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Abstract

This paper describes a mobile robotic assistant, developed to assist elderly individuals with mild cognitive and physical
impairments, as well as support nurses in their daily activities. We present three software modules relevant to ensure successful
human-robot interaction: an automated reminder system; a people tracking and detection system; and finally a high-level
robot controller that performs planning under uncertainty by incorporating knowledge from low-level modules, and selecting
appropriate courses of actions. During the course of experiments conducted in an assisted living facility, the robot successfully

demonstrated that it could autonomously provide reminders and guidance for elderly residents.
© 2002 Published by Elsevier Science B.V.

Keywords:Robot control; Human-robot interaction; Planning; Scheduling; Probabilistic reasoning

1. Introduction of health care, HCl/psychology, and Al/robotics. Thes
overall goal of the project is to develop mobile roboties
The US population is aging at an alarming rate. At assistants that can assist nurses and elderly peoplein
present, 12.5% of the US population is of age 65 or their daily activities. 38
older [31]. It is widely recognized that this ratio will To this aim, the team has developed a prototyp»
increase as the baby-boomer generation moves into re-autonomous mobile robot, shown iRig. 1 [23] 40
tirement age. Meanwhile, the nation faces a significant This robot primarily interacts with the world throughaa
shortage of nursing professionals. The Federation of speech, visual displays, facial expressions and physi-
Nurses and Health Care Professionals has projected acal motion. It differs from earlier workplace robots in43
need for 450,000 additional nurses by the year 2008. that it goes beyond simply interacting with an (oftens
This acute need provides significant opportunities Static) environment, to interacting with human users
for robotics and Al researchers to develop assistive and bystanders. Thus we leverage earlier technak
technology that can improve the quality of life of our ogy for navigation, localization and mapping, andz
aging population, and help nurses become more effec- specifically focus on developing new algorithmic ap4s
tive in their activities. TheNursebot projectvas con- proaches to track people, predict their behavior, and
ceived in response to this challenge. It is formed by a react appropriately. 50
multi-disciplinary team of investigators from the fields From the many services a nursing-assistant robst
could provide[12,19], the work reported here consid-s2
"+ Corresponding author. Tekt1-412-268-4857: ers the task of reminding people of events and guiding
fax: +1-412-268-5571. them through their environments. Both of these tasks
E-mail addressjpineau@cs.cmu.edu (J. Pineau). are particularly relevant for the elderly communityss

0921-8890/02/$ — see front matter © 2002 Published by Elsevier Science B.V.
doi:10.1016/S0921-8890(02)00381-0
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Fig. 1. Nursebot Pearl.

nents most pertinent to human—robot interaction: am
automated reminder system that incorporates knovdr
edge of a person’s typical schedule with observationrs
of recent activities, and issues pertinent remindees
about upcoming events; a module that uses efficiest
particle filter techniques to detect and track people;
and finally a high-level robot controller that uses pros2
babilistic reasoning techniques to arbitrate between
information-gathering and performance-related a4
tions, while also incorporating information obtaineds
through both navigation sensors (e.g. laser range
finder) and interaction sensors (e.g. speech recogni-
tion and touch-screen). 98

In systematic experiments conducted at a nursing
home, we found the combination of techniques to b®
highly effective in dealing with elderly test subjectso1
In particular, during a sequence of one-on-one interae
tions between Pearl and residents of the nursing home,

Decreased memory is a common effect of age-related the robot demonstrated the ability to contact a residernt,

cognitive decline, which often leads to forgetfulness
about routine daily activities (e.g. taking medications,
attending appointments, eating, drinking, bathing, toi-
leting) thus the need for a robot that can offer cognitive
reminders. In addition, nursing staff in assisted liv-
ing facilities frequently need to escort elderly people
walking, either to get exercise, or to attend meals, ap-
pointments or social events. The fact that many elderly

people move at extremely slow speeds (e.g. 5cm/s)
makes this one of the most labor-intensive tasks in as-

sisted living facilities. It is also important to note that
the help provided is often not strictly of a physical na-
ture. Rather, nurses often provide important cognitive
help, guidance and motivation, in addition to valuable
social interaction.

Several factors make this task a challenging one for
a robot to accomplish successfully. First, many elderly
have difficulty understanding the robot’s synthesized

remind them of an appointment, accompany themita
that appointment, as well as provide information afe
interest to that person, for example weather reportsior
television schedules. 108

2. Hardware and software description 109
Fig. 1 shows an image of the nursing robot Pearho
It is equipped with a differential drive system, twei1
on-board PCs, wireless Ethernet, laser range findets,
sonar sensors, microphones for speech recognitian,
speakers for speech synthesis, touch-sensitive graph-
ical displays, actuated head units, and stereo camesa
systems. As a result of input from nurses and mediead
experts, Pearl also features two sturdy handle-bars;a
compact design that allows for cargo space, a remos
able tray, and a sophisticated head unit. 119

speech, as well as articulating an appropriate response On the software side, the robot features off-the-shelf

in a computer-understandable way. In addition, walk-

autonomous mobile robot navigation systgpiR9], 121

ing abilities vary drastically between individuals. Peo- speech recognition softwan@5], speech synthesisi22
ple with walking aids are usually an order of magni- software [4], fast image capture and compressians
tude slower than people without, and people often stop software for online video streaming, face detectiam
to chat or catch their breath along the way. It is there- tracking softward26], as well as the three major newss
fore imperative that the robot adapt to individuals—an software modules described in this paper. These mod-
aspect of interaction that has been poorly explored in ules are principally concerned with people interactiagy
Al and robotics. and control. They overcome important deficiencies o

The work presented in this paper seeks to addressthe work described by5,29], which had only rudi- 129
these challenges, focusing on three software compo- mentary abilities to interact with people. 130
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3. Plan management with Autominder

The Autominder software component contains the
intelligent cognitive orthoticsystem. It is designed
to provide elderly people with reminders about their
daily activities[24]. The idea of using computer tech-
nology to enhance the performance of cognitively dis-
abled people dates back nearly 40 yefdr3]. More
recently, cognitive orthotics have enabled reminders
to be provided using the telephofigt], personal dig-
ital assistant§l1], and pager§l6]. Related work has
also been done on improved modeling of users’ ac-
tivities [18,21], where in one case a hand-device uses
Al planning technology to model the user’s plans, and
provide visual and audible cues about its execution.

In the Nursebot project, the goal of this software
system is to make principled decisions about what
reminders to issue and when, balancing the following
potentially competing objectives: (i) ensure that the
user is aware of activities s/he is expected to perform,
(i) increase the likelihood that s/he will perform at

the user’s plan of daily activities in th€lient Plan 161
and is responsible for updating it and identifying ang2
potential conflicts in it; a Client Modeler (CM), whiclues
uses information about the user’s observable activities
to track the execution of the plan, storing its belieiss
about the execution status in ti@ient Mode] and 166
a Personal Cognitive Orthotic (PCO), which reasorns
about any disparities between what the user is sug
posed to do and what s/he is doing, and makes dees-
sions about when to issue reminders. 170
To initialize the system, the care-giver of an elderly1
user inputs a description of the person’s daily actiuizz
ties, as well as any constraints on, or preferences re-
garding, the time or manner of their performance. This
plan may then be changed in one of the four ways: {%
the user or care-giver may add new activities; (ii) thes
user or care-giver may modify or delete activities alz7
ready in the plan; (iii) the user may execute one of the
planned activities; or (iv) the simple passage of times
may cause automatic changes to be made in the plan.
Whenever a change occurs, the PM updates the user

least the required activities (e.g. taking medicine), (iii) plan, performing plan merging and constraint propssz
avoid annoying the user, and (iv) avoid making the gation as needed. To adequately represent user plans,
user overly reliant on the system. To attain these goals, it is essential to support a rich set of temporal cors4
the system must be flexible and adaptive, responding straints; we achieve this goal by modeling user plates
to the actions taken by the user. as Disjunctive Temporal Problems (DTPs) and reasass
The Autominder architecture is shownhig. 2 As ing about them using efficient algorithrf30]. 187
depicted, the system maintains an accurate model ofa The CM incorporates sensor information gatheresk
user’s daily schedule, monitors performance of activi- by the robot to infer activities performed by the usess
ties, and plans reminders accordingly. The three main The relevant sensor information comes from laseb
components are: a Plan Manager (PM), which stores readings, as well as touch-screen and speech inpat.

Activity Info

Sensor
Data

Plan Client
Manager Modeler

% A

SClient™, ./ Client™,
“\Plan " Model
P o’

Personal
Cognitive
Orthodic

Preferences

Fig. 2. Autominder architecture.
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The laser readings are used to track the user and reasod. Locating people 240
about site-specific tasks (e.g. going into the kitchen
for a period of time can indicate meal-taking). The In order to track users and guide them to their actiw
touch-screen and speech are used to confirm compli-ities, it is necessary to interact with people spatialby2
ance to reminders (e.g. whether medication has beenand most specifically to be able to locate people in theis
taken). If the likelihood is high that a planned ac- living environment. The problem of locating people s
tivity has been executed, the CM reports this to the the problem of determining thei-y-location relative 245
PM, which can then update the user’s plan by record- to the robot: Previous approaches to people trackings
ing the time of execution, and propagate any affected in robotics are feature-based: they analyze sensor mea-
constraints accordingly. The user model is representedsurements (images, range scans) for the presencesof
using a Quantitative Temporal Bayes Net (QTBN), featureg15,27]as the basis of tracking. In our casess
which was developed to handle the need both to rea- the diversity of the environment mandates a differezn
son about fluents and about probabilistic temporal con- approach. Pearl detects people using map differera-
straints[6]. ing: the robot learns a map, and people are detecied
The final component of the Autominder is the PCO by significant deviations from the mapig. 3 shows 253
[22], which uses both the user plan and the user model an example map acquired using preexisting softwase
to determine what reminders should be issued and [29]. 255
when. The PCO identifies activities that may require  Mathematically, the problem of people tracking ise
reminders based on their importance and their like- a combined posterior estimation problem and modet
lihood of being executed on time as modeled in the selection problem. Le¥l be the number of people neatss
CM. It also determines the most effective times to is- the robot. The posterior over the people’s positionszis

sue each required reminder, taking account of the ex- given by 260
pected user behavior, and any preferences explicitly W
provided by the user and the care-giver. Finally, the POLes -« s Ynil2', u', m) (1) 261

PCO provides justifications as to why particular activi-
ties warrant a reminder. The PCO treats the generation
of a reminder plan as a satisfying problem and uses
a local-search approach called Planning-by-Rewriting
(PbR)[2] to produce a high-quality reminder plan that
takes into account the user’s expected behavior, pref-
erences, and interactions amongst planned activities
The Autominder system was initially designed to
interact with a specific individual, rather than a com-
munity of users. In the nursing home environment,
Automingler would need to maintaiq para}llel plansfor p(yy ;. ..., yns X2, Ul m) (2) 2n
each individual, and would need to identify the appro-
priate person for each action. This is particularly im- wherex’ denotes the sequence of robot poses (the path)
portant when issuing key health reminders (e.g. med- up to timet. If N was known, estimating this postez7s
ication and appointments). The current robot system rior would be a high-dimensional estimation probleraz4
does not fully address this problem: it simply assumes with complexity cubic inN for Kalman filters[3], or 275
that the target person can be found in his/her room, exponential inN with particle filters[9]. Neither of 276
and thus identifies individuals by their initial location. these approaches is applicable: Kalman filters canmot
In the future, person identification could best be han- globally localize the robot, and particle filters woulers
dled by camera-based face identification, or requiring be computationally prohibitive. 279
the user to verbally confirm his/her identity. Though
we have not focused on the problempefrson identi- ﬁpending on the task at hand, additional dimensions such

fication we do address the questionprson finding as orientation or velocity and bearing may be of interest, but we
as described in the next section. ignore these features for our particular problem.

wherey, ; with 1 < n < N is the location of a persornze2
at timet, Z the sequence of all sensor measurements,
U’ the sequence of all robot controls, amthe envi- 264
ronment map. However, to use map differencing, tbe
robot has to know its own location. The location ands
total number of nearby people detected by the rohet
" is clearly dependent on the robot’s estimate of its owss
location and heading direction. Hence, Pearl estimates
a posterior of the type: 270



280
281
282
283

284

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310

ARTICLE IN PRESS

J. Pineau et al./Robotics and Autonomous Systems 1048 (2002) 1-11 5
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Fig. 3. (a)—(c) Evolution of the conditional particle filter from global uncertainty to successful localization and tracking. (d) The tracker
continues to track a person even as that person is occluded repeatedly by a second individual.

Luckily, under mildly restrictive conditions (dis-
cussed below) the posterioEq. (2) can be fac-
tored into N + 1 conditionally independent esti-
mates

P& u!,m)[ [pOnil2', u’, m)

n

Fig. 3shows results of the filter in action. Fig. 3a, 311
the robot is globally uncertain, and the number ang
location of the corresponding people estimates varses
drastically. As the robot reduces its uncertainty, the:
number of modes in the robot pose posterior quicklys
becomes finite, and each such mode has a distinctsset
of people estimates, as shownhig. 3b. Finally, as 317
the robot is localized, so is the persdnig. 3c). When 318
guiding people, the localization estimate of the persamn
is used to determine the velocity of the robot, so thab
the robot maintains roughly a constant distance to the
person. In our experiments in the target facility, w2
tion (MCL) algorithm for mobile robot localization  found the adaptive velocity control to be absolutetys
[7]. Each particle in this filter is associated with a set of essential for the robot’s ability to cope with the huge4
N particle filters, each representing one of the people range of walking paces found in the elderly populazs
position estimatep(y, (|z’, u’, m). Theseconditional tion. Initial experiments with fixed velocity led almost2s
particle filters represent people position estimates always to frustration on the people’s side, in that ther
ditionedon robot path estimates—hence capturing the robot was either too slow or too fast. 328
inherent dependence of people and robot location es-  Finally, Fig. 3d illustrates the robustness of the filtexs
timates. The data association between measurementgo interfering people. Here another person steps b&-
and people is done using maximum likelihood, as in tween the robot and its target subject. The filter obtains
[3]. Under the (false) assumption that this maximum its robustness to occlusion from a carefully craftee
likelihood estimator is always correct, our approach probabilistic model of people’s motiop(y, ;+1|yn.). 333
can be shown to converge to the correct posterior, and This enables the conditional particle filters to mains4
it does so with update time linear . In practice, tain tight estimates while the occlusion takes placss
we found that the data association is correct in the as shown inFig. 3d. During in-lab experiments in-33s
vast majority of situations. The nested patrticle filter volving 31 tracking instances with up to five people
formulation has a secondary advantage that the num-at a time, the error in determining the number of pegss
ber of peopleN can be made dependent on individ- ple was 9.6%. The error in the robot position wasse
ual robot path particles. Our approach for estimating 2.5+ 5.7 cm, and the people position error was as lmao
N uses the AIC criterion for model selecti@h], with as 154+4.2 cm, when compared to measurements ahz
a prior that imposes a complexity penalty exponential tained with a carefully calibrated static sensor witia2
in N. +1cm error. 343

©)

This factorization opens the door for a particle filter
that scales linearly itN. Our approach is similar (but
not identical) to the Rao-Blackwellized particle filter
described irf10]. First, the robot patl¥’ is estimated
using a particle filter, as in the Monte Carlo localiza-
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5. High-level robot control and dialog
management

The most central module in Pearl’'s software is a
probabilistic algorithm for high-level control and dia-
log management. This module integrates observations
from lower-level modules (e.g. the Autominder, the

people tracker, the speech recognizer, etc.) and uses

this information to select appropriate behaviors and
responses.

Pearl’s high-level control architecture is modeled
as a partially observable Markov decision process
(POMDP) [17]. The POMDP is a model for calcu-
lating optimal control actions under uncertainty. The
control decision is based on a probabilistic belief over
possible states.

In Pearl’s case, this distribution is defined over a
collection of multi-valued state variables:

robot location (discrete approximation);

person’s location (discrete approximation);
person’s status (inferred from speech recognizer);
motion goal (where to move);

reminder goal (what to inform the user of);

user initiated goal (e.g., an information request).

The value of theperson’s locationvariable is ob-
served through the people tracker, and similarly the
reminder goalvariable is set by the Autominder mod-
ule. Overall, there are 516 possible states. The in-
put to the POMDP is a factored probability distribu-

tion over these states, generated by a state estimalower level POMDPS).

tor, such as irEq. (2) Uncertainty over the current
state arises predominantly from the localization mod-
ules and the speech recognition system. The consid-
eration of uncertainty is especially important in this
domain, as the costs of giving the wrong reminder, or
unnecessarily sending the robot to a location can be
large.

Unfortunately, POMDPs of the size encountered
here are an order of magnitude larger than today’'s
best exact POMDP algorithms can tackl¥]. How-
ever, Pearl's domain is highly structured, since cer-
tain actions are only applicable in certain situations.
To exploit this structure, we developedheerarchical
version of POMDPs, which breaks down the decision
making problem into a collection of smaller problems
that can be solved more efficiently. Our approach is
similar to the MAX-Q decomposition for MDPE8],

Act

<_<'

Remind A531st Rest
> RemindPhysio > VerlfyBrmg Recharge
> PublishStatus > VerifyRelease GotoHome
Y A 2 2

[ Contact } [Move} Inform\
':: RingBell BringtoPhysio SayTime

GotoRoom CheckUserPresent [ » SayWeather
DeliverUser VerifyRequest

Fig. 4. Dialog problem action hierarchy.

but defined over POMDPs (where states are unale
served). 391
The basic idea of the hierarchical POMDP is to pais2
tition the action space—not the state space, since ite
state is not fully observable—into smaller chunks. Feaa
Pearl’s guidance task the action hierarchy is showrsin
Fig. 4, whereabstract actiongshown in circles) are in-3g
troduced to subsume logical subgroups of lower-lewst
actions. This action hierarchy induces a decomposis
tion of the control problem, where at each node atb
lower-level actions, if any, are considered in the como
text of a local sub-controller. At the lowest level, the:
control problem is a regular POMDP, with a reduced:
action space. At higher levels, the control problem 4s
also a POMDP, yet involves a mixture of physical ands
abstract actions (where abstract actions corresponeoto
406
Itis important to notice that such a decomposition4sr
especially appropriate when the optimal control transs
gresses down along a single path in the hierarchyate
receive its reward. This is approximately the case 4m
the Pearl domain, where goals are satisfied upon sue-
cessfully delivering a person, or successfully conveys
ing or gathering information through communicationis
Using the hierarchical POMDP, the high-level dei4
cision making problem in Pearl is tractable, andasas
near-optimal control policy can be computed off-lineis
Thus, during execution time the controller simply7
monitors the state (calculates the posterior) and loaks
up the appropriate controfable 1shows an examplesis
dialog between the robot and a test subject. Because
of the uncertainty management in POMDPs, the rohot
chooses to ask a clarification question at three ocea-
sions. The number of such questions depends on 4ke
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Table 1
Sample dialog demonstrating the role of clarification acflons
Observation True state Action Reward
Pearl hello requestegun sayhello 100
Pearl what is like starneds ask _repeat —100
Pearl what time is it for will the wantime saytime 100
Pearl was on abc wairty askwhich_station -1
Pearl was on abc wartbc sayabc 100
Pearl what is on nbc waumtbc confirm_channel_nbc -1
Pearl yes wanhbc saynbc 100
Pearl go to the that pretty good what sathot askrobotwhere -1
Pearl that that hello be semdbotbedroom confirm_robot_place -1
Pearl the bedroom any sendrobotbedroom gato_bedroom 100
Pearl go it eight a hello senwbot askrobotwhere -1
Pearl the kitchen hello senmbotkitchen gato_kitchen 100

aThe observationdescribes the output from the speech recognizer. ffilne stateis manually extracted by a human observer. The

action is chosen by the POMDP policy. Actions in bold font are clarification actions, chosen by the POMDP because of high uncertainty

in the speech signaRewardindicator describes the appropriateness of the action for the given state.

clarity of a person’s speech, as detected by the Sphinx decreasing order of speech recognition performance3.

speech recognition system.

An important remaining question concerns the im-
portance of handling uncertainty in high-level control.
To investigate this, we ran a series of comparative
experiments, using real data collected in our lab. In
the first experiment, we investigated the importance
of considering the uncertainty arising from the speech
interface. In particular, we compared Pearl's perfor-
mance (using a POMDP to select actions) to a sim-

For poor speakers, the MDP requires less time 40
“satisfy” a request due to the lack of clarification quesso
tions (Fig. 5a). However, its error rate is much highes
(Fig. Bb), which negatively affects the overall rewargh>
received by the robotHig. 5c). These results clearlysss
demonstrate the importance of considering uncertainty
at the highest robot control level, specifically with poa#s
speech recognition. 446

In the second experiment, we investigated the im7

ilar system that ignores that uncertainty. The second portance of uncertainty management in the contextsed
system uses an MDP policy, similar to the one de- highly imbalanced costs and rewards. For examplegia
scribed in[28]. Fig. 5shows results for three different  Pearl’s case, asking a clarification question is in fast
performance measures, and three different users (inmuch cheaper than accidentally guiding a person tesa

L ser Data -- Time to Satisfy Request
POMDF Pol

e
)

User Data -- Error Performance

User Data -- Reward Accumulation

OMDP Palicy

Cunvrnuona)i —
25F 2.5 MDP Policy

=
=

C unvem\onul MDP l’ulw;}'n—

e e
& 2

o

o o o o
R i

= £
s &
Average Reward per Action

=)
=2
Y

Average # of actions to satisfy request
ir
Average Errors per Action

POMDP Policy

Cun\enuonal 52.2

MDP Policy 50 |
\ I 0

User 1 User 2 User 3 User User 2 User 3

User 1 User 2 User 3

(a) (b) (c)

Fig. 5. Empirical comparison between POMDPs (with uncertainty, shown in gray) and MDPs (no uncertainty, shown in black) for high-level
robot control, evaluated on data collected in the assisted living facility. Shown are the average time to task completion (a), the average
number of errors (b), and the average user-assigned (not model assigned) reward (c), for the MDP and POMDP. The data is shown for
three users, with good, average and poor speech recognition.
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G e descives sxpeitnts imeing sy reshprs o
Non-uniform cost model s J ) ) 280
Hnifermcost "‘“ﬁf; - ical limitations. 481
1.5 ] We tested the robot in five separate experiments,
E 12 each lasting one full day. The first 3 days focused gg
5 open-ended interactions with a large number of eldegky
E users, during which the robot interacted verbally ang
. spatially with elderly people with the specific task ofg
0.3 delivering sweets. This allowed us to gauge peoplgs
o initial reactions to the robot. 488
0 User T User Z User 3 Following this, we performed 2 days of formal exsgqg

periments during which the robot autonomously cogy,
Fig. 6. Empirical comparison between uniform and non-uniform ducted 12 test scenarios, involving six different €lo;
cost models. Results are an average over 10 tasks. Depicted arede”y people. In each scenario. the robot was requic@g
three example users, with varying levels of speech recognition . . . ’ .
accuracy. Users 2 and 3 had the lowest recognition accuracy, and to pI’OVIde a timed re_mmder (e.g. SCh?dUIed appoids
consequently more errors when using the uniform cost model. ~ Ment) to the test subject, lead the subject between Jgr

cations in the facility, and verbally interact with thggs

wrong location, or guiding a person who does not want
assistance. We therefore compared performance us;
ing two POMDP models which differed only in their
cost models. One model assumed uniform costs for all
actions, whereas the second model assumed a more
discriminative cost model in which the cost of verbal
guestions was lower than the cost of performing the
wrong motion actions. A POMDP policy was learned
for each of these models, and then tested experimen-
tally in our laboratory. The results presented-ig. 6
show that the non-uniform model makes more judi-
cious use of confirmation actions, thus leading to a
significantly lower error rate, especially for users with
low recognition accuracy.

These experiments confirm the need to reason about
observation uncertainty during planning, and thus val-
idate our choice of POMDPs as the appropriate model (©) (d)
for robot interaction. Although the experiments de-
scribed in this section focused principally on the un-
certainty stemming from the speech interface, other
robot sensors are also prone to measurement uncer
tainty which can be equally handled by the POMDP
framework.

(e) (f)
6. Results
Fig. 7. Example of a successful guidance experiment: (a) Pearl

. . . picks up the patient outside her room; (b) reminds her of a phys-
Following integration of the three software mod- iotherapy appointment; (c) guides the person to the physiotherapy

ules onto Pearl, the robot was deployed in a retirement gepartment; (d) enters the department; (e) satisfies a request for
community located near Pittsburgh, PA. This section the weather report; (f) terminates the interaction and leaves.
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user.Fig. 7 shows an example guidance experiment,  Second, this project also demonstrated the effect
involving an elderly person who uses a walking aid. tiveness of probabilistic tracking and decision makirme
The sequence of images illustrates the major stagesfor interactive robots. Pearl is one of a few robots tas
of a successful delivery: from contacting the person, use POMDPs, and the first to apply POMDP plannimag
delivering the reminder, walking her through the fa- to the highest level of decision making. The abilityus
cility, and providing information after the successful to represent the uncertainty inherent in a person’s b&
delivery—in this case on the weather. havior, and formulate plans accordingly, allowed ther
Each test subject received a short (approximately robot to robustly handle difficult situations, includingss
5 min) training session with the robot, before complet- noisy communication and crowded environments. s49
ing the scenario. In all trials, the task was performed  One of the key lessons learned while developiagp
to completion, without any outside intervention. All  this robot is the imperative need for techniques that
reminders were successfully delivered (as confirmed can cope with individual differences. This is especialtg2
through a touch-screen press by the user), and in alltrue when designing robots for elderly users, whieks
but one trial, the robot guided the subject to their ap- exhibit a great range of skills as a result of age-related
pointment. The exception occurred when a test sub- decline. We had to make specific adjustments to ass
ject communicated to the robot that she did not re- commodate varying walking speeds, voice levels, assd
quire assistance, and the robot therefore appropriatelyauditory acuity. 557
returned to its home base rather than proceed with the  Given the pressures of an aging population, we viegs
guidance. the area of assistive technology as a prime source dir
Post-experimental debriefings illustrated a uniform great Al problems in the future. 560
high-level of excitement on the side of the elderly.
Overall, only a few problems were detected during the

operation. None of the test subjects showed difficul- Uncited reference 561
ties understanding the major functions of the robot, in-
cluding spatial motion, touch-screen 1/O, and speech [20]. 562

output. Earlier trials with a poorly adjusted speech
recognition system, and fixed velocity robot motion,

both caused difficulties. These were addressed by in- Acknowledgements 563
creasing the role of the touch-screen, and including
adaptable velocities. The authors wish to thank the many members =t

the Nursebot team for their invaluable contribution. kas

particular, the Autominder component was developssd

7. Discussion with the help of Laura Brown, Dirk Colbry, Colleerse?
McCarthy, Cheryl Orosz, Bart Peintner and loamses

This paper described a mobile robotic assistant for nis Tsamardinos. The robot design and user studies
nurses and elderly residents in assisted living facili- benefited greatly from the suggestions of our Nurse
ties. The system has been tested successfully in ex-ing and HCI colleagues: Jacqueline Dunbar-Jacobs,
periments in a nursing home, where the robot au- Sandra Engberg, Sara Kiesler, Francine Gempeste,
tonomously provided reminders and guidance to el- Jennifer Goetz and Judith Matthews. This work was
derly residents. supported by the National Science Foundation Gramt
The experiments were successful in two main di- 11S-0085796. 575
mensions. First, they provided some evidence towards
the feasibility of using autonomous mobile robots as
assistants to nurses and institutionalized elderly. This
was demonStratEd in part by the robot's ability to com- [1] H. Akaike, A new look at statistical model identification577
plete the assigned task, but also by the fact that the IEEE Transactions on Automatic Control 19 (1974) 716-728z8

response from the elderly participants was uniformly [2] J.L.. Ambite, C.A. Knoblock, Planning by rewriting, Journab79
positive. of Artificial Intelligence Research 15 (2001) 207-261. 580
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