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Learning in Partially Observable Markov Decision Processes is a notoriously difficult prob-
lem. The goal of our research is to address this problem for environments in which a partial
model may be available, in the beginning, but in which there is uncertainty about the model
parameters. We developed and algorithm called MEDUSA [4,5], which is based on ideas
from active learning [1,2,3].

We assume that prior knowledge about the model, as well as the level of uncertainty in the
model, can be represented by a Dirichlet distribution over possible models. The parameters
of this distribution are then updated whenever new experience is acquired. This allows a
simple framework for combining a priori knowledge of the model, with direct experience
with the environment.

In order to obtain training data for the model, we also assume the availability of an oracle,
which upon request can provide the agent with exact information about the current state.
For example, in a spoken dialogue system, the agent can request the user to type in the word
uttered, if it cannot be understood correctly. The state information is used only to improve
the model, not in the action selection process. This means that there can be delays between
the query request and the query processing. The answer to the query can also be noisy.
The parameters of the Dirichlet distribution can also be updated directly from experience,
without querying the oracle.

The algorithm is as follows. First, we assume that initial Dirichlet parameters are given,
representing both a priori knowledge of the model, and uncertainty over model parameters.
If appropriate, several parameters can share the same Dirichlet distribution (and hence use
the same set of hyperparameters). Next, our agent samples a number of POMDP mod-
els according to this Dirichlet distribution. The agent then computes an (approximately)
optimal policy for each of these models. At each time step, one of the models is chosen
at random (with probability equal to the weight of each model under the current Dirichlet
distribution) and the corresponding optimal action is applied. This reasonable execution
performance throughout the active learning process. It also allows the agent to focus the
active learning in regions of the state space most often visited by good policies. Each time
an action is taken and an observation is received, the agent can decide to query the oracle
for the true identity of the hidden state. If a query os performed, the Dirichlet distributions
are updated according to its outcome. We note that the result of the query is used only to
update the model, and has no impact on the action choices. This is crucial, as we assume
that the agent will not be allowed to query after the learning process has been completed.
Hence, the policy learned must be able to rely on the model alone.

In order to reduce as much as possible the number of queries, the agent can decide to
use just the information from the action-observation sequence so far and the knowledge



obtained from previous queries in order to update the Dirichlet parameters. This is called
non-query learning. In order to obtain the best information possible from the queries,
the agent maintains an additional belief state associated with each model, called alternative
belief. When a query is made, the alternative belief is set to reflect the full state information.
Afterwards, it is updated based on the action-observation sequence in the standard Bayesian
way. The alternative belief state is not used in planning; its role is to keep track of the
information available from the previous query.

The decision on whether to perform a query or not is based on three factors:

• The variance in the values predicted for the best action among the current models;
this is a very good indicator of how much learning remains to be done.

• The information gain of a query; this is computed based on the alternate belief

• The entropy in the mean alternate belief; if the entropy is high, a lot of knowledge
has been lost since the last query, and a new query is in order.

In the current implementation, these are combined heuristically. MEDUSA can also adapt
to non-stationarity in the environment, because discounting is used to weigh more recent
experience.

MEDUSA scales nicely: one Dirichlet parameter is needed for each uncertain POMDP pa-
rameter, but the size of the underlying POMDP representation remains unchanged, which
means that the complexity of the planning problem does not increase. However this ap-
proach requires the agent to repeatedly sample POMDPs from the Dirichlet distribution
and solve the sampled models in order to select good queries.

We tested MEDUSA both on standard tasks from the POMDP repository, and recently, on a
large robotic navigation task using the Carmen simulator. In all cases, MEDUSA converges
to the correct model parameters in a reasonable number of queries, and the total number
of queries stabilizes. This indicates that the learned policy does not rely on queries at all.
More importantly, the performance is very good even during the learning process.

More detailed information on MEDUSA can be obtained from:

http://www.cs.mcgill.ca/ rjaulm/
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