FAST REINFORCEMENT LEARNING OF DIALOG STRATEGIES

David Goddeau and Joelle Pineau*

Compaq Computer Corporation
Cambridge Research Laboratory
One Kendall Square, Building 700
Cambridge, Massachusetts 02139
United States

ABSTRACT

Dialog management is a critical component of an effective
spoken language application. It is also one of the most diffi-
cult and time consuming to engineer. This paper examines
the application of reinforcement learning and Markov De-
cision Processes (MDP’s) to the problem of learning the
dialog strategies. It extends work done at AT&T [1] [2]
in two directions. First it examines the ability of RL to
learn optimal strategies in the presence of speech recogni-
tion errors. Second, it describes a technique for reducing
the amount of data required to train these models. This
is significant as the difficulty of training MDP-based dia-
log managers is a serious roadblock to deploying them in
realistic applications.

1. INTRODUCTION

Dialog management is a critical component of an effective
spoken language application. The task of the dialog man-
ager is, in essence, to decide what to say or do next, given
the current context and user input. This decision can be
complex, even for the simplest applications such as form-
filling, due to recognition errors, unreliable channels, and
naive, impatient, or un-cooperative users. For applications
which incorporate natural language understanding, conver-
sational style, mixed initiative, or more complex goals, the
problem of dialog strategy design becomes much more dif-
ficult.

One can formalize the notion of a dialog as a sequence
of alternating utterances Mo, Ug, M1,Us,..M;,U;, ... My in
which the M; and U; are elements of a set of utterances, and
specify the machine’s and user’s turns respectively. Given
this notion of a dialog, a dialog manager is a policy function,
7« which selects M; based on the previous dialog context and
the internal knowledge base (KB) of the system.

M; = n(Mo,Us,Mi_1Ui_y; K B) (1)

This paper examines the application of reinforcement
learning and Markov Decision Processes (MDP’s) to the
problem of learning the dialog policy function = defined
above. In particular, we extend work done at AT&T [1]

* Joelle Pineau is a PhD student at Carnegie Mellon Univer-
sity. This work was performed during a summer intern-ship at
Cambridge Research Laboratories, MA.

[2] to deal with recognition errors and we present methods
to reduce the amount of training data required, a limiting
factor in applying MDP’s to dialog management. Section
2 briefly describes Markov Decision Processes and their ap-
plication to dialog management. Section 3 describes ex-
periments evaluating the ability of the MDP to learn dialog
strategies in the context of unknown recognition error rates.
Section 4 addresses the problem of reducing the amount of
data needed to train MDP dialog models.

2. MDP’S AND REINFORCEMENT
LEARNING

A Markov Decision Process is characterized by four ele-
ments

e a set of states s € S,
e a set of actions a € A,

e aset transition probabilities T'(s, a, s') (= Probability
of transitioning to state s’ from state s having taken
action a),

e and a reward distribution R(s,a,r) (= probability of
receiving reward r from state s having taken action
a).
Given a completely specified MDP, several algorithms exist
(see [3]) which compute for each state, the expected total
(discounted) future reward for taking each action. This
immediately determines the optimal action to take from
each state, (the one with the greatest expected reward) and
therefore the optimal policy for the system.

In most applications, however, the model parameters
are not known and must be learned through experience.
There are many approaches to this problem which vary pri-
marily in what function is learned (ie the expected reward
for each state-action or the underlying model probabilities)
and how the state space is to the explored (see [3] for an
overview).

In the work described here, the system learns the un-
derlying model probabilities T(s, a, s') and R(s,a). The ex-
pected rewards and optimal policy are then computed based
on these parameters using dynamic programming. This ap-
proach is practical for dialog applications as the amount of
training data, not computation, is the limiting resource.

2.1. Reinforcement Learning of Dialog Strategies

Markov Decision Processes were first applied to the problem
of dialog management by Pieraccini and Levin at AT&T
[1]. They later used reinforcement learning techniques to
learn dialog strategies for model dialog problems [2]. While
successfully learning reasonable dialog strategies, this work
highlighted one of the problems of this method, the large
amount of training data required. In [2], as in the work
reported here, a synthetic user model was constructed to
interact with the system during the training process. Addi-
tional work at AT&T [4] applied data from human-human
dialogs to MDP dialog models. This paper extends this
work in two directions: first it explores the ability of rein-
forcement learning techniques to learn effective strategies
in the context of unknown factors, such as recognition er-
ror rate, and second, it presents methods for reducing the
amount of training data required for learning.

3. LEARNING DIALOG STRATEGIES FOR
IMPERFECT RECOGNITION

Dialog strategy design for form-filling applications, which
generally do not require much natural language understand-
ing, would be straightforward given perfect speech recogni-
tion and an experienced, patient, and co-operative user.
The success of form-based Web applications for stock trad-
ing, travel planning, etc. is evidence for this. However, in
spoken dialog applications, speech recognition has a signif-
icant error rate and this is one of the factors which com-
plicate dialog design for real applications. Although it is
straightforward to prompt for a series of data items and
record the recognized responses, in practice some fraction
of this recognized data will be incorrect. The correctness of
an item, or list of items can be verified by asking the user,
but this extends the length of the dialog and can annoy the
user with constant verification requests.

3.1. MDP Model of Form-Filling Dialog

In order to map dialog tasks onto the MDP model, an ap-
propriate set of states and actions must be selected. The
states must be chosen to capture the essential aspects of the
dialog context without requiring an unworkably large state
space. For these experiments, the state space was chosen to
represent the system’s progress in the form-filling task. This
ignores some important aspects of the dialog, for example,
how many times a given prompt has been repeated, but is
sufficient for the purposes of these experiments. Each state
is a composition of several fields, a status field per data slot
with values, Empty, Filled, or Verified, and an additional
field indicating whether the system is in a final state. Note
that the MDP can only track whether a given slot has been
filled or verified. It cannot tell whether the particular values
are correct or not.

The set of actions (prompt types) the system can use
are:

o 'Request AlIl’ - Request the user fill all slots in one
response.

e ‘Request n’ - Request the user give the data for slot
n7

Expected Cost
N

25 I I I I I & I I I
0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1
Recognition Accuracy (1.0 - Error Rate)

Figure 1: Expected Cost for Several Dialog Strategies as
Function of Recognition Accuracy. Solid Line Represents
Behavior of Reinforcement Learning System

e ‘Verify n’ - Ask the user if the (previously acquired)
value for slot n is correct

o ‘Verify All’ - Ask the user to verify all slot values. (a
negative response implies at least one item is wrong,
but does not specify which).

e ‘Quit’ - Conclude the dialog.

3.1.1. Reward Structure

Costs (rewards) are presented to the system after each ac-
tion. The cost function charges the system a fixed amount
for every prompt to the user, and a final cost for each un-
filled or incorrectly filled slot. The goal of the system is
to minimize the expected cost per dialog. For example,
given a perfect recognizer and co-operative user, the op-
timal strategy would be to Request All, then Quit, as all
slots would be correctly filled using the minimum number of
prompts. However, this strategy will not be optimal for an
error prone recognizer as one or more of the returned values
may be incorrect. The relative costs of asking a question
and returning an incorrect value were chosen to strongly
discourage returning incorrect values.

3.2. User Model

Since this experiment was designed to examine the ability
of reinforcement learning to produce optimal dialog strate-
gies, a synthetic user model was used to generate training
episodes. In this way, the recognition error rate and user
behavior can be varied in controlled fashion. For this ex-
periment, the user was set to be co-operative (ie completely
answering each question), and the recognition accuracy was
varied from 50% to 100%. For each error rate, the system
was trained to convergence and the resulting expected cost
and dialog policy were noted. The results are presented in
Figure 1.

3.3. Results and Discussion

The solid line in Figure 1 plots the expected cost vs. recog-
nition accuracy for the learned behavior of the MDP. As
the error rate increases the system adopts one of 3 basic
strategies, that can be roughly described as follows.

e 1) No verify. — The system trusts the data is correct.

e 2) Verify all. — The system tries to verify all slots
at once. If there is an error, it starts over from the
beginning.

e 3) Verify individually. — The system verifies each slot
individually, if the data is in error, it requests new
data.

The cost vs. accuracy tradeoffs of these strategies are
plotted with broken lines in Figure 1. While each of these
strategies is optimal for some range of recognition accuracy,
none is optimal over the entire range. In all strategies, the
system initially requests all slot data, then requests indi-
vidually any data items that were tagged incorrect by the
verification process. As shown in the graph, for each error
rate, the trained system chooses the optimal strategy. It
should be noted that the system does not explicitly know
the recognition error rate, but merely learns the expected
reward associated with each state.

The model described above could be extended in several
ways to be more realistic. For example, the response of
the user to “Request All” prompts could be varied to only
return a subset of slot values, or the user could incorporate
corrections into their response to Verify requests. or the
recognition error rate could be varied on a slot by slot basis.
However, none of these affect the fundamental structure
or behavior of the system, they merely change the state
transition probabilities. In addition, confidence measures
could be added to the recognition response. Again, this
does not change the system fundamentally, but multiplies
the number of states as an additional Confidence field is
added to the state description. This in turn increases the
number of training episodes required.

4. FASTER TRAINING OF MDP DIALOG
MODELS

One of the drawbacks of using MDP’s to learn dialog strate-
gies is the large number of training dialogs required. The
number of training dialogs needed is in general exponential
in the number of states, which is itself exponential in the
complexity of the dialog task (number of form slots to be
filled). This section describes an approach which can dras-
tically reduce the number of training episodes required for
certain types of applications.

During exploration, the MDP is attempting to learn
the expected reward for each state, on which it bases its
policy. Alternatively, the system can learn the transition
and reward distributions T'(s, a, s') and R(s, a) the expected
rewards computed via dynamic programming. In many RL
applications, learning can be accelerated by using functional
approximation techniques to estimate the expected reward
function. These techniques, however, are restricted to state
spaces on which a convenient distance metric between states
can be found (for example, where the state space represents

actual 2D space as in robot navigation applications). This
is generally not the case for dialog state spaces.

We describe here an approach that can take advantage
of the structure of dialog state spaces to estimate the tran-
sition probabilities T(s, a,s’) more efficiently. The basic
idea is to adapt the techniques of back-off or interpolated
models used in statistical language model estimation to the
estimation of MDP transition probabilities.

The direct estimate of the transition probabilities are
computed as

Count(s,a,s’)

T = —.
as,a,5) Count(s,a)

(2)
In general, a large number of training episodes are required
before enough counts are accumulated to make this estimate
reliable. To compensate for this, we associate with each
state s a back-off state bo(s) and with each action, a back-
off action bo(a). This mapping is many to 1, so several state
share a common back-off state. As training proceeds, the
system not only maintains the estimates Ty but also the
back-off estimates

Count(bo(s),bo(a),bo(s")) .
Count(bo(s),bo(a)) (3)

Tho(s, a, s') =

Since the mappings from state and actions to their respec-
tive back-offs are many to 1, these back-off estimates are
trained much more rapidly than the estimates for the indi-
vidual states.

During operation, the transition distribution used for a
given state,action pair is a combination of the direct es-
timate Ty(s,a,s’) and the back-off estimate Tyo(s,a,s’).
There are several methods of combining these estimates in-
cluding interpolation.

T(s,a,8") = A Tpo(s,a,s') + (1 — A) * Tu(s,a,s’) (4)
or backing off,
T(s,a,s") = Too(s,a,s') (5)
if Count(s,a) < Thresh else
T(s,a,s") = Tu(s,a,s"). (6)

In the experiment described below we have explored only
the latter.

4.1. Using Back-Off Models in Form-Filling Dialog

The use of back-off states and actions allows an MDP model
to take advantage of the structure of the state space to
learn its parameters more quickly. The state space for form-
filling tasks has a natural structure which can be exploited
with back-off models. It particular, the sub-tasks of filling
each slot are largely independent. The state space for this
task can therefore be factored into a product of independent
state spaces, which can be independently learned. In addi-
tion, the set of actions associated with each slot (Request
n, Verify n) can be abstracted. This abstraction can be
incorporated into the back-off state. This allows the MDP
to apply the transition structure it learns about filling any
slot, to filling every slot.

Number of Training Episodes
5
T
.

10° L L L L L L L L L
0 50 100 150 200 250 300 350 400 450 500
Number of States

Figure 2: Plot of Training Data Required vs. State Space
Size for Back-Off (solid line) and Non-back-off (broken line)
Learning Models

To test the effectiveness of this technique, form-filling
applications were trained with and without the back-off
models to determine the relationship between the size of the
model state space and the amount of training data required
to reach peak performance. This experiment again uses an
task-based state description for the form-filling application.
For slot in the form there is an associated status value in the
state description which can be Empty, Filled, or Verified.
The basic state space for a n slot form is therefore at least
3™ states. The actions were those described above except
the "Verify All’ and 'Request All’ actions were disabled (to
make the task harder). The cost structure was set to re-
quire that each slot be Verified as well as Filled. The
user model for this experiment is similar to that described
above, with a fixed recognition error rate.

The back-off model used in this experiment tries to ex-
ploit both the independence of each slot, and the similarity
of structure among the slot-filling subtasks. The back-off
state space was chosen to model a 1-slot form-filling task.
Fach state in the n-slot form-filling task that the system
was trying to learn was assigned as its back-off state the
closest corresponding state in the 1-slot task.

To measure the effect of using this back-off model on
learning speed, several training runs were performed. The
number of slots in the form, and therefore the size of the
state space, was varied and the system was trained to con-
vergence for each setting. Many training runs were per-
formed for each setting and the average number of training
utterances required was recorded. The results are plotted
in Figure 2.

The upper curve in Figure 2 represents the amount of
training data needed by the baseline system. This is expo-
nential in the size of the state space which is itself expo-
nential in the number of slots. The lower curve represents
the amount of data required by back-off model, which is
dramatically less. As the system explored the state space
of the n-slot task, the state transition statistics were also
accumulated for the corresponding back-off states. As a re-
sult, the system learned the transition probabilities for the
back-off model very quickly. Since in this application, the

back-off model is an excellent reflection of the base model,
the system also learns the optimal policy very quickly.

5. CONCLUSIONS

This paper examined the application of reinforcement learn-
ing and Markov Decision Processes to learning dialog strate-
gies. These techniques were shown be capable of learning
optimal dialog strategies in the context of imperfect recog-
nition. In addition, a back-off estimation method for learn-
ing model parameters was shown to dramatically reduce the
amount of required training data.

Markov Decision Processes are a useful formal model
of dialog management. However, several limitations must
be overcome before MDP-based dialog managers can be ef-
fectively field in practice. One of the most critical is the
amount of training data required. The back-off technique
presented here, although very effective in some cases, is only
a first step. In order to create natural and robust dialog
managers, the model state space must capture many more
aspect of the dialog structure. Dealing with this greatly ex-
panded state space remains a problem. In order to address
this, traditional reinforcement learning techniques must be
augmented with other ideas, such as partial-order planning.
In addition, exploration methods must be improved and in-
tegrated with normal system operation so the dialog man-
ager can continue to learn and adapt to changing conditions.
Finally, MDP implementations of dialog managers have so
far ignored many problems of natural language processing
focusing instead on high-level dialog strategy issues.

6. ACKNOWLEDGMENTS

We would like to thank Pedro Moreno for MatLab help and
the Speech Group at CRL for support.

7. REFERENCES

[1] E. Levin and R. Pieraccini, “A stochastic model of
computer-human interaction for learning dialog strate-

gies,” in Proc. EUROSPFEECHI7, Rhodes, Greece, 1997.

[2] E. Levin, R. Pieraccini, and W. Eckert, “Using markov
decision process for learning dialog strategies,” in Proc.

ICASSP, 1998.

[3] R. Sutton and A. Barto, Reinforcement Learning: An
Introduction. MIT Press, 1998.

[4] M. Walker, J. Fromer, and S. Narayanan, “Learning op-
timal dialog strategies: A case study of a spoken dialog
agent for email,” in Proc. ACL, 1998.

