
Applying Metric-Trees to Belief-Point POMDPs

Joelle Pineau, Geoffrey Gordon
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{jpineau,ggordon}@cs.cmu.edu

Sebastian Thrun
Computer Science Department

Stanford University
Stanford, CA 94305

thrun@stanford.edu

Abstract

Recent developments in grid-based and point-based approximation algo-
rithms for POMDPs have greatly improved the tractability of POMDP
planning. These approaches operate on sets of belief points by individ-
ually learning a value function for each point. In reality, belief points
exist in a highly-structured metric simplex, but current POMDP algo-
rithms do not exploit this property. This paper presents a new metric-tree
algorithm which can be used in the context of POMDP planning to sort
belief points spatially, and then perform fast value function updates over
groups of points. We present results showing that this approach can re-
duce computation in point-based POMDP algorithms for a wide range of
problems.

1 Introduction

Planning under uncertainty is a central problem in the field of robotics as well as many
other AI applications. In terms of representational effectiveness, the Partially Observable
Markov Decision Process (POMDP) is among the most promising frameworks for this
problem. However the practical use of POMDPs has been severely limited by the computa-
tional requirement of planning in such a rich representation. POMDP planning is difficult
because it involves learning action selection strategies contingent on all possible types of
state uncertainty. This means that whenever the robot’s world state cannot be observed,
the planner must maintain a belief (namely a probability distribution over possible states)
to summarize the robot’s recent history of actions taken and observations received. The
POMDP planner then learns an optimal future action selection for each possible belief. As
the planning horizon grows (linearly), so does the number of possible beliefs (exponen-
tially), which causes the computational intractability of exact POMDP planning.

In recent years, a number of approximate algorithms have been proposed which overcome
this issue by simply refusing to consider all possible beliefs, and instead selecting (and
planning for) a small set of representative belief points. During execution, should the robot
encounter a belief for which it has no plan, it finds the nearest known belief point and
follows its plan. Such approaches, often known as grid-based [1, 4, 13], or point-based [8,
9] algorithms, have had significant success with increasingly large planning domains. They
formulate the plan optimization problem as a value iteration procedure, and estimate the
cost/reward of applying a sequence of actions from a given belief point. The value of

each action sequence can be expressed as an α-vector, and a key step in many algorithms
consists of evaluating many candidate α-vectors (set Γ) at each belief point (set B).

These B × Γ (point-to-vector) comparisons—which are typically the main bottleneck in
scaling point-based algorithms—are reminiscent of many M × N comparison problems
that arise in statistical learning tasks, such as kNN, mixture models, kernel regression, etc.
Recent work has shown that for these problems, one can significantly reduce the number of
necessary comparisons by using appropriate metric data structures, such as KD-trees and
ball-trees [3, 6, 12]. Given this insight, we extend the metric-tree approach to POMDP
planning, with the specific goal of reducing the number of B × Γ comparisons. This paper
describes our algorithm for building and searching a metric-tree over belief points.

In addition to improving the scalability of POMDP planning, this approach features a num-
ber of interesting ideas for generalizing metric-tree algorithms. For example, when using
trees for POMDPs, we move away from point-to-point search procedures for which the
trees are typically used, and leverage metric constraints to prune point-to-vector compar-
isons. We show how it is often possible to evaluate the usefulness of an α-vector over an
entire sub-region of the belief simplex without explicitly evaluating it at each belief point
in that sub-region. While our new metric-tree approach offers significant potential for all
point-based approaches, in this paper we apply it in the context of the PBVI algorithm [8],
and show that it can effectively reduce computation without compromising plan quality.

2 Partially Observable Markov Decision Processes

We adopt the standard POMDP formulation [5], defining a problem by the n-tuple:
{S,A,Z, T,O,R, γ, b0}, where S is a set of (discrete) world states describing the prob-
lem domain, A is a set of possible actions, and Z is a set of possible observations pro-
viding (possibly noisy and/or partial) state information. The distribution T (s, a, s′) de-
scribes state-to-state transition probabilities; distribution O(s, a, z) describes observation
emission probabilities; function R(s, a) represents the reward received for applying action
a in state s; γ represents the discount factor; and b0 specifies the initial belief distribu-
tion. An |S|-dimensional vector, bt, represents the agent’s belief about the state of the
world at time t, and is expressed as a probability distribution over states. This belief is
updated after each time step—to reflect the latest pair (at−1, zt)—using a Bayesian filter:
bt(s

′) := c O(s′, at−1, zt)
∑
s∈S T (s, at−1, s

′)bt−1(s), where c is a normalizing constant.

The goal of POMDP planning is to find a sequence of actions maximizing the expected
sum of rewards E[

∑
t γ

tR(st, at)], for all belief. The corresponding value function can be
formulated as a Bellman equation: V (b) = maxa∈A

[
R(b, a) + γ

∑
b′∈B T (b, a, b′)V (b′)

]

By definition there exist an infinite number of belief points. However when optimized ex-
actly, the value function is always piecewise linear and convex in the belief (Fig. 1a). After
n value iterations, the solution consists of a finite set of α-vectors: Vn = {α0, α1, ..., αm}.
Each α-vector represents an |S|-dimensional hyper-plane, and defines the value function
over a bounded region of the belief: Vn(b) = maxα∈Vn

∑
s∈S α(s)b(s). When performing

exact value updates, the set of α-vectors can (and often does) grow exponentially with the
planning horizon. Therefore exact algorithms tend to be impractical for all but the smallest
problems. We leave out a full discussion of exact POMDP planning (see [5] for more) and
focus instead on the much more tractable point-based approximate algorithm.

3 Point-based value iteration for POMDPs

The main motivation behind the point-based algorithm is to exploit the fact that most be-
liefs are never, or very rarely, encountered, and thus resources are better spent planning

for those beliefs that are most likely to be reached. Many classical POMDP algorithms
do not exploit this insight. Point-based value iteration algorithms on the other hand ap-
ply value backups only to a finite set of pre-selected (and likely to be encountered) belief
points B = {b0, b1, ..., bq}. They initialize a separate α-vector for each selected point, and
repeatedly update the value of that α-vector. As shown in Figure 1b, by maintaining a full
α-vector for each belief point, we can preserve the piecewise linearity and convexity of
the value function, and define a value function over the entire belief simplex. This is an
approximation, as some vectors may be missed, but by appropriately selecting points, we
can bound the approximation error (see [8] for details).

α 0 α 0V={ ,α 1 ,α 2 ,α 3}

b2 b1 b0 b3

V={ ,α 1 ,α 3}

(a) (b)

Figure 1: (a) Value iteration with exact updates. (b) Value iteration with point-based updates.

There are generally two phases to point-based algorithms. First, a set of belief points is se-
lected, and second, a series of backup operations are applied over α-vectors for that set of
points. In practice, steps of value iteration and steps of belief set expansion can be repeat-
edly interleaved to produce an anytime algorithm that can gradually trade-off computation
time and solution quality. The question of how to best select belief points is somewhat
orthogonal to the ideas in this paper and is discussed in detail in [8]. We therefore focus
on describing how to do point-based value backups, before showing how this step can be
significantly accelerated by the use of appropriate metric data structures.

The traditional value iteration POMDP backup operation is formulated as a dynamic pro-
gram, where we build the n-th horizon value function V from the previous solution V ′:

V (b) = max
a∈A

[∑

s∈S
R(s, a)b(s)+ γ

∑

z∈Z
max
α′∈V ′

∑

s∈S

∑

s′∈S

T (s, a, s′)O(z, s′, a)α′(s′)b(s)

]
(1)

= max
a∈A

[∑

z∈Z
max
α′∈V ′

[∑

s∈S

R(s, a)

|Z| b(s)+ γ
∑

s∈S

∑

s′∈S

T (s, a, s′)O(z, s′, a)α′(s′)b(s)

]]

To plan for a finite set of belief points B, we can modify this operation such that only
one α-vector per belief point is maintained and therefore we only consider V (b) at points
b ∈ B. This is implemented using three steps. First, we take each vector in V ′ and project
it backward (according to the model) for a given action, observation pair. In doing so, we
generate intermediate sets Γa,z,∀a ∈ A,∀z ∈ Z:

Γa,z ← αa,zi (s) =
R(s, a)

|Z| + γ
∑

s′∈S

T (s, a, s′)O(z, s′, a)α′i(s
′), ∀α′i ∈ V ′ (Step 1) (2)

Second for each b ∈ B, we construct Γa (∀a ∈ A). This sum over observations1 includes
the maximum αa,z (at a given b) from each Γa,z:

Γab =
∑

z∈Z
argmax
α∈Γa,z

(α · b) (Step 2) (3)

1In exact updates, this step requires taking a cross-sum over observations, which is
O(|S| |A| |V ′||Z|). By operating over a finite set of points, the cross-sum reduces to a simple sum,
which is the main reason behind the computational speed-up obtained in point-based algorithms.

Finally, we find the best action for each belief point:

V ← argmax
Γa
b
,∀a∈A

(Γab · b), ∀b ∈ B (Step 3) (4)

The main bottleneck in applying point-based algorithms to larger POMDPs is in step 2
where we perform a B × Γ comparison2: for every b ∈ B, we must find the best vector
from a given set Γa,z . This is usually implemented as a sequential search, exhaustively
comparing α · b for every b ∈ B and every α ∈ Γa,z , in order to find the best α at
each b (with overall time-complexity O(|A| |Z| |S| |B| |V ′|)). While this is not entirely
unreasonable, it is by far the slowest step. It also completely ignores the highly structured
nature of the belief space.

Belief points exist in a metric space and there is much to be gained from exploiting this
property. For example, given the piecewise linearity and convexity of the value function, it
is more likely that two nearby points will share similar values (and policies) than points that
are far away. Consequently it could be much more efficient to evaluate an α-vector over
sets of nearby points, rather than by exhaustively looking at all the points separately. In the
next section, we describe a new type of metric-tree which structures data points based on a
distance metric over the belief simplex. We then show how this kind of tree can be used to
efficiently evaluate α-vectors over sets of belief points (or belief regions).

4 Metric-trees for belief spaces

Metric data structures offer a way to organize large sets of data points according to distances
between the points. By organizing the data appropriately, it is possible to satisfy many
different statistical queries over the elements of the set, without explicitly considering all
points. Instances of metric data structures such as KD-trees, ball-trees and metric-trees have
been shown to be useful for a wide range of learning tasks (e.g. nearest-neighbor, kernel
regression, mixture modeling), including some with high-dimensional and non-Euclidean
spaces. The metric-tree [12] in particular offers a very general approach to the problem of
structural data partitioning. It consists of a hierarchical tree built by recursively splitting the
set of points into spatially tighter subsets, assuming only that the distance between points
is a metric.

4.1 Building a metric-tree from belief points

Each node η in a metric-tree is represented by its center ηc, its radius ηr, and a set of points
ηB that fall within its radius. To recursively construct the tree—starting with node η and
building children nodes η1 and η2—we first pick two candidate centers (one per child) at
the extremes of the η’s region: η1

c = maxb∈ηD D(ηc, b), and η2
c = maxb∈ηD D(η1

c , b). In
a single-step approximation to k-nearest-neighbor (k=2), we then re-allocate each point in
ηB to the child with the closest center (ties are broken randomly):

η1
B ← b if D(η1

c , b) < D(η2
c , b) (5)

η2
B ← b if D(η1

c , b) > D(η2
c , b)

Finally we update the centers and calculate the radius for each child:

η1
c = Center{η1

B} η2
c = Center{η2

B} (6)

η1
r = max

b∈η1
B

D(η1
c , b) η2

r = max
b∈η2

B

D(η2
c , b) (7)

2Step 1 projects all vectors α ∈ V ′ for any (a, z) pair. In the worse-case, this has time-complexity
O(|A| |Z| |S|2 |V ′|), however most problems have very sparse transition matrices and this is typically
much closer to O(|A| |Z| |S| |V ′|). Step 3 is also relatively efficient at O(|A| |Z| |S| |B|).

The general metric-tree algorithm allows a variety of ways to calculate centers and dis-
tances. For the centers, the most common choice is the centroid of the points and this is
what we use when building a tree over belief points. We have tried other options, but with
negligible impact. For the distance metric, we select the max-norm: D(ηc, b) = ||ηc−b||∞,
which allows for fast searching as described in the next section. While the radius deter-
mines the size of the region enclosed by each node, the choice of distance metric deter-
mines its shape (e.g. with Euclidean distance, we would get hyper-balls of radius ηr). In
the case of the max-norm, each node defines an |S|-dimensional hyper-cube of length 2∗ηr.
Figure 2 shows how the first two-levels of a tree are built, assuming a 3-state problem.

P(s1)

P(s2)

nc

nr

n1

n2

n0

n0

n1 n2

bi bj ...
(a) (b) (c) (d)

Figure 2: (a) Belief points. (b) Top node. (c) Level-1 left and right nodes. (d) Corresponding tree

While we need to compute the center and radius for each node to build the tree, there are
additional statistics which we also store about each node. These are specific to using trees
in the context of belief-state planning, and are necessary to evaluate α vectors over regions
of the belief simplex. For a given node η containing data points ηB , we compute ηmin and
ηmax, the vectors containing respectively the min and max belief in each dimension:

ηmin(s) = min
b∈ηB

b(s), ∀s ∈ S ηmax(s) = max
b∈ηB

b(s), ∀s ∈ S (8)

4.2 Searching over sub-regions of the simplex

Once the tree is built, it can be used for fast statistical queries. In our case, the goal is to
compute argmaxα∈Γa,z (α · b) for all belief points. To do this, we consider the α vectors
one at a time, and decide whether a new candidate αi is better than any of the previous
vectors {α0 . . . αi−1}. With the belief points organized in a tree, we can often assess this
over sets of points by consulting a high-level node η, rather than by assessing this for each
belief point separately.

We start at the root node of the tree. There are four different situations we can encounter
as we traverse the tree: first, there might be no single previous α-vector that is best for all
belief points below the current node (Fig. 3a). In this case we proceed to the children of the
current node without performing any tests. In the other three cases there is a single domi-
nant alpha-vector at the current node; the cases are that the newest vector αi dominates it
(Fig. 3b), is dominated by it (Fig. 3c), or neither (Fig. 3d). If we can prove that αi domi-
nates or is dominated by the previous one, we can prune the search and avoid checking the
current node’s children; otherwise we must check the children recursively.

We seek an efficient test to determine whether one vector, αi, dominates another, αj , over
the belief points contained within a node. The test must be conservative: it must never
erroneously say that one vector dominates another. It is acceptable for the test to miss
some pruning opportunities—the consequence is an increase in run-time as we check more
nodes than necessary—but this is best avoided if possible. The most thorough test would
check whether ∆ · b is positive or negative at every belief sample b under the current node

η
cη

r

η
cη

r

η
cη

r

η
cη

r

αi iα

αi

iα

(a) (b) (c) (d)

Figure 3: Possible scenarios when evaluation a new vector α at a node η, assuming a 2-state domain.
(a) η is a split node. (b) αi is dominant. (c) αi is dominated. (d) αi is partially dominant.

(where ∆ = (αi − αj)). All positive would mean that αi dominates αj , all negative the
reverse, and mixed positive and negative would mean that neither dominates the other. Of
course, this test renders the tree useless, since all points are checked individually. Instead,
we test whether ∆·b is positive or negative over a convex regionR which includes all of the
belief samples that belong to the current node. The smaller the region, the more accurate
our test will be; on the other hand, if the region is too complicated we won’t be able to
carry out the test efficiently. (Note that we can always test some region R by solving one
linear program to find l = minb∈R b · ∆, another to find h = maxb∈R b · ∆, and testing
whether l < 0 < h. But this is expensive and we prefer a more efficient test.)

η
m

ax (s
1)

ηmax(s2)

η
max (s

3)

ηmin(s2)

ηmin(s1)

η
m

in (s
3)

P(s2)

P(s1)

(a) (b) (c) (d)

Figure 4: Several possible convex regions over subsets of belief points, assuming a 3-state domain.

We tested several types of region. The simplest type is an axis-parallel bounding box
(Fig. 4a), ηmin ≤ b ≤ ηmax for vectors ηmin and ηmax (as defined in Eq. 8). We also
tested the simplex defined by b ≥ ηmin and

∑
s∈S b(s) = 1 (Fig. 4b), as well as the

simplex defined by b ≤ ηmax and
∑
s∈S b(s) = 1 (Fig. 4c). The most effective test we

discovered assumes R is the intersection of the bounding box ηmin ≤ b ≤ ηmax with
the plane

∑
s∈S b(s) = 1 (Fig. 4d). For each of these shapes, minimizing or maximizing

b · ∆ takes time O(d) (where d=#states): for the box (Fig. 4a) we check each dimension
independently, and for the simplices (Figs 4b, 4c) we check each corner exhaustively. For
the last shape (Fig. 4d), maximizing with respect to b is the same as computing δ s.t. b(s) =
ηmin(s) if ∆(s) < δ and b(s) = ηmax(s) if ∆(s) > δ. We can find δ in expected timeO(d)
using a modification of the quick-median algorithm. In practice, not all O(d) algorithms
are equivalent. Empirical results show that checking the corners of regions (b) and (c) and
taking the tightest bounds provides the fastest algorithm. This is what we used for the
results presented below.

5 Results and Discussion

We have conducted a set of experiments to test the effectiveness of the tree structure in
reducing computations. While still preliminary, these results illustrate a few interesting

properties of metric-trees when used in conjunction with point-based POMDP planning.
Figure 5 presents results for six well-known POMDP problems, ranging in size from 4 to
870 states (for problem descriptions see [2], except for Coffee [10] and Tag [8]). While all
these problems have been successfully solved by previous approaches, it is interesting to
observe the level of speed-up that can be obtained by leveraging metric-tree data structures.
In Fig. 5(a)-(f) we show the number of B×Γ (point-to-vector) comparisons required, with
and without a tree, for different numbers of belief points. In Fig. 5(g)-(h) we show the
computation time (as a function of the number of belief points) required for two of the
problems. The No-Tree results were generated by applying the original PBVI algorithm
(Section 2, [8]). The Tree results (which count comparisons on both internal and leaf
nodes) were generated by embedding the tree searching procedure described in Section 4.2
within the same point-based POMDP algorithm. For some of the problems, we also show
performance using an ε-tree, where the test for vector dominance can reject (i.e. declare αi
is dominated, Fig. 3c) a new vector that is within ε of the current best vector.

0 1000 2000 3000 4000
0

2

4

6

8

10
x 10

4

co

m
pa

ris
on

s

belief points

No Tree
Tree
Epsilon−Tree

0 1000 2000 3000 4000 5000
0

0.5

1

1.5

2
x 10

6

co

m
pa

ris
on

s

belief points
0 100 200 300 400 500

0

1

2

3

4

5

6

7
x 10

4

co

m
pa

ris
on

s
belief points

0 100 200 300 400 500
0

0.5

1

1.5

2
x 10

7

co

m
pa

ris
on

s

belief points

(a) Hanks, |S|=4 (b) SACI, |S|=12 (c) Coffee, |S|=32 (d) Tiger-grid, |S|=36

0 200 400 600 800 1000 1200
0

2

4

6

8

10
x 10

7

co

m
pa

ris
on

s

belief points
0 100 200 300 400 500

0

2

4

6

8

10
x 10

6

co

m
pa

ris
on

s

belief points
0 0.5 1 1.5 2 2.5

x 10
4

0

5

10

15

20

25

T
IM

E
 (

se
cs

)

belief points
0 200 400 600 800 1000

0

1

2

3

4

5
x 10

4

T
IM

E
 (

se
cs

)

belief points

(e) Hallway, |S|=60 (f) Tag, |S|=870 (g) SACI, |S|=12 (h) Tag, |S|=870

Figure 5: Results of PBVI algorithm with and without metric-tree.

These early results show that, in various proportions, the tree can cut down on the number
of comparisons. This illustrates how the use of metric-trees can effectively reduce POMDP
computational load. The ε-tree is particularly effective at reducing the number of com-
parisons in some domains (e.g. SACI, Tag). The much smaller effect shown in the other
problems may be attributed to a poorly tuned ε (we used ε = 0.01 in all experiments). The
question of how to set ε such that we most reduce computation, while maintaining good
control performance, tends to be highly problem-dependent.

In keeping with other metric-tree applications, our results show that computational savings
increase with the number of belief points. What is more surprising is to see the trees paying
off with so few data points (most applications of KD-trees start seeing benefits with 1000+
data points.) This may be partially attributed to the compactness of our convex test region
(Fig. 4d), and to the fact that we do not search on split nodes (Fig. 3a); however, it is
most likely due to the nature of our search problem: many α vectors are accepted/rejected
before visiting any leaf nodes, which is different from typical metric-tree applications. We
are particularly encouraged to see trees having a noticeable effect with very few data points
because, in some domains, good control policies can also be extracted with few data points.

We notice that the effect of using trees is negligible in some larger problems (e.g. Tiger-
grid), while still pronounced in others of equal or larger size (e.g. Coffee, Tag). This is

likely due to the intrinsic dimensionality of each problem.3 Metric-trees often perform
well in high-dimensional datasets with low intrinsic dimensionality; this also appears to be
true of metric-trees applied to vector sorting. While this suggests that our current algorithm
is not as effective in problems with intrinsic high-dimensionality, a slightly different tree
structure or search procedure may well help in those cases. Recent work has proposed new
kinds of metric-trees that can better handle point-based searches in high-dimensions [7],
and some of this may be applicable to the POMDP α-vector sorting problem.

6 Conclusion

We have described a new type of metric-tree which can be used for sorting belief points
and accelerating value updates in POMDPs. Early experiments indicate that the tree struc-
ture, by appropriately pruning unnecessary α-vectors over large regions of the belief, can
accelerate planning for a range problems. The promising performance of the approach on
the Tag domain opens the door to larger experiments.

Acknowledgments

This research was supported by DARPA (MARS program) and NSF (ITR initiative).

References

[1] R. I. Brafman. A heuristic variable grid solution method for POMDPs. In Proceedings of the
Fourteenth National Conference on Artificial Intelligence (AAAI), pages 727–733, 1997.

[2] A. Cassandra. http://www.cs.brown.edu/research/ai/pomdp/examples/index.html.

[3] J. H. Friendman, J. L. Bengley, and R. A. Finkel. An algorithm for finding best matches in
logarithmic expected time. ACM Transactions on Mathematical Software, 3(3):209–226, 1977.

[4] M. Hauskrecht. Value-function approximations for partially observable Markov decision pro-
cesses. Journal of Artificial Intelligence Research, 13:33–94, 2000.

[5] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra. Planning and acting in partially observable
stochastic domains. Artificial Intelligence, 101:99–134, 1998.

[6] A. W. Moore. Very fast EM-based mixture model clustering using multiresolution KD-trees. In
Advances in Neural Information Processing Systems (NIPS), volume 11, 1999.

[7] A. W. Moore. The anchors hierarchy: Using the triangle inequality to survive high dimensional
data. Technical Report CMU-RI-TR-00-05, Carnegie Mellon, 2000.

[8] J. Pineau, G. Gordon, and S. Thrun. Point-based value iteration: An anytime algorithm for
POMDPs. In International Joint Conference on Artificial Intelligence (IJCAI), 2003.

[9] K.-M. Poon. A fast heuristic algorithm for decision-theoretic planning. Master’s thesis, The
Hong-Kong University of Science and Technology, 2001.

[10] P. Poupart and C. Boutilier. Value-directed compression of POMDPs. In Advances in Neural
Information Processing Systems (NIPS), volume 15, 2003.

[11] N. Roy and G. Gordon. Exponential family PCA for belief compression in POMDPs. In
Advances in Neural Information Processing Systems (NIPS), volume 15, 2003.

[12] J. K. Uhlmann. Satisfying general proximity/similarity queries with metric trees. Information
Processing Letters, 40:175–179, 1991.

[13] R. Zhou and E. A. Hansen. An improved grid-based approximation algorithm for POMDPs. In
Proceedings of the 17th International Joint Conference on Artificial Intelligence (IJCAI), 2001.

3The coffee domain is known to have an intrinsic dimensionality of 7 [10]. We do not know the
intrinsic dimensionality of the Tag domain, but many robot applications produce belief points that
exist in sub-dimensional manifolds [11].

