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This paperdescribeganimplementedobotsystemdesignedo assisursesandelderly personsn institutionalizedsettings.
Therobot Pearlhasbeendevelopedasa multi-functionalrobotic assistant.Its primary taskinvolvesguiding peoplethrough
anursingfacility, remindingthemof upcomingeventsandthe needto take medication,andproviding themwith information
very muchlike amobileinformationkiosk. In the past24 months therobothasbeendeplored morethansix timesin anelderly
carefacility in OakmontPA. In this paperwe presenthreesoftwaremodulesrelevantto ensuresuccessfutobotperformance
in adynamicandinteractive taskdomain: anautomatedemindersystem;a people-trackinganddetectionsystem;andfinally
a high-level robotcontrollerwhich performsplanningunderuncertaintyby incorporatingknowledgefrom low-level modules,

andselectingappropriatecoursef actions.

1. Intr oduction

The US populationis agingat analarmingrate. At
present,12.5%of the US populationis of age65 or
older(33). It is widely recognizedhatthis ratio will
increaseas the baby-boomemgenerationmoves into
retirementage. Meanwhile, the nation facesa sig-
nificant shortageof nursingprofessionals.The Fed-
erationof Nursesand Health CareProfessional$ias
projecteda needfor 450,000additionalnursesby the
year2008.

This acuteneedprovides significantopportunities
for roboticistsand Al researcherso develop assis-
tive technologythatcanimprove the quality of life of
our aging population,and help nurseshecomemore
effective in their actvities. The NursebotProject
was conceved in responseto this challenge. It is
formedby a multi-disciplinaryteamof investigators
from the fields of health-careHCl/psychology and
Al/robotics. The overall goal of the projectis to de-
velop mobile robotic assistantshat canassistnurses
andelderlypeoplein their daily actuvities.

To this aim, the team has developedtwo pro-
totype autonomousmobile robots, shovn in Fig-
ure 1 (25). Theserobotsprimarily interactwith the
world throughspeechyisual displays,facial expres-
sionsand physicalmotion. They differ from earlier
workplacerobotsin thatthey go beyondsimply inter-
actingwith an (often static)ernvironment,to interact-

ing with humanusersandbystandersThuswe lever-
ageearliertechnologyfor navigation,localizationand
mapping,and specifically focus on developing new
algorithmicapproacheso track people,predicttheir
behaior, andreactappropriately

The idea of building robotic companionsfor the
elderly is not new (11; 12; 16; 20; 21; 34). From
themary servicesanursing-assistambbotcouldpro-
vide, thework reportedhereconsidershetaskof re-
minding peopleof eventsand guiding themthrough
their ervironments. Both of thesetasksare particu-
larly relevantwith the elderly community Decreased
memoryis a commoneffect of age-relateadtognitive
decline which oftenleadsto forgetfulnessaboutrou-
tine daily actiities (e.g. taking medicationsattend-
ing appointmentsgating,drinking, bathing,toileting)
thusthe needfor a robot that canoffer cognitive re-
minders. In addition, nursing staf in assistediv-
ing facilities frequentlyneedto escortelderly people
walking, eitherto getexerciseor to attendmeals ap-
pointmentsor social events. The fact that mary el-
derly peoplemove at extremelyslow speedge.g. 5
cm/sec)malkes this one of the mostlaborintensive
tasksin assistediving facilities. It is alsoimportant
to notethatthe help providedis oftennot strictly of a
physicalnature,asmary elderly peopleselectwalk-
ing aids over physicalassistancéy nurses. Rather
nursesoften provide importantcognitive help, in the



form of remindersguidanceandmotivation,in addi-
tion to valuablesocialinteraction.

FromanAl pointof view, severalfactorsmale this
taska challengingonefor arobotto accomplishsuc-
cessfully particularly becauseof the prevalenceof
uncertaintyin the taskdomain. The type of uncer
tainty relevantto robot decision-makings two-fold.
First, we areconcernedvith estimatingthe effectsof
arobot’s actions. For example,a robot travelling at
greatspeedmayquickly tire anelderlypersorfollow-
ing it. Secondwe areconcernedvith handlingpar
tial or erroneousensomeasurementd-or example,
when escortinga personthroughbusy hallways the
robot facesthe risk of losing that individual or con-
fusing him/herwith another Our approactexplicitly
considergheseformsof uncertaintywhenoptimizing
a control stratgyy. Our approachalso considersthe
costsof suboptimalcontrol actions,which canvary
widely, from the costof unnecessarilyskinga clar
ification questionto incorrectly moving to a remote
location.

The work presentedfocuseson three key soft-
ware component®of our robotic architecture:an au-
tomatedreminder systemthat incorporatesknowl-
edgeof a personstypical schedulewnith obsenations
of recentactiities, and issuespertinentreminders
aboutupcomingevents;amodulewhich usesefficient
particle filter techniquego detectandtrack people;
and finally a high-level robot controller which uses
probabilistic reasoningtechniquesto arbitrate be-
tweeninformation-gatheringndperformance-related
actions,aswell asincorporateinformation obtained
through both navigation sensors(e.g. laserrange-
finder) andinteractionsensorge.g. speechrecogni-
tion andtouchscreen).

In systematicexperimentsconductedat a nursing
home, we found the combinationof techniquesto
be highly effective in dealingwith elderly test sub-
jects.In particular duringa sequencef one-one-one
scenariobetweenPearlandresidentof the nursing
home,the robotdemonstratethe ability to contacta
residentyemindthemof anappointmentaccompan
themto thatappointmentaswell asprovideinforma-
tion of interestto that person,for example weather
reportsor television schedules.

Figurel. Nursebotd=lo (left) andPearl(right)

2. Hardware and Software Description

Figurel showns imagesof therobotsFlo (first pro-
totype, now retired) and Pearl (the presentrobot).
Eachrobotis equippedwith a differentialdrive sys-
tem, two on-boardPCs,wirelessethernetjaserrange
finders,sonarsensorsgicrophonegor speechrecog-
nition, spealersfor speechsynthesistouch-sensitie
graphical displays, actuatedhead units, and stereo
camerasystems As aresultof feedbackfrom nurses
andmedicalexpertsfollowing deploymentof thefirst
robot,Flo, thesecondobotPearlalsofeaturesanim-
proved visual appearanceiwo sturdy handle-barsa
morecompactdesignthatallows for cargo spaceand
a removabletray, doubledbatterycapacity a second
laserrangefinder, and a significantly more sophisti-
catedheadunit.

On the software side, both robotsfeatureoff-the-
shelfautonomousnobile robotnavigationsystem(4;
31), speechrecognitionsoftware(27), speechsynthe-
sis software (3), fastimagecaptureandcompression
software for online video streaming,face detection
trackingsoftware(28), aswell asthethreemajornewn
softwaremodulesdescribedn thispaper Thesemod-
ulesareprincipally concernedvith peopleinteraction
andcontrol. They overcomamportantdeficiencieof
the work describedby (4; 31), which hadonly rudi-
mentaryabilitiesto interactwith people.

3. Plan managementwith Autominder

The Autominder software componentis designed
asanintelligent cognitive orthotic system providing
elderly peoplewith remindersabouttheir daily activ-



ities (26). Theideaof usingcomputertechnologyto

enhanceheperformancef cognitively disabledoeo-
ple datesbacknearlyforty years(13). More recently
cognitive orthoticshave enabled-eminderdo be pro-
videdusingthetelephond14), personaligital assis-
tants(10), andpagerg17). Work hasalsobeendone
on improved modelling of users’actvities (19; 23),

wherein one casea hand-deice usesAl planning
technologyto modelthe users plans,andprovide vi-

sualandaudiblecuesaboutits execution.

In the Nursebotproject, the goal of this software
systemis to make principleddecisionsaaboutwhatre-
mindersto issueand when, balancingthe following
potentially competingobjectives: (i) ensurethat the
useris awareof actwities s/heis expectedo perform,
(i) increasethe likelihoodthat s/hewill perform at
leastthe requiredactvities (e.g. taking medicine),
(i) avoid anng/ing the user and(iv) avoid making
the useroverly relianton the system.To attainthese
goals,the systemmust be flexible and adaptve, re-
spondingo the actionstakenby theuser

The Autominderarchitectures shavn in figure 2.
As depictedthe systemmaintainsanaccuratemodel
of a users daily schedule monitorsperformanceof
activities,andplansremindersaccordingly Thethree
main componentsare: a PlanManager(PM), which
storesthe users plan of daily actiities in the Client
Plan, and is responsiblefor updatingit and iden-
tifying ary potential conflictsin it; a Client Mod-
eler (CM), which usesinformation aboutthe users
obsenable actiities to track the execution of the
plan, storingits beliefsaboutthe executionstatusin
the Client Model anda PersonalCognitive Orthotic
(PCO),which reasonsaaboutary disparitiesbetween
whattheuseris supposedb doandwhats/heis doing,
andmakesdecisionsaboutwhento issuereminders.

Toinitialize thesystemthe caregiverfor anelderly
userinputsa descriptionof the users daily actuities,
aswell asary constrainton, or preferencesegard-
ing, the time or mannerof their performance. This
plan may then be changedn one of four ways: (i)
the useror carggiver may add new actvities; (ii) the
useror cargyiver may modify or deleteactiities al-
readyin the plan; (iii) the usermay executeone of
the plannedactiities; or (iv) the simple passagef
time may causeautomaticchangego be madein the
plan. Wheneer a changeoccurs,the PM updates
theuserplan,performingplanmemingandconstraint
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Figure2. AutominderArchitecture

propagatiorasneeded.To adequatelyepresentiser
plans, it essentialto supporta rich set of temporal
constraints;we achieve this goal by modelling user
plansasDisjunctive TemporalProblemsDTPs)and
reasoningaboutthemusingefficientalgorithms(32).

Throughoutheday, sensoinformationis gathered
by the robotandsentto the CM, which usesthis in-
formationto try to infer what actiities the useris
performing. If the likelihoodis high thata planned
actiity has beenexecuted,the CM reportsthis to
the PM, which can then updatethe users plan by
recordingthe time of execution,and propagateary
affectedconstraintsaccordingly The usermodelis
representedsinga Quantitatve TemporalBayesNet
(QTBN), which was developedto handlethe need
both to reasonaboutfluentsand aboutprobabilistic
temporalconstraintg5).

The final componentof the Autominder is the
PCO (24), which usesboth the user plan and the
usermodelto determinewhat remindersshould be
issuedandwhen. The PCO identifiesactiities that
may requireremindersasedn theirimportanceand
their likelihood of being executedon time as mod-
eledin the CM. It also determinesthe most effec-
tive timesto issueeachrequiredreminder taking ac-
countof the expecteduserbehaior, andary prefer
encesexplicitly provided by the userand the care-
giver. Finally, the PCO providesjustificationsasto
why particular activities warranta reminder The



PCO treatsthe generationof a reminderplan as a

satisficingproblemandusesa local-searchapproach
called Planning-by-Reriting (PbR) (1) to produce
a high-quality reminderplan that takes into account
the users expectedbehavior, preferencesandinter-

actionsamongsplannedactuities.

4. Locating People

In order to issueremindersand, when appropri-
ate, guide usersto their actities, it is necessaryo
interactwith peoplespatially and most specifically
to be able to locate peoplein their living erviron-
ment. The problem of locating peopleis the prob-
lem of determiningtheir z-y-locationrelative to the
robot. Previous approachego peopletracking in
roboticsarefeature-basedthey analyzesensomea-
surementgimages,rangescans)or the presenceof
featureq15; 29) asthe basisof tracking.In our case,
the diversity of the ervironmentmandatesa differ-
entapproach.Pearldetectgpeopleusing mapdiffer-
encing: the robot learnsa map, and peopleare de-
tectedby significantdeviations from the map. Fig-
ure 3 shavs anexamplemapacquiredusingpreeist-
ing software(31).

Mathematicallytheproblemof peopletrackingis a
combinedposteriorestimatiorproblemandmodelse-
lectionproblem.Let NV bethenumberof peoplenear
therobot. The posteriorover the peoples positionsis
givenby

p(yl,t,...,yN,t|zt,ut,m) 1)

wherey,, ; with 1 < n < N is thelocationof a per
sonattimet, 2! the sequencef all sensomeasure-
mentsu’ thesequencef all robotcontrols,andm is
theenvironmentmap. However, to usemapdifferenc-
ing, therobothasto know its own location. Theloca-
tion andtotalnumberof nearbypeopledetectedy the
robotis clearly dependenbn the robot’s estimateof
its own locationandheadingdirection. Hence,Pearl
estimates posteriorof thetype:

p(yl,ta'"5yN,taxt|Ztautam) (2)

where 2t denotesthe sequenceof robot poses(the
path) up to time ¢. If N was known, estimat-
ing this posteriorwould be a high-dimensionales-
timation problem, with compleity cubic in N for
Kalmanfilters (2), or exponentialin N with particle

filters (8). Neitherof theseapproachess, thus, ap-
plicable: Kalmanfilters cannotglobally localize the
robot, and particle filters would be computationally
prohibitive.

Luckily, undermildly restrictve conditions (dis-
cussedbelow) the posterior(2) can be factoredinto
N + 1 conditionallyindependengstimates:

pa'|2t,ut,m) [] plyn.el2", ut,m) ©)

n

This factorizationopensthe door for a particlefilter
thatscaledinearlyin N. Ourapproachs similar (but
notidentical)to the Rao-Blackwellizedbarticlefilter
describedn (9). First, therobotpathz! is estimated
using a particle filter, asin the Monte Carlo local-
ization (MCL) algorithm for mobile robot localiza-
tion (6). Eachparticlein thisfilter is associateavith
a setof N particlefilters, eachrepresentingone of
thepeoplepositionestimate®(y,, ¢|2¢, u*,m). These
conditional particle filters represenpeopleposition
estimategonditionedonrobotpathestimates—hence
capturing the inherent dependenceof people and
robot location estimates. The data associationbe-
tweenmeasurementand peopleis doneusing max-
imum likelihood,asin (2). Underthe (false)assump-
tion thatthis maximumlik elihoodestimatoiis always
correct,ourapproactcanbeshown to corvergeto the
correctposterior andit doessowith updatetime lin-
earin N. In practicewe foundthatthe dataassocia-
tion is correctin the vastmajority of situations.The
nestedparticlefilter formulationhasa secondaryad-
vantagethat the numberof people N can be made
dependentn individual robot pathparticles.Our ap-
proachfor estimatingV usesthe classicalAIC crite-
rion for modelselection,with a prior thatimposesa
compleity penaltyexponentialin N.

Figure3 shavsresultsof thefilter in action.In Fig-
ure3a,therobotis globally uncertainandthenumber
and location of the correspondingpeopleestimates
varies drastically As the robot reducesits uncer
tainty, the numberof modesin the robot poseposte-
rior quickly becomesinite, andeachsuchmodehasa
distinctsetof peopleestimatesasshavnin Figure3hb.
Finally, astherobotis localized,sois the person(Fig-
ure 3c). Whenguiding people,the localizationesti-
mateof the personis usedto determinghevelocity of
the robot, sothat the robot maintainsroughly a con-
stantdistanceto the person. In our experimentsin
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Figure 3. (a)-(d) Evolution of the conditional particle filter from global uncertaintyto successfulocalization
andtracking. (d) Thetracker continuego track a personeven asthat personis occludedrepeatedlyby a second

individual.

thetargetfacility, we foundtheadaptve velocity con-
trol to beabsolutelyessentiafor therobot's ability to
copewith the hugerangeof walking pacesfound in
the elderly population.Initial experimentswith fixed
velocity led almostalwaysto frustrationon the peo-
ple’sside,in thattherobotwaseithertoo slow or too
fast.

Finally, Figure 3d illustratesthe robustnesf the
filter to interferingpeople.Hereanothempersonsteps
betweenthe robot and its target subject. The fil-
ter obtainsits robustnesgo occlusionfrom a care-
fully craftedprobabilisticmodel of peoples motion
P(Yn,t+1|yn,). This enableghe conditionalparticle
filters to maintaintight estimatesvhile the occlusion
takes place, as shavn in Figure 3d. During in-lab
experimentsinvolving 31 tracking instanceswith up
to five peopleat a time, the errorin determiningthe
numberof peoplewas 9.6%. The errorin the robot
positionwas 2.5 + 5.7 cm, and the peopleposition
error was aslow as 1.5 + 4.2 cm, when compared
to measurementsbtainedwith a carefully calibrated
staticsensowith +1 cmerror.

5. High Level Robot Control and Dialog Manage-
ment

The most centralmodulein Pearls softwareis a
probabilisticalgorithmfor high-level controlanddi-
alog management.This module integratesobsena-
tionsfrom lower-level moduleg(e.g.the Autominder
the peopletracker, the speechrecognizer etc.) and
usesthis informationto selectappropriatebehaiors

andresponses.

Pearls high-level control architectureis a hierar
chical variantof a partially obsenable Markov deci-
sionproces{POMDP)(18). The POMDPis amodel
for calculatingoptimal control actionsunderuncer
tainty. Thecontroldecisionis basednaprobabilistic
belief over possiblestates.

In Pearls case,this distribution is definedover a
collectionof multi-valuedstatevariables:

¢ robotlocation(discreteapproximation)

e personslocation(discreteapproximation)

e persons status (inferred from speechrecog-
nizer)

e motiongoal (whereto move)

e remindergoal (whatto inform the userof)

e userinitiatedgoal(e.g.,aninformationrequest)

The value of the person’s location variableis ob-
sened throughthe peopletracker, and similarly the
remindergoal variableis setby the Automindermod-
ule. Overall, thereare516 possiblestates.Theinput
to the POMDP is a factoredprobability distribution
over thesestatesgeneratedy a stateestimatoysuch
asin Equation(2). Uncertaintyover the currentstate
arisespredominantlyfrom the localization modules
andthespeechrecognitionsystem.The consideration
of uncertaintyis especiallyimportantin this domain,
asthe costsof giving areminderto thewrongperson,
or unnecessarilyendingthe robot to a locationcan
belarge.

Unfortunately POMDPsof the size encountered
here are an order of magnitudelarger than today’s
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bestexact POMDPalgorithmscantackle (18). How-

ever, Pearls domainis highly structured,since cer

tain actionsare only applicablein certainsituations.
To exploit this structure we developeda hierarchical

versionof POMDPs which breaksdown thedecision
makingprobleminto a collectionof smallerproblems
that canbe solved more efficiently. Our approachs

similar to the MAX-Q decompositiorfor MDPs (7),

but definedover POMDPs (where statesare unob-
sened).

The basicidea of the hierarchicalPOMDP is to
partition the action space—nothe statespace since
thestateis not fully obsenable—intosmallerchunks.
For Pearls guidancetask the action hierarchy is
shawn in Figure4, whereabstiact actions(shovn in
circles)areintroducedto subsumeogical subgroups
of lower-level actions.Thisactionhierarchyinducesa
decompositiorof the control problem,whereat each
nodeall lower-level actions,if ary, areconsideredn
the contet of a local sub-controller At the lowest
level, the control problemis a regular POMDR with
areducedactionspace.At higherlevels, the control
problemis alsoa POMDR yet involvesa mixture of
physicalandabstractactions(whereabstractactions
correspondo lower level POMDPs.)

It is importantto notice that sucha decomposi-
tion is especiallyappropriatewhenthe optimal con-
trol transgressedown alonga single pathin the hi-
erarchyto receve its reward. This is approximately
thecasean thePearldomain wheregoalsaresatisfied
uponsuccessfullydeliveringapersonpr successfully

Obsenation True State Action Reward
pearlhello requestbegun sayhello 100
pearlwhatis like startmeds askrepeat -100
pearlwhattimeis it

for will the wanttime saytime 100
pearlwason abc wanttv askwhich_station -1
pearlwason abc wantabc sayabc 100
pearlwhatisonnbc ~ wantnbc confirm_channelnbc -1
pearlyes wantnbc say.nbc 100

pearlgoto thethat
prettygoodwhat sendrobot askrobotwhere -1
pearlthatthathellobe sendrobotbedroomconfirm_robotplace -1

pearlthebedroomary i sendrobotbedroomgo_to_bedroom 100

pearlgoit eightahello sendrobot askrobotwhere -1

pearlthekitchenhello sendrobotkitchen go_to_kitchen 100
Tablel

Sampledialog demonstratinghe role of clarification
actions.Actionsin bold font areclarificationactions,
choserby the POMDPbecaus®f high uncertaintyin

thespeectsignal.

gatheringnformationthroughcommunication.

Using the hierarchicalPOMDR the high-level de-
cision making problemin Pearlis tractable,and a
nearoptimal controlpolicy canbe computedff-line.
Thus, during execution time the controller simply
monitorsthe state(calculateghe posterior)andlooks
up theappropriatecontrol. Table1 shavs anexample
dialog betweenthe robotanda testsubject. Because
of theuncertaintynanagemerin POMDPs therobot
choosego aska clarification questionat threeocca-
sions. The numberof suchquestionsdlependon the
clarity of apersons speechasdetectedy the Sphinx
speechrecognitionsystem.

An importantremainingquestionconcerngheim-
portanceof handling uncertaintyin high-level con-
trol. To investigatethis, we ran a seriesof compar
ative experimentsall involving real datacollectedin
ourlab. In oneseriesof experimentswe investigated
theimportanceof consideringthe uncertaintyarising
from the speechinterface. In particular we com-
paredPearls performanceto a systemthat ignores
thatuncertaintybut is otherwisedentical. Theresult-
ing approachs an MDP, similar to the onedescribed
in (30). Figure 5 shaws resultsfor three different
performanceneasuresand threedifferentusers(in
decreasin@rderof speechrecognitionperformance).
For poorspealers,theMDP requiredesstime to “sat-
isfy” a requestdue to the lack of clarification ques-
tions (Figure 5a). However, its error rate is much
higher(Figure5b), which negatively affectsthe over
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all reward receved by the robot (Figure 5¢). These
resultsclearlydemonstratéheimportanceof consid-
ering uncertaintyat the highestrobot control level,
specificallywith poorspeectrecognition.

In the secondseriesof experiments,we investi-
gatedthe importanceof uncertaintymanagemenin
the context of highly imbalancedcostsand rewards.
For example, in Pearls case,askinga clarification
guestions in factmuchcheapethanaccidentallyde-
livering a personto a wrong location, or guiding a
personwho doesnot want to be walked. We there-
fore comparecperformancaisingtwo POMDPmod-
els which differed only in their cost models. One
modelassumediniform costsfor all actionswhereas
thesecondnodelassume@ morediscriminative cost
modelin whichthecostof verbalquestionsvaslower
thanthecostof performingthewrongmotionactions.
A POMDPpolicy waslearnedor eachof thesemod-
els,andthentestedexperimentallyin our laboratory
The resultspresentedn figure 6 shav that the non-
uniform model makes more judicious use of confir
mation actions,thusleadingto a significantly lower
error rate, especiallyfor userswith low recognition
accurag.

6. Results

Following integration of the three software mod-
ulesontoPearl therobotwasdeployedin aretirement
communitylocatednearPittskurgh, PA. This section
describesexperimentsinvolving elderly residentsof
this facility, with mild cognitive, perceptualor phys-
ical limitations.

We testedthe robot in five separatexperiments,
eachlastingonefull day Thefirst threedaysfocused
on open-endedhteractionswith alargenumberof el-
derlyusersduringwhichtherobotinteractedrerbally
andspatiallywith elderlypeoplewith thespecifictask
of deliveredsweets. This allowed us to gaugepeo-
ple’sinitial reactiongo therobot.

Following this, we performedtwo daysof formal
experimentsduringwhichtherobotautonomouslyed
12 full guidancesijnvolving 6 differentelderly peo-
ple. Figure7 shavs anexampleguidancesxperiment,
involving an elderly personwho usesa walking aid.
The sequencef imagesillustratesthe major stages
of a successfutlelivery: from contactingthe person,
delivering the reminder walking her throughthe fa-
cility, and providing information after the successful
delivery—inthis caseon theweather

In all trials, the taskwasperformedto completion.
Post-a&perimental debriefingsillustrated a uniform
high level of excitementon the side of the elderly.
Overall, only a few problemswere detectedduring
the operation.Noneof thetestsubjectsshoved diffi-
cultiesunderstandinghe majorfunctionsof therobot.
They all wereableto operatethe robotafterlessthan
five minutesof introduction. Earlier trials with a
poorly adjustedspeechrecognitionsystemandfixed-
velocity robotmotion,both causedlifficulties. These
wereaddressee@arly on by increasingherole of the
touchscreermandincludingadaptablevelocities.

7. Discussion

This paperdescribech mobile roboticassistanfor
nursesand elderly residentsn assistediving facili-
ties. Thesystemhasbeentestedsuccessfullyn exper
imentsin anassistediving facility. The experiments
were successfuln two main dimensions.First, they
providedsomeevidencetowardsthe feasibility of us-
ing autonomousnobile robotsasassistant$o nurses
and institutionalizedelderly. Second,they demon-
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speechrecognition.

stratedthat various probabilistic tracking and plan-
ningtechniquesrewell-suitedto solve problemser
tainingto human-robotnteractions.

One of the key lessonslearnedwhile developing
this robotis thatthe elderly populationrequirestech-
niguesthat cancopewith individual differencege.g.
walking speed),age-relateddecline (e.g. memory
loss) and noisy perception(e.g. poor speechrecog-
nition). We view the areaof assistve technologyasa
prime sourcefor greatAl problemsn thefuture.
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