addition, walking abilities vary drastically between
individuals. People with walking aids are usually an
order of magnitude slower than people without, and
people often stop to chat or catch their breath along

the way. It is therefore imperative that the robot adapt
to individuals—an aspect of interaction that has been
poorly explored in AI and robotics.

The work presented in this paper seeks to address
these challenges, focusing on three software compo-
nents most pertinent to human–robot interaction: an
automated reminder system that incorporates knowl-
edge of a person’s typical schedule with observations
of recent activities, and issues pertinent reminders
about upcoming events; a module that uses efficient
particle filter techniques to detect and track people;
and finally a high-level robot controller that uses
probabilistic reasoning techniques to arbitrate be-
tween information-gathering and performance-related
actions, while also incorporating information ob-
tained through both navigation sensors (e.g. laser
range finder) and interaction sensors (e.g. speech
recognition and touch-screen).

In systematic experiments conducted at a nursing
home, we found the combination of techniques to be
highly effective in dealing with elderly test subjects.
In particular, during a sequence of one-on-one interac-
tions between Pearl and residents of the nursing home,
the robot demonstrated the ability to contact a resident,
remind them of an appointment, accompany them to
that appointment, as well as provide information of
interest to that person, for example weather reports or
television schedules.

2. Hardware and software description

Fig. 1 shows an image of the nursing robot Pearl.
It is equipped with a differential drive system, two
on-board PCs, wireless Ethernet, laser range finders,
sonar sensors, microphones for speech recognition,
speakers for speech synthesis, touch-sensitive graph-
ical displays, actuated head units, and stereo camera
systems. As a result of input from nurses and medical
experts, Pearl also features two sturdy handle-bars, a
compact design that allows for cargo space, a remov-
able tray, and a sophisticated head unit.

On the software side, the robot features off-the-shelf
autonomous mobile robot navigation system[5,28],
speech recognition software[24], speech synthesis
software [4], fast image capture and compression
software for online video streaming, face detection
tracking software[25], as well as the three major new
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software modules described in this paper. These mod-
ules are principally concerned with people interaction
and control. They overcome important deficiencies
of the work described by[5,28], which had only
rudimentary abilities to interact with people.

3. Plan management with Autominder

The Autominder software component contains the
intelligent cognitive orthoticsystem. It is designed
to provide elderly people with reminders about their
daily activities[23]. The idea of using computer tech-
nology to enhance the performance of cognitively dis-
abled people dates back nearly 40 years[13]. More
recently, cognitive orthotics have enabled reminders
to be provided using the telephone[14], personal dig-
ital assistants[11], and pagers[16]. Related work has
also been done on improved modeling of users’ ac-
tivities [18,20], where in one case a hand-device uses
AI planning technology to model the user’s plans, and
provide visual and audible cues about its execution.

In the Nursebot project, the goal of this software
system is to make principled decisions about what
reminders to issue and when, balancing the following
potentially competing objectives: (i) ensure that the
user is aware of activities s/he is expected to perform,
(ii) increase the likelihood that s/he will perform at
least the required activities (e.g. taking medicine), (iii)
avoid annoying the user, and (iv) avoid making the
user overly reliant on the system. To attain these goals,

Fig. 2. Autominder architecture.

the system must be flexible and adaptive, responding
to the actions taken by the user.

The Autominder architecture is shown inFig. 2. As
depicted, the system maintains an accurate model of a
user’s daily schedule, monitors performance of activi-
ties, and plans reminders accordingly. The three main
components are: a Plan Manager (PM), which stores
the user’s plan of daily activities in theClient Plan,
and is responsible for updating it and identifying any
potential conflicts in it; a Client Modeler (CM), which
uses information about the user’s observable activities
to track the execution of the plan, storing its beliefs
about the execution status in theClient Model; and
a Personal Cognitive Orthotic (PCO), which reasons
about any disparities between what the user is sup-
posed to do and what s/he is doing, and makes deci-
sions about when to issue reminders.

To initialize the system, the care-giver of an elderly
user inputs a description of the person’s daily activ-
ities, as well as any constraints on, or preferences
regarding, the time or manner of their performance.
This plan may then be changed in one of the four
ways: (i) the user or care-giver may add new activities;
(ii) the user or care-giver may modify or delete activi-
ties already in the plan; (iii) the user may execute one
of the planned activities; or (iv) the simple passage
of time may cause automatic changes to be made in
the plan. Whenever a change occurs, the PM updates
the user plan, performing plan merging and constraint
propagation as needed. To adequately represent user
plans, it is essential to support a rich set of temporal
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constraints; we achieve this goal by modeling user
plans as Disjunctive Temporal Problems (DTPs) and
reasoning about them using efficient algorithms[29].

The CM incorporates sensor information gathered
by the robot to infer activities performed by the user.
The relevant sensor information comes from laser
readings, as well as touch-screen and speech input.
The laser readings are used to track the user and
reason about site-specific tasks (e.g. going into the
kitchen for a period of time can indicate meal-taking).
The touch-screen and speech are used to confirm
compliance to reminders (e.g. whether medication has
been taken). If the likelihood is high that a planned
activity has been executed, the CM reports this to
the PM, which can then update the user’s plan by
recording the time of execution, and propagate any
affected constraints accordingly. The user model is
represented using a Quantitative Temporal Bayes Net
(QTBN), which was developed to handle the need
both to reason about fluents and about probabilistic
temporal constraints[6].

The final component of the Autominder is the PCO
[21], which uses both the user plan and the user model
to determine what reminders should be issued and
when. The PCO identifies activities that may require
reminders based on their importance and their like-
lihood of being executed on time as modeled in the
CM. It also determines the most effective times to is-
sue each required reminder, taking account of the ex-
pected user behavior, and any preferences explicitly
provided by the user and the care-giver. Finally, the
PCO provides justifications as to why particular activi-
ties warrant a reminder. The PCO treats the generation
of a reminder plan as a satisfying problem and uses
a local-search approach called Planning-by-Rewriting
(PbR)[2] to produce a high-quality reminder plan that
takes into account the user’s expected behavior, pref-
erences, and interactions amongst planned activities.

The Autominder system was initially designed to
interact with a specific individual, rather than a com-
munity of users. In the nursing home environment,
Autominder would need to maintain parallel plans
for each individual, and would need to identify the
appropriate person for each action. This is particu-
larly important when issuing key health reminders
(e.g. medication and appointments). The current robot
system does not fully address this problem: it simply
assumes that the target person can be found in his/her

room, and thus identifies individuals by their initial
location. In the future, person identification could
best be handled by camera-based face identification,
or requiring the user to verbally confirm his/her iden-
tity. Though we have not focused on the problem of
person identification, we do address the question of
person finding, as described in the next section.

4. Locating people

In order to track users and guide them to their activ-
ities, it is necessary to interact with people spatially,
and most specifically to be able to locate people in their
living environment. The problem of locating people is
the problem of determining theirx–y-location relative
to the robot.1 Previous approaches to people tracking
in robotics are feature-based: they analyze sensor mea-
surements (images, range scans) for the presence of
features[15,26] as the basis of tracking. In our case,
the diversity of the environment mandates a different
approach. Pearl detects people using map differenc-
ing: the robot learns a map, and people are detected by
significant deviations from the map.Fig. 3 shows an
example map acquired using preexisting software[28].

Mathematically, the problem of people tracking is
a combined posterior estimation problem and model
selection problem. LetN be the number of people near
the robot. The posterior over the people’s positions is
given by

p(y1,t , . . . , yN,t|zt, ut, m) (1)

whereyn,t with 1 ≤ n ≤ N is the location of a person
at timet, zt the sequence of all sensor measurements,
ut the sequence of all robot controls, andm the envi-
ronment map. However, to use map differencing, the
robot has to know its own location. The location and
total number of nearby people detected by the robot
is clearly dependent on the robot’s estimate of its own
location and heading direction. Hence, Pearl estimates
a posterior of the type:

p(y1,t , . . . , yN,t, x
t|zt, ut, m) (2)

where xt denotes the sequence of robot poses (the
path) up to timet. If N was known, estimating this

1 Depending on the task at hand, additional dimensions such
as orientation or velocity and bearing may be of interest, but we
ignore these features for our particular problem.
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Fig. 3. (a)–(c) Evolution of the conditional particle filter from global uncertainty to successful localization and tracking. (d) The tracker
continues to track a person even as that person is occluded repeatedly by a second individual.

posterior would be a high-dimensional estimation
problem, with complexity cubic inN for Kalman fil-
ters [3], or exponential inN with particle filters[9].
Neither of these approaches is applicable: Kalman
filters cannot globally localize the robot, and particle
filters would be computationally prohibitive.

Luckily, under mildly restrictive conditions (dis-
cussed below) the posterior (Eq. (2)) can be factored
into N + 1 conditionally independent estimates

p(xt|zt, ut, m)
∏

n

p(yn,t|zt, ut, m) (3)

This factorization opens the door for a particle filter
that scales linearly inN. Our approach is similar (but
not identical) to the Rao-Blackwellized particle filter
described in[10]. First, the robot pathxt is estimated
using a particle filter, as in the Monte Carlo localiza-
tion (MCL) algorithm for mobile robot localization
[7]. Each particle in this filter is associated with a set of
N particle filters, each representing one of the people
position estimatesp(yn,t|zt, ut, m). Theseconditional
particle filters represent people position estimatescon-
ditionedon robot path estimates—hence capturing the
inherent dependence of people and robot location es-
timates. The data association between measurements
and people is done using maximum likelihood, as in
[3]. Under the (false) assumption that this maximum
likelihood estimator is always correct, our approach
can be shown to converge to the correct posterior, and
it does so with update time linear inN. In practice, we
found that the data association is correct in the vast
majority of situations. The nested particle filter formu-
lation has a secondary advantage that the number of
peopleN can be made dependent on individual robot

path particles. Our approach for estimatingN uses the
AIC criterion for model selection[1], with a prior that
imposes a complexity penalty exponential inN.

Fig. 3shows results of the filter in action. InFig. 3a,
the robot is globally uncertain, and the number and
location of the corresponding people estimates varies
drastically. As the robot reduces its uncertainty, the
number of modes in the robot pose posterior quickly
becomes finite, and each such mode has a distinct set
of people estimates, as shown inFig. 3b. Finally, as
the robot is localized, so is the person (Fig. 3c). When
guiding people, the localization estimate of the person
is used to determine the velocity of the robot, so that
the robot maintains roughly a constant distance to the
person. In our experiments in the target facility, we
found the adaptive velocity control to be absolutely
essential for the robot’s ability to cope with the huge
range of walking paces found in the elderly popula-
tion. Initial experiments with fixed velocity led almost
always to frustration on the people’s side, in that the
robot was either too slow or too fast.

Finally, Fig. 3d illustrates the robustness of the
filter to interfering people. Here another person steps
between the robot and its target subject. The fil-
ter obtains its robustness to occlusion from a care-
fully crafted probabilistic model of people’s motion
p(yn,t+1|yn,t). This enables the conditional particle
filters to maintain tight estimates while the occlu-
sion takes place, as shown inFig. 3d. During in-lab
experiments involving 31 tracking instances with up
to five people at a time, the error in determining the
number of people was 9.6%. The error in the robot
position was 2.5 ± 5.7 cm, and the people position
error was as low as 1.5 ± 4.2 cm, when compared
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to measurements obtained with a carefully calibrated
static sensor with±1 cm error.

5. High-level robot control and dialog
management

The most central module in Pearl’s software is a
probabilistic algorithm for high-level control and dia-
log management. This module integrates observations
from lower-level modules (e.g. the Autominder, the
people tracker, the speech recognizer, etc.) and uses
this information to select appropriate behaviors and
responses.

Pearl’s high-level control architecture is modeled
as a partially observable Markov decision process
(POMDP) [17]. The POMDP is a model for calcu-
lating optimal control actions under uncertainty. The
control decision is based on a probabilistic belief over
possible states.

In Pearl’s case, this distribution is defined over a
collection of multi-valued state variables:

• robot location (discrete approximation);
• person’s location (discrete approximation);
• person’s status (inferred from speech recognizer);
• motion goal (where to move);
• reminder goal (what to inform the user of);
• user initiated goal (e.g., an information request).

The value of theperson’s locationvariable is ob-
served through the people tracker, and similarly the
reminder goalvariable is set by the Autominder mod-
ule. Overall, there are 516 possible states. The input
to the POMDP is a factored probability distribution
over these states, generated by a state estimator, such
as inEq. (2). Uncertainty over the current state arises
predominantly from the localization modules and the
speech recognition system. The consideration of un-
certainty is especially important in this domain, as the
costs of giving the wrong reminder, or unnecessarily
sending the robot to a location can be large.

Unfortunately, POMDPs of the size encountered
here are an order of magnitude larger than today’s
best exact POMDP algorithms can tackle[17]. How-
ever, Pearl’s domain is highly structured, since certain
actions are only applicable in certain situations. To
exploit this structure, we developed ahierarchical
version of POMDPs, which breaks down the decision

Fig. 4. Dialog problem action hierarchy.

making problem into a collection of smaller problems
that can be solved more efficiently. Our approach is
similar to the MAX-Q decomposition for MDPs[8],
but defined over POMDPs (where states are unob-
served).

The basic idea of the hierarchical POMDP is to
partition the action space—not the state space, since
the state is not fully observable—into smaller chunks.
For Pearl’s guidance task the action hierarchy is
shown in Fig. 4, where abstract actions(shown in
circles) are introduced to subsume logical subgroups
of lower-level actions. This action hierarchy induces a
decomposition of the control problem, where at each
node all lower-level actions, if any, are considered in
the context of a local sub-controller. At the lowest
level, the control problem is a regular POMDP, with
a reduced action space. At higher levels, the control
problem is also a POMDP, yet involves a mixture of
physical and abstract actions (where abstract actions
correspond to lower level POMDPs).

It is important to notice that such a decomposition is
especially appropriate when the optimal control trans-
gresses down along a single path in the hierarchy to
receive its reward. This is approximately the case in
the Pearl domain, where goals are satisfied upon suc-
cessfully delivering a person, or successfully convey-
ing or gathering information through communication.

Using the hierarchical POMDP, the high-level de-
cision making problem in Pearl is tractable, and a
near-optimal control policy can be computed off-line.
Thus, during execution time the controller simply
monitors the state (calculates the posterior) and looks
up the appropriate control.Table 1shows an example
dialog between the robot and a test subject. Because



J. Pineau et al. / Robotics and Autonomous Systems 42 (2003) 271–281 277

Table 1
Sample dialog demonstrating the role of clarification actionsa

Observation True state Action Reward

Pearl hello requestbegun sayhello 100
Pearl what is like startmeds ask repeat −100
Pearl what time is it for will the wanttime saytime 100
Pearl was on abc wanttv askwhich station −1
Pearl was on abc wantabc sayabc 100
Pearl what is on nbc wantnbc confirm channel nbc −1
Pearl yes wantnbc saynbc 100
Pearl go to the that pretty good what sendrobot askrobot where −1
Pearl that that hello be sendrobot bedroom confirm robot place −1
Pearl the bedroom anyi sendrobot bedroom goto bedroom 100
Pearl go it eight a hello sendrobot askrobot where −1
Pearl the kitchen hello sendrobot kitchen goto kitchen 100

a The observationdescribes the output from the speech recognizer. Thetrue stateis manually extracted by a human observer. The
action is chosen by the POMDP policy. Actions in bold font are clarification actions, chosen by the POMDP because of high uncertainty
in the speech signal.Rewardindicator describes the appropriateness of the action for the given state.

of the uncertainty management in POMDPs, the robot
chooses to ask a clarification question at three occa-
sions. The number of such questions depends on the
clarity of a person’s speech, as detected by the Sphinx
speech recognition system.

An important remaining question concerns the im-
portance of handling uncertainty in high-level control.
To investigate this, we ran a series of comparative
experiments, using real data collected in our lab. In
the first experiment, we investigated the importance
of considering the uncertainty arising from the speech
interface. In particular, we compared Pearl’s perfor-
mance (using a POMDP to select actions) to a sim-
ilar system that ignores that uncertainty. The second
system uses an MDP policy, similar to the one de-

Fig. 5. Empirical comparison between POMDPs (with uncertainty, shown in gray) and MDPs (no uncertainty, shown in black) for high-level
robot control, evaluated on data collected in the assisted living facility. Shown are the average time to task completion (a), the average
number of errors (b), and the average user-assigned (not model assigned) reward (c), for the MDP and POMDP. The data is shown for
three users, with good, average and poor speech recognition.

scribed in[27]. Fig. 5shows results for three different
performance measures, and three different users (in
decreasing order of speech recognition performance).
For poor speakers, the MDP requires less time to
“satisfy” a request due to the lack of clarification ques-
tions (Fig. 5a). However, its error rate is much higher
(Fig. 5b), which negatively affects the overall reward
received by the robot (Fig. 5c). These results clearly
demonstrate the importance of considering uncertainty
at the highest robot control level, specifically with poor
speech recognition.

In the second experiment, we investigated the im-
portance of uncertainty management in the context of
highly imbalanced costs and rewards. For example, in
Pearl’s case, asking a clarification question is in fact
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Fig. 6. Empirical comparison between uniform and non-uniform
cost models. Results are an average over 10 tasks. Depicted are
three example users, with varying levels of speech recognition
accuracy. Users 2 and 3 had the lowest recognition accuracy, and
consequently more errors when using the uniform cost model.

much cheaper than accidentally guiding a person to
a wrong location, or guiding a person who does not
want assistance. We therefore compared performance
using two POMDP models which differed only in their
cost models. One model assumed uniform costs for all
actions, whereas the second model assumed a more
discriminative cost model in which the cost of verbal
questions was lower than the cost of performing the
wrong motion actions. A POMDP policy was learned
for each of these models, and then tested experimen-
tally in our laboratory. The results presented inFig. 6
show that the non-uniform model makes more judi-
cious use of confirmation actions, thus leading to a
significantly lower error rate, especially for users with
low recognition accuracy.

These experiments confirm the need to reason about
observation uncertainty during planning, and thus val-
idate our choice of POMDPs as the appropriate model
for robot interaction. Although the experiments de-
scribed in this section focused principally on the un-
certainty stemming from the speech interface, other
robot sensors are also prone to measurement uncer-
tainty which can be equally handled by the POMDP
framework.

6. Results

Following integration of the three software mod-
ules onto Pearl, the robot was deployed in a retirement

community located near Pittsburgh, PA. This section
describes experiments involving elderly residents of
this facility, with mild cognitive, perceptual, or phys-
ical limitations.

We tested the robot in five separate experiments,
each lasting one full day. The first 3 days focused on
open-ended interactions with a large number of elderly
users, during which the robot interacted verbally and
spatially with elderly people with the specific task of
delivering sweets. This allowed us to gauge people’s
initial reactions to the robot.

Following this, we performed 2 days of formal
experiments during which the robot autonomously
conducted 12 test scenarios, involving six different el-
derly people. In each scenario, the robot was required
to provide a timed reminder (e.g. scheduled appoint-
ment) to the test subject, lead the subject between
locations in the facility, and verbally interact with the
user.Fig. 7 shows an example guidance experiment,
involving an elderly person who uses a walking aid.
The sequence of images illustrates the major stages
of a successful delivery: from contacting the person,
delivering the reminder, walking her through the fa-
cility, and providing information after the successful
delivery—in this case on the weather.

Each test subject received a short (approximately
5 min) training session with the robot, before complet-
ing the scenario. In all trials, the task was performed
to completion, without any outside intervention. All
reminders were successfully delivered (as confirmed
through a touch-screen press by the user), and in all
but one trial, the robot guided the subject to their
appointment. The exception occurred when a test
subject communicated to the robot that she did not re-
quire assistance, and the robot therefore appropriately
returned to its home base rather than proceed with the
guidance.

Post-experimental debriefings illustrated a uniform
high-level of excitement on the side of the elderly.
Overall, only a few problems were detected during the
operation. None of the test subjects showed difficul-
ties understanding the major functions of the robot, in-
cluding spatial motion, touch-screen I/O, and speech
output. Earlier trials with a poorly adjusted speech
recognition system, and fixed velocity robot motion,
both caused difficulties. These were addressed by in-
creasing the role of the touch-screen, and including
adaptable velocities.



J. Pineau et al. / Robotics and Autonomous Systems 42 (2003) 271–281 279

Fig. 7. Example of a successful guidance experiment: (a) Pearl
picks up the patient outside her room; (b) reminds her of a phys-
iotherapy appointment; (c) guides the person to the physiotherapy
department; (d) enters the department; (e) satisfies a request for
the weather report; (f) terminates the interaction and leaves.

7. Discussion

This paper described a mobile robotic assistant
for nurses and elderly residents in assisted living
facilities. The system has been tested successfully
in experiments in a nursing home, where the robot
autonomously provided reminders and guidance to
elderly residents.

The experiments were successful in two main di-
mensions. First, they provided some evidence towards
the feasibility of using autonomous mobile robots as
assistants to nurses and institutionalized elderly. This
was demonstrated in part by the robot’s ability to com-
plete the assigned task, but also by the fact that the
response from the elderly participants was uniformly
positive.

Second, this project also demonstrated the effec-
tiveness of probabilistic tracking and decision making
for interactive robots. Pearl is one of a few robots to
use POMDPs, and the first to apply POMDP planning
to the highest level of decision making. The ability
to represent the uncertainty inherent in a person’s be-
havior, and formulate plans accordingly, allowed the
robot to robustly handle difficult situations, including
noisy communication and crowded environments.

One of the key lessons learned while developing
this robot is the imperative need for techniques that
can cope with individual differences. This is especially
true when designing robots for elderly users, which
exhibit a great range of skills as a result of age-related
decline. We had to make specific adjustments to ac-
commodate varying walking speeds, voice levels, and
auditory acuity.

Given the pressures of an aging population, we view
the area of assistive technology as a prime source for
great AI problems in the future.
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