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Abstract9

This paper describes a mobile robotic assistant, developed to assist elderly individuals with mild cognitive and physical
impairments, as well as support nurses in their daily activities. We present three software modules relevant to ensure successful
human–robot interaction: an automated reminder system; a people tracking and detection system; and finally a high-level
robot controller that performs planning under uncertainty by incorporating knowledge from low-level modules, and selecting
appropriate courses of actions. During the course of experiments conducted in an assisted living facility, the robot successfully
demonstrated that it could autonomously provide reminders and guidance for elderly residents.

10

11

12

13

14

15

© 2002 Published by Elsevier Science B.V.16

Keywords:Robot control; Human–robot interaction; Planning; Scheduling; Probabilistic reasoning17

18

1. Introduction19

The US population is aging at an alarming rate. At20

present, 12.5% of the US population is of age 65 or21

older [31]. It is widely recognized that this ratio will22

increase as the baby-boomer generation moves into re-23

tirement age. Meanwhile, the nation faces a significant24

shortage of nursing professionals. The Federation of25

Nurses and Health Care Professionals has projected a26

need for 450,000 additional nurses by the year 2008.27

This acute need provides significant opportunities28

for robotics and AI researchers to develop assistive29

technology that can improve the quality of life of our30

aging population, and help nurses become more effec-31

tive in their activities. TheNursebot projectwas con-32

ceived in response to this challenge. It is formed by a33

multi-disciplinary team of investigators from the fields34

∗ Corresponding author. Tel.:+1-412-268-4857;
fax: +1-412-268-5571.
E-mail address:jpineau@cs.cmu.edu (J. Pineau).

of health care, HCI/psychology, and AI/robotics. The35

overall goal of the project is to develop mobile robotic36

assistants that can assist nurses and elderly people in37

their daily activities. 38

To this aim, the team has developed a prototype39

autonomous mobile robot, shown inFig. 1 [23]. 40

This robot primarily interacts with the world through41

speech, visual displays, facial expressions and physi-42

cal motion. It differs from earlier workplace robots in43

that it goes beyond simply interacting with an (often44

static) environment, to interacting with human users45

and bystanders. Thus we leverage earlier technol-46

ogy for navigation, localization and mapping, and47

specifically focus on developing new algorithmic ap-48

proaches to track people, predict their behavior, and49

react appropriately. 50

From the many services a nursing-assistant robot51

could provide[12,19], the work reported here consid-52

ers the task of reminding people of events and guiding53

them through their environments. Both of these tasks54

are particularly relevant for the elderly community.55

1 0921-8890/02/$ – see front matter © 2002 Published by Elsevier Science B.V.
2 doi:10.1016/S0921-8890(02)00381-0
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Fig. 1. Nursebot Pearl.

Decreased memory is a common effect of age-related56

cognitive decline, which often leads to forgetfulness57

about routine daily activities (e.g. taking medications,58

attending appointments, eating, drinking, bathing, toi-59

leting) thus the need for a robot that can offer cognitive60

reminders. In addition, nursing staff in assisted liv-61

ing facilities frequently need to escort elderly people62

walking, either to get exercise, or to attend meals, ap-63

pointments or social events. The fact that many elderly64

people move at extremely slow speeds (e.g. 5 cm/s)65

makes this one of the most labor-intensive tasks in as-66

sisted living facilities. It is also important to note that67

the help provided is often not strictly of a physical na-68

ture. Rather, nurses often provide important cognitive69

help, guidance and motivation, in addition to valuable70

social interaction.71

Several factors make this task a challenging one for72

a robot to accomplish successfully. First, many elderly73

have difficulty understanding the robot’s synthesized74

speech, as well as articulating an appropriate response75

in a computer-understandable way. In addition, walk-76

ing abilities vary drastically between individuals. Peo-77

ple with walking aids are usually an order of magni-78

tude slower than people without, and people often stop79

to chat or catch their breath along the way. It is there-80

fore imperative that the robot adapt to individuals—an81

aspect of interaction that has been poorly explored in82

AI and robotics.83

The work presented in this paper seeks to address84

these challenges, focusing on three software compo-85

nents most pertinent to human–robot interaction: an86

automated reminder system that incorporates knowl-87

edge of a person’s typical schedule with observations88

of recent activities, and issues pertinent reminders89

about upcoming events; a module that uses efficient90

particle filter techniques to detect and track people;91

and finally a high-level robot controller that uses pro-92

babilistic reasoning techniques to arbitrate between93

information-gathering and performance-related ac-94

tions, while also incorporating information obtained95

through both navigation sensors (e.g. laser range96

finder) and interaction sensors (e.g. speech recogni-97

tion and touch-screen). 98

In systematic experiments conducted at a nursing99

home, we found the combination of techniques to be100

highly effective in dealing with elderly test subjects.101

In particular, during a sequence of one-on-one interac-102

tions between Pearl and residents of the nursing home,103

the robot demonstrated the ability to contact a resident,104

remind them of an appointment, accompany them to105

that appointment, as well as provide information of106

interest to that person, for example weather reports or107

television schedules. 108

2. Hardware and software description 109

Fig. 1 shows an image of the nursing robot Pearl.110

It is equipped with a differential drive system, two111

on-board PCs, wireless Ethernet, laser range finders,112

sonar sensors, microphones for speech recognition,113

speakers for speech synthesis, touch-sensitive graph-114

ical displays, actuated head units, and stereo camera115

systems. As a result of input from nurses and medical116

experts, Pearl also features two sturdy handle-bars, a117

compact design that allows for cargo space, a remov-118

able tray, and a sophisticated head unit. 119

On the software side, the robot features off-the-shelf120

autonomous mobile robot navigation system[5,29], 121

speech recognition software[25], speech synthesis122

software [4], fast image capture and compression123

software for online video streaming, face detection124

tracking software[26], as well as the three major new125

software modules described in this paper. These mod-126

ules are principally concerned with people interaction127

and control. They overcome important deficiencies of128

the work described by[5,29], which had only rudi- 129

mentary abilities to interact with people. 130



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

FJ. Pineau et al. / Robotics and Autonomous Systems 1048 (2002) 1–11 3

3. Plan management with Autominder131

The Autominder software component contains the132

intelligent cognitive orthoticsystem. It is designed133

to provide elderly people with reminders about their134

daily activities[24]. The idea of using computer tech-135

nology to enhance the performance of cognitively dis-136

abled people dates back nearly 40 years[13]. More137

recently, cognitive orthotics have enabled reminders138

to be provided using the telephone[14], personal dig-139

ital assistants[11], and pagers[16]. Related work has140

also been done on improved modeling of users’ ac-141

tivities [18,21], where in one case a hand-device uses142

AI planning technology to model the user’s plans, and143

provide visual and audible cues about its execution.144

In the Nursebot project, the goal of this software145

system is to make principled decisions about what146

reminders to issue and when, balancing the following147

potentially competing objectives: (i) ensure that the148

user is aware of activities s/he is expected to perform,149

(ii) increase the likelihood that s/he will perform at150

least the required activities (e.g. taking medicine), (iii)151

avoid annoying the user, and (iv) avoid making the152

user overly reliant on the system. To attain these goals,153

the system must be flexible and adaptive, responding154

to the actions taken by the user.155

The Autominder architecture is shown inFig. 2. As156

depicted, the system maintains an accurate model of a157

user’s daily schedule, monitors performance of activi-158

ties, and plans reminders accordingly. The three main159

components are: a Plan Manager (PM), which stores160

Fig. 2. Autominder architecture.

the user’s plan of daily activities in theClient Plan, 161

and is responsible for updating it and identifying any162

potential conflicts in it; a Client Modeler (CM), which163

uses information about the user’s observable activities164

to track the execution of the plan, storing its beliefs165

about the execution status in theClient Model; and 166

a Personal Cognitive Orthotic (PCO), which reasons167

about any disparities between what the user is sup-168

posed to do and what s/he is doing, and makes deci-169

sions about when to issue reminders. 170

To initialize the system, the care-giver of an elderly171

user inputs a description of the person’s daily activi-172

ties, as well as any constraints on, or preferences re-173

garding, the time or manner of their performance. This174

plan may then be changed in one of the four ways: (i)175

the user or care-giver may add new activities; (ii) the176

user or care-giver may modify or delete activities al-177

ready in the plan; (iii) the user may execute one of the178

planned activities; or (iv) the simple passage of time179

may cause automatic changes to be made in the plan.180

Whenever a change occurs, the PM updates the user181

plan, performing plan merging and constraint propa-182

gation as needed. To adequately represent user plans,183

it is essential to support a rich set of temporal con-184

straints; we achieve this goal by modeling user plans185

as Disjunctive Temporal Problems (DTPs) and reason-186

ing about them using efficient algorithms[30]. 187

The CM incorporates sensor information gathered188

by the robot to infer activities performed by the user.189

The relevant sensor information comes from laser190

readings, as well as touch-screen and speech input.191
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The laser readings are used to track the user and reason192

about site-specific tasks (e.g. going into the kitchen193

for a period of time can indicate meal-taking). The194

touch-screen and speech are used to confirm compli-195

ance to reminders (e.g. whether medication has been196

taken). If the likelihood is high that a planned ac-197

tivity has been executed, the CM reports this to the198

PM, which can then update the user’s plan by record-199

ing the time of execution, and propagate any affected200

constraints accordingly. The user model is represented201

using a Quantitative Temporal Bayes Net (QTBN),202

which was developed to handle the need both to rea-203

son about fluents and about probabilistic temporal con-204

straints[6].205

The final component of the Autominder is the PCO206

[22], which uses both the user plan and the user model207

to determine what reminders should be issued and208

when. The PCO identifies activities that may require209

reminders based on their importance and their like-210

lihood of being executed on time as modeled in the211

CM. It also determines the most effective times to is-212

sue each required reminder, taking account of the ex-213

pected user behavior, and any preferences explicitly214

provided by the user and the care-giver. Finally, the215

PCO provides justifications as to why particular activi-216

ties warrant a reminder. The PCO treats the generation217

of a reminder plan as a satisfying problem and uses218

a local-search approach called Planning-by-Rewriting219

(PbR)[2] to produce a high-quality reminder plan that220

takes into account the user’s expected behavior, pref-221

erences, and interactions amongst planned activities.222

The Autominder system was initially designed to223

interact with a specific individual, rather than a com-224

munity of users. In the nursing home environment,225

Autominder would need to maintain parallel plans for226

each individual, and would need to identify the appro-227

priate person for each action. This is particularly im-228

portant when issuing key health reminders (e.g. med-229

ication and appointments). The current robot system230

does not fully address this problem: it simply assumes231

that the target person can be found in his/her room,232

and thus identifies individuals by their initial location.233

In the future, person identification could best be han-234

dled by camera-based face identification, or requiring235

the user to verbally confirm his/her identity. Though236

we have not focused on the problem ofperson identi-237

fication, we do address the question ofperson finding,238

as described in the next section.239

4. Locating people 240

In order to track users and guide them to their activ-241

ities, it is necessary to interact with people spatially,242

and most specifically to be able to locate people in their243

living environment. The problem of locating people is244

the problem of determining theirx–y-location relative 245

to the robot.1 Previous approaches to people tracking246

in robotics are feature-based: they analyze sensor mea-247

surements (images, range scans) for the presence of248

features[15,27] as the basis of tracking. In our case,249

the diversity of the environment mandates a different250

approach. Pearl detects people using map differenc-251

ing: the robot learns a map, and people are detected252

by significant deviations from the map.Fig. 3 shows 253

an example map acquired using preexisting software254

[29]. 255

Mathematically, the problem of people tracking is256

a combined posterior estimation problem and model257

selection problem. LetN be the number of people near258

the robot. The posterior over the people’s positions is259

given by 260

p(y1,t , . . . , yN,t|zt, ut, m) (1) 261

whereyn,t with 1 ≤ n ≤ N is the location of a person262

at timet, zt the sequence of all sensor measurements,263

ut the sequence of all robot controls, andm the envi- 264

ronment map. However, to use map differencing, the265

robot has to know its own location. The location and266

total number of nearby people detected by the robot267

is clearly dependent on the robot’s estimate of its own268

location and heading direction. Hence, Pearl estimates269

a posterior of the type: 270

p(y1,t , . . . , yN,t, x
t|zt, ut, m) (2) 271

wherext denotes the sequence of robot poses (the path)272

up to time t. If N was known, estimating this poste-273

rior would be a high-dimensional estimation problem,274

with complexity cubic inN for Kalman filters[3], or 275

exponential inN with particle filters[9]. Neither of 276

these approaches is applicable: Kalman filters cannot277

globally localize the robot, and particle filters would278

be computationally prohibitive. 279

1 Depending on the task at hand, additional dimensions such
as orientation or velocity and bearing may be of interest, but we
ignore these features for our particular problem.
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Fig. 3. (a)–(c) Evolution of the conditional particle filter from global uncertainty to successful localization and tracking. (d) The tracker
continues to track a person even as that person is occluded repeatedly by a second individual.

Luckily, under mildly restrictive conditions (dis-280

cussed below) the posterior (Eq. (2)) can be fac-281

tored into N + 1 conditionally independent esti-282

mates283

p(xt|zt, ut, m)
∏

n

p(yn,t|zt, ut, m) (3)
284

This factorization opens the door for a particle filter285

that scales linearly inN. Our approach is similar (but286

not identical) to the Rao-Blackwellized particle filter287

described in[10]. First, the robot pathxt is estimated288

using a particle filter, as in the Monte Carlo localiza-289

tion (MCL) algorithm for mobile robot localization290

[7]. Each particle in this filter is associated with a set of291

N particle filters, each representing one of the people292

position estimatesp(yn,t|zt, ut, m). Theseconditional293

particle filters represent people position estimatescon-294

ditionedon robot path estimates—hence capturing the295

inherent dependence of people and robot location es-296

timates. The data association between measurements297

and people is done using maximum likelihood, as in298

[3]. Under the (false) assumption that this maximum299

likelihood estimator is always correct, our approach300

can be shown to converge to the correct posterior, and301

it does so with update time linear inN. In practice,302

we found that the data association is correct in the303

vast majority of situations. The nested particle filter304

formulation has a secondary advantage that the num-305

ber of peopleN can be made dependent on individ-306

ual robot path particles. Our approach for estimating307

N uses the AIC criterion for model selection[1], with308

a prior that imposes a complexity penalty exponential309

in N.310

Fig. 3shows results of the filter in action. InFig. 3a, 311

the robot is globally uncertain, and the number and312

location of the corresponding people estimates varies313

drastically. As the robot reduces its uncertainty, the314

number of modes in the robot pose posterior quickly315

becomes finite, and each such mode has a distinct set316

of people estimates, as shown inFig. 3b. Finally, as 317

the robot is localized, so is the person (Fig. 3c). When 318

guiding people, the localization estimate of the person319

is used to determine the velocity of the robot, so that320

the robot maintains roughly a constant distance to the321

person. In our experiments in the target facility, we322

found the adaptive velocity control to be absolutely323

essential for the robot’s ability to cope with the huge324

range of walking paces found in the elderly popula-325

tion. Initial experiments with fixed velocity led almost326

always to frustration on the people’s side, in that the327

robot was either too slow or too fast. 328

Finally,Fig. 3d illustrates the robustness of the filter329

to interfering people. Here another person steps be-330

tween the robot and its target subject. The filter obtains331

its robustness to occlusion from a carefully crafted332

probabilistic model of people’s motionp(yn,t+1|yn,t). 333

This enables the conditional particle filters to main-334

tain tight estimates while the occlusion takes place,335

as shown inFig. 3d. During in-lab experiments in-336

volving 31 tracking instances with up to five people337

at a time, the error in determining the number of peo-338

ple was 9.6%. The error in the robot position was339

2.5±5.7 cm, and the people position error was as low340

as 1.5±4.2 cm, when compared to measurements ob-341

tained with a carefully calibrated static sensor with342

±1 cm error. 343
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5. High-level robot control and dialog344

management345

The most central module in Pearl’s software is a346

probabilistic algorithm for high-level control and dia-347

log management. This module integrates observations348

from lower-level modules (e.g. the Autominder, the349

people tracker, the speech recognizer, etc.) and uses350

this information to select appropriate behaviors and351

responses.352

Pearl’s high-level control architecture is modeled353

as a partially observable Markov decision process354

(POMDP) [17]. The POMDP is a model for calcu-355

lating optimal control actions under uncertainty. The356

control decision is based on a probabilistic belief over357

possible states.358

In Pearl’s case, this distribution is defined over a359

collection of multi-valued state variables:360

• robot location (discrete approximation);361

• person’s location (discrete approximation);362

• person’s status (inferred from speech recognizer);363

• motion goal (where to move);364

• reminder goal (what to inform the user of);365

• user initiated goal (e.g., an information request).366

The value of theperson’s locationvariable is ob-367

served through the people tracker, and similarly the368

reminder goalvariable is set by the Autominder mod-369

ule. Overall, there are 516 possible states. The in-370

put to the POMDP is a factored probability distribu-371

tion over these states, generated by a state estima-372

tor, such as inEq. (2). Uncertainty over the current373

state arises predominantly from the localization mod-374

ules and the speech recognition system. The consid-375

eration of uncertainty is especially important in this376

domain, as the costs of giving the wrong reminder, or377

unnecessarily sending the robot to a location can be378

large.379

Unfortunately, POMDPs of the size encountered380

here are an order of magnitude larger than today’s381

best exact POMDP algorithms can tackle[17]. How-382

ever, Pearl’s domain is highly structured, since cer-383

tain actions are only applicable in certain situations.384

To exploit this structure, we developed ahierarchical385

version of POMDPs, which breaks down the decision386

making problem into a collection of smaller problems387

that can be solved more efficiently. Our approach is388

similar to the MAX-Q decomposition for MDPs[8],389

Fig. 4. Dialog problem action hierarchy.

but defined over POMDPs (where states are unob-390

served). 391

The basic idea of the hierarchical POMDP is to par-392

tition the action space—not the state space, since the393

state is not fully observable—into smaller chunks. For394

Pearl’s guidance task the action hierarchy is shown in395

Fig. 4, whereabstract actions(shown in circles) are in- 396

troduced to subsume logical subgroups of lower-level397

actions. This action hierarchy induces a decomposi-398

tion of the control problem, where at each node all399

lower-level actions, if any, are considered in the con-400

text of a local sub-controller. At the lowest level, the401

control problem is a regular POMDP, with a reduced402

action space. At higher levels, the control problem is403

also a POMDP, yet involves a mixture of physical and404

abstract actions (where abstract actions correspond to405

lower level POMDPs). 406

It is important to notice that such a decomposition is407

especially appropriate when the optimal control trans-408

gresses down along a single path in the hierarchy to409

receive its reward. This is approximately the case in410

the Pearl domain, where goals are satisfied upon suc-411

cessfully delivering a person, or successfully convey-412

ing or gathering information through communication.413

Using the hierarchical POMDP, the high-level de-414

cision making problem in Pearl is tractable, and a415

near-optimal control policy can be computed off-line.416

Thus, during execution time the controller simply417

monitors the state (calculates the posterior) and looks418

up the appropriate control.Table 1shows an example419

dialog between the robot and a test subject. Because420

of the uncertainty management in POMDPs, the robot421

chooses to ask a clarification question at three occa-422

sions. The number of such questions depends on the423
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Table 1
Sample dialog demonstrating the role of clarification actionsa

Observation True state Action Reward

Pearl hello requestbegun sayhello 100
Pearl what is like startmeds ask repeat −100
Pearl what time is it for will the wanttime saytime 100
Pearl was on abc wanttv askwhich station −1
Pearl was on abc wantabc sayabc 100
Pearl what is on nbc wantnbc confirm channel nbc −1
Pearl yes wantnbc saynbc 100
Pearl go to the that pretty good what sendrobot askrobot where −1
Pearl that that hello be sendrobot bedroom confirm robot place −1
Pearl the bedroom anyi sendrobot bedroom goto bedroom 100
Pearl go it eight a hello sendrobot askrobot where −1
Pearl the kitchen hello sendrobot kitchen goto kitchen 100

a The observationdescribes the output from the speech recognizer. Thetrue stateis manually extracted by a human observer. The
action is chosen by the POMDP policy. Actions in bold font are clarification actions, chosen by the POMDP because of high uncertainty
in the speech signal.Rewardindicator describes the appropriateness of the action for the given state.

clarity of a person’s speech, as detected by the Sphinx424

speech recognition system.425

An important remaining question concerns the im-426

portance of handling uncertainty in high-level control.427

To investigate this, we ran a series of comparative428

experiments, using real data collected in our lab. In429

the first experiment, we investigated the importance430

of considering the uncertainty arising from the speech431

interface. In particular, we compared Pearl’s perfor-432

mance (using a POMDP to select actions) to a sim-433

ilar system that ignores that uncertainty. The second434

system uses an MDP policy, similar to the one de-435

scribed in[28]. Fig. 5shows results for three different436

performance measures, and three different users (in437

Fig. 5. Empirical comparison between POMDPs (with uncertainty, shown in gray) and MDPs (no uncertainty, shown in black) for high-level
robot control, evaluated on data collected in the assisted living facility. Shown are the average time to task completion (a), the average
number of errors (b), and the average user-assigned (not model assigned) reward (c), for the MDP and POMDP. The data is shown for
three users, with good, average and poor speech recognition.

decreasing order of speech recognition performance).438

For poor speakers, the MDP requires less time to439

“satisfy” a request due to the lack of clarification ques-440

tions (Fig. 5a). However, its error rate is much higher441

(Fig. 5b), which negatively affects the overall reward442

received by the robot (Fig. 5c). These results clearly443

demonstrate the importance of considering uncertainty444

at the highest robot control level, specifically with poor445

speech recognition. 446

In the second experiment, we investigated the im-447

portance of uncertainty management in the context of448

highly imbalanced costs and rewards. For example, in449

Pearl’s case, asking a clarification question is in fact450

much cheaper than accidentally guiding a person to a451
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Fig. 6. Empirical comparison between uniform and non-uniform
cost models. Results are an average over 10 tasks. Depicted are
three example users, with varying levels of speech recognition
accuracy. Users 2 and 3 had the lowest recognition accuracy, and
consequently more errors when using the uniform cost model.

wrong location, or guiding a person who does not want452

assistance. We therefore compared performance us-453

ing two POMDP models which differed only in their454

cost models. One model assumed uniform costs for all455

actions, whereas the second model assumed a more456

discriminative cost model in which the cost of verbal457

questions was lower than the cost of performing the458

wrong motion actions. A POMDP policy was learned459

for each of these models, and then tested experimen-460

tally in our laboratory. The results presented inFig. 6461

show that the non-uniform model makes more judi-462

cious use of confirmation actions, thus leading to a463

significantly lower error rate, especially for users with464

low recognition accuracy.465

These experiments confirm the need to reason about466

observation uncertainty during planning, and thus val-467

idate our choice of POMDPs as the appropriate model468

for robot interaction. Although the experiments de-469

scribed in this section focused principally on the un-470

certainty stemming from the speech interface, other471

robot sensors are also prone to measurement uncer-472

tainty which can be equally handled by the POMDP473

framework.474

6. Results475

Following integration of the three software mod-476

ules onto Pearl, the robot was deployed in a retirement477

community located near Pittsburgh, PA. This section478

describes experiments involving elderly residents of479

this facility, with mild cognitive, perceptual, or phys-480

ical limitations. 481

We tested the robot in five separate experiments,482

each lasting one full day. The first 3 days focused on483

open-ended interactions with a large number of elderly484

users, during which the robot interacted verbally and485

spatially with elderly people with the specific task of486

delivering sweets. This allowed us to gauge people’s487

initial reactions to the robot. 488

Following this, we performed 2 days of formal ex-489

periments during which the robot autonomously con-490

ducted 12 test scenarios, involving six different el-491

derly people. In each scenario, the robot was required492

to provide a timed reminder (e.g. scheduled appoint-493

ment) to the test subject, lead the subject between lo-494

cations in the facility, and verbally interact with the495

Fig. 7. Example of a successful guidance experiment: (a) Pearl
picks up the patient outside her room; (b) reminds her of a phys-
iotherapy appointment; (c) guides the person to the physiotherapy
department; (d) enters the department; (e) satisfies a request for
the weather report; (f) terminates the interaction and leaves.
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user.Fig. 7 shows an example guidance experiment,496

involving an elderly person who uses a walking aid.497

The sequence of images illustrates the major stages498

of a successful delivery: from contacting the person,499

delivering the reminder, walking her through the fa-500

cility, and providing information after the successful501

delivery—in this case on the weather.502

Each test subject received a short (approximately503

5 min) training session with the robot, before complet-504

ing the scenario. In all trials, the task was performed505

to completion, without any outside intervention. All506

reminders were successfully delivered (as confirmed507

through a touch-screen press by the user), and in all508

but one trial, the robot guided the subject to their ap-509

pointment. The exception occurred when a test sub-510

ject communicated to the robot that she did not re-511

quire assistance, and the robot therefore appropriately512

returned to its home base rather than proceed with the513

guidance.514

Post-experimental debriefings illustrated a uniform515

high-level of excitement on the side of the elderly.516

Overall, only a few problems were detected during the517

operation. None of the test subjects showed difficul-518

ties understanding the major functions of the robot, in-519

cluding spatial motion, touch-screen I/O, and speech520

output. Earlier trials with a poorly adjusted speech521

recognition system, and fixed velocity robot motion,522

both caused difficulties. These were addressed by in-523

creasing the role of the touch-screen, and including524

adaptable velocities.525

7. Discussion526

This paper described a mobile robotic assistant for527

nurses and elderly residents in assisted living facili-528

ties. The system has been tested successfully in ex-529

periments in a nursing home, where the robot au-530

tonomously provided reminders and guidance to el-531

derly residents.532

The experiments were successful in two main di-533

mensions. First, they provided some evidence towards534

the feasibility of using autonomous mobile robots as535

assistants to nurses and institutionalized elderly. This536

was demonstrated in part by the robot’s ability to com-537

plete the assigned task, but also by the fact that the538

response from the elderly participants was uniformly539

positive.540

Second, this project also demonstrated the effec-541

tiveness of probabilistic tracking and decision making542

for interactive robots. Pearl is one of a few robots to543

use POMDPs, and the first to apply POMDP planning544

to the highest level of decision making. The ability545

to represent the uncertainty inherent in a person’s be-546

havior, and formulate plans accordingly, allowed the547

robot to robustly handle difficult situations, including548

noisy communication and crowded environments. 549

One of the key lessons learned while developing550

this robot is the imperative need for techniques that551

can cope with individual differences. This is especially552

true when designing robots for elderly users, which553

exhibit a great range of skills as a result of age-related554

decline. We had to make specific adjustments to ac-555

commodate varying walking speeds, voice levels, and556

auditory acuity. 557

Given the pressures of an aging population, we view558

the area of assistive technology as a prime source for559

great AI problems in the future. 560
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