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Abstract

This paper highlights the crucial role that modern machine
learning techniques can play in the optimization of treatment
strategies for patients with chronic disorders. In particular,
we focus on the task of optimizing a deep-brain stimulation
strategy for the treatment of epilepsy. The challenge is to
choose which stimulation action to apply, as a function of the
observed EEG signal, so as to minimize the frequency and du-
ration of seizures. We apply recent techniques from the rein-
forcement learning literature—namely fitted Q-iteration and
extremely randomized trees—to learn an optimal stimulation
policy using labeled training data from animal brain tissues.
Our results show that these methods are an effective means of
reducing the incidence of seizures, while also minimizing the
amount of stimulation applied. If these results carry over to
the human model of epilepsy, the impact for patients will be
substantial.

Introduction
Clinicians treating individuals with chronic disorders — e.g.
epilepsy, mental illness, HIV infection — often prescribe
a series of treatments in order to maximize favorable out-
come for the patient. This generally requires modifying the
duration, dose or type of treatment over time. Selecting
the best sequence of treatments for an individual presents
significant challenges, due to the heterogeneity in response
to treatment, as well as the potential for relapse or side-
effects. Clinicians often rely on clinical judgement and in-
stinct, rather than formal evidence-based processes to opti-
mize sequences of treatments.

Reinforcement learning (RL) is a well-known framework
for optimizing sequences of actions in an evolving, time-
varying system (Sutton & Barto 1998). When applied in the
context of treatment design, reinforcement learning provides
the means to evaluate the long-term effect of a given treat-
ment, and thus optimize sequences of treatments for a given
objective.

The idea of applying reinforcement learning to optimize
treatment strategies is relatively novel both in the medical
and machine learning communities. We attribute this in
large part to a lack of appropriate sequential data (or alter-
nately a generative model), which is a key requirement for
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applying reinforcement learning. This situation is rapidly
changing: the medical community has a strong interest in
designing studies with multiple sequential, randomized tri-
als. (Murphy et al. 2006). In addition, ongoing clinical
trials are evaluating the usefulness of treatment strategies
that rely on automated prediction methods to trigger treat-
ment (Kossoff et al. 2004), and significant attention is be-
ing devoted to developing high fidelity in silico models of
chronic diseases (Vilar, Santana, & Uriarte 2006).

This paper examines the problem of applying reinforce-
ment learning technology to optimize control strategies for
deep-brain electrical stimulation in the treatment of epilepsy.
In this case, acquiring large amounts of patient data is ex-
tremely expensive and invasive. Therefore we begin by
investigating the use of batch reinforcement learning tech-
niques to learn from in vitro studies of stimulation. We dis-
cuss several technical aspects of this problem, including data
collection, feature extraction, function approximation, and
validation from a small sample set.

It is worth pointing out that the RL methods we use
throughout this paper are relatively simple and well known
to the machine learning community. Nonetheless it is en-
couraging to see that these methods can have a meaningful
impact on the optimization of treatment protocols. In partic-
ular, results of our experiments show that by using reinforce-
ment learning, we can reduce the total amount of electrical
stimulation to the brain by a factor of 10, while reducing the
incidence of seizures by 25%, compared to the current best
stimulation strategies in the neuroscience literature. If these
results carry over to the human model of epilepsy, the im-
pact will be substantial. Reducing the amount of stimulation
means that there is less risk of damage to brain tissues, and
also means that the battery onboard the neuro-stimulator has
a much longer life (note that installing a new battery cur-
rently requires surgery). And of course, most important of
all, reducing the incidence and duration of seizures has a
significant impact on the quality of life of the patient.

Methodology for designing adaptive treatment strategies
is an emerging area of interest in the medical and compu-
tational communities. The focus on multistage decision-
making (rather than prediction, which has received much
more attention in recent years) requires a change in perspec-
tive. Furthermore, the great deal of information available
at each decision point raises several interesting challenges



for statisticians and computer scientists. An important aim
of this paper is to draw the attention of the AI and machine
learning community to this new area of research, and pro-
pose some interesting technical challenges that arise in this
investigation.

Problem Statement
Epilepsy is the most common severe neurological disor-
der, affecting around 1% of the world population (Hauser
& Hesdorffer 1990). Implantable electrical stimulation de-
vices are now an important treatment option for patients who
do not respond to anti-epileptic medication (Uthman et al.
2004). The effect has also been shown in vitro (i.e. in
animal brain tissues) (D’Arcangelo et al. 2005). Very re-
cently, researchers have started to design neuro-stimulation
devices which trigger stimulation in response to an auto-
mated seizure detection algorithm (Kossoff et al. 2004).
We propose to use reinforcement learning to directly opti-
mize stimulation patterns of a closed-loop stimulation de-
vice, without necessarily requiring seizure prediction or de-
tection. Figure 1 shows a schematic of our proposed ap-
proach.

Stimulator 

   Sensor

Agent controls based 
on the sensor data

Closed−loop paradigm

Figure 1: Reinforcement learning in deep brain stimulation.

Informally, the learning problem can be formulated as
follows: at every moment in time, given some information
about what happened to the signal previously (our state), we
need to decide which stimulation action we should choose
(if any) so as to minimize seizures now and in the future.

Technical Background
This section presents the technical details pertinent to our
approach.

Reinforcement Learning
Reinforcement learning is a technique in which an agent
learns to make decisions optimally in a given environ-
ment by exploring possible actions and receiving rewards
for those actions. It is especially useful in situations in
which the agent’s environment is stochastic, and for poorly-
modeled problem domains in which the optimal decision-
making policy is not obvious (Kaelbling, Littman, & Moore
1996; Sutton & Barto 1998).

Formally, we model the problem as a Markov decision
process (MDP) consisting of a set of states S and a set of
actions A available to the agent. Time is modeled as a se-
ries of discrete steps with 0 ≤ t ≤ T . On performing

an action a ∈ A in state s, the agent receives a scalar re-
ward r = R(s, a) and the environment moves to a new
state s′ according to some conditional probability distribu-
tion P (s′|s, a). The state is assumed to be a sufficient statis-
tic for the past sensor observations. The agent’s goal is to
find a policy π : S → A that maps each state to an action
such as to maximize the expected total reward over some
time horizon:

RT = E

[
T∑
t=0

γtrt

]
. (1)

Here γ ∈ (0, 1] is a discount factor for future rewards (it can
be thought of as the agent’s probability of surviving to the
next time step). For T = ∞, γ must be less than one to
preclude an infinite total reward. For finite T we can allow
γ = 1.

Given this formulation, we can write the value of a given
state if the agent follows a fixed policy π as:

V π(s) = Eπ

[
T∑
t=0

γtrt

]
. (2)

We define the optimal value for a state V ∗(s) to be:

V ∗(s) = max
π

Eπ

[
T∑
t=0

γtrt

]
, (3)

which we can expand to the recursive equation:

V ∗(s) = max
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

)
. (4)

Therefore the value of a state is the maximum of the reward
possible in this state plus the expected value over the suc-
cessor states. The optimal policy π∗(s) is then:

π∗(s) = arg max
a∈A

(
R(s, a) + γ

∑
s′∈S

P (s′|s, a)V ∗(s′)

)
.

(5)
It is also sometimes useful to express the value of a state

action pair, which we formulate as:

Q∗(s, a) = R(s, a)+γ
∑
s′∈S

P (s′|s, a) max
a′∈A

Q∗(s′, a′) (6)

and from which the optimum value function:

V ∗(s) = max
a

Q∗(s, a) (7)

and optimum policy:

π∗(s) = arg max
a

Q∗(s, a) (8)

can be easily derived (Kaelbling, Littman, & Moore 1996).

Fitted Q Iteration Algorithm
Many traditional reinforcement learning approaches use on-
line learning, in which the agent interacts with the environ-
ment dynamically and updates its policy after taking each
action (Sutton & Barto 1998). However, in many medical



domains, it is not possible to train an agent entirely on-line.
Normally, data will be collected in a fixed series of experi-
mental trials and the potentially disruptive effects of an un-
trained agent may impose an unacceptable risk to the patient.

In cases such as this, it is preferable to utilize a batch
mode reinforcement learning approach, in which the agent
is trained using a series of previously recorded trajectories
containing state, action, and reward information.

The fitted Q iteration algorithm (Ernst, Geurts, & We-
henkel 2005), which builds on earlier work on fitted value
iteration (Gordon 1999; Ormoneit & Sen 2002), takes as
input a set F of 4-tuples of the form < st, at, rt, st+1 >,
where each tuple is an example of the one-step transition dy-
namics of the system. Unlike earlier formulations of batch-
mode RL, the fitted Q iteration algorithm is well suited for
problems with continuous state and action spaces. Also, the
algorithm has been shown to make efficient use of training
data (Kalyanakrishnan & Stone 2007), which is especially
important in medical applications, where data may be sparse
and expensive to collect.

The algorithm makes use of the recurrence relation:
QN (st, at) = R(s, a)+ γmax

a′∈A
QN−1(s′, a′),∀N > 1 (9)

with Q1(s, a) ≡ R(s, a). As N increases, this sequence
converges to the true Q function (Equation 6) in the infinity
norm.

If we do not know the transition dynamics or reward func-
tion R(s, a) of the MDP, we can still approximate Equation
9 using the fitted Q iteration algorithm. At each iteration k
of the algorithm, we form an estimate Q̂k of the the trueQN
function by iteratively learning the mapping:

Q̂k(st, at) = rt + γmax
a′∈A

Q̂k−1(st+1, a
′). (10)

By using the empirical return rt in this formulation, the
reinforcement learning problem can be cast as a batch su-
pervised learning problem. Thus any regression algorithm
can be used to learn the mapping Q : S ×A→ <.

Extremely Randomized Trees
The fitted Q iteration algorithm requires an appropriate su-
pervised regression algorithm to learn the Q̂N functions. In
this paper we follow the example of Ernst et al. (2006), an-
other medical application, and use Extremely Randomized
(Extra) trees (Geurts, Ernst, & Wehenkel 2006).

Unlike classical regression tree algorithms such as CART
or Kd-trees, the Extra Tree algorithm builds an ensemble of
trees, and the overall value returned by the final classifer is
the mean of the values of the individual trees. The algorithm
has three parameters: M , the number of trees to create; K,
the number of candidate tests at each node; and nmin, the
minimal number of nodes at each leaf.

The algorithm builds each of M trees using the entire
training set F . Each node is constructed by creating K can-
didate tests consisting of a randomly selected element of the
feature vector and a random cut point. A score is calculated
for each candidate test based on the relative variance reduc-
tion of each test. The best test is kept and all others dis-
carded. The process continues until each leaf node contains
no more than nmin elements.

Any regression tree algorithm could be an appropriate
choice of supervised regression algorithm, given both their
efficiency and their excellent performance in the presence of
noisy or irrelevant features. In empirical experiments with
several reinforcement learning domains, the Extra Trees al-
gorithm has exhibited excellent performance in terms of
both computational efficiency and empirical return relative
to other regression tree algorithms (Ernst, Geurts, & We-
henkel 2005), therefore we select this method.

Problem Definition
This section describes how the problem of controlling
epileptic seizures can be formulated in the reinforcement
learning framework, and in particular how we propose to
apply the Extremely Randomized Trees method to optimize
the choice of stimulation strategies.

Data Collection
The data used in this study are field potential recordings of
seizure-like activity recorded in slices of rat brains. The
slices were maintained in a bath of artificial cerebralspinal
fluid containing the convulsant drug 4-aminopyridine to in-
duce seizure-like activity. This is a standard in vitro model of
epilepsy. The five series of recordings were made using mi-
croelectrodes inserted in the regions of interest and sampled
at a rate of 2008 Hz. For our analysis we use the recordings
made in the perirhinal cortex.

Electrical stimulation of the amygdala was performed on
the slices in a fixed series of at least seven phases. Each se-
ries begins with a period of recording with no stimulation.
Then, stimulation was applied for several minutes at 0.2 Hz.
The slice was then allowed to return to baseline for a period
of several minutes. This process was repeated with stimula-
tion at 0.5 Hz, and 1.0 Hz.

Figure 2 shows a sample trace, taken during stimulation at
0.5Hz. A typical seizure appears in the first half of the trace.
The stimulation actions are also visible in this recording.
However, the actions may or may not be present depending
on the placement of recording and stimulating electrodes.

Signal Processing Each trace was divided into a set of
overlapping frames of 32768 samples (approximately 16
seconds) in length, with each frame beginning 4096 sam-
ples after the previous frame. Each frame is smoothed with a
Hann window and normalized, and the mean, range, and en-
ergy of the signal is calculated. A discrete fast Fourier trans-
form is used to extract spectral magnitude features from the
frame. Within each frame, the smoothing, normalization,
and Fourier transform is repeated for the final half frame,
quarter frame, eighth frame, and sixteenth frame . Low fre-
quency components are extracted from the full-frame spec-
trum, and high frequency components from the subframe
spectra. These features are combined with the mean, range,
and energy of each subframe to yield a 114-dimensional
continuous feature vector.

Labeling To allow extraction of reward and action infor-
mation, each trace was labeled by hand to indicate whether
each frame reflected seizure or normal activity, and to record
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Figure 2: Trace example from the dataset

which stimulation protocol was in use at each time on each
trace. Artifacts were also noted, so that they could be re-
moved from the analysis.

Reinforcement Learning
Our state space S is constructed such that each element st
is a vector of 114 continuous dimensions, summarizing past
EEG activity. Our action set A consists of 4 options: no
stimulation, and stimulation at one of the fixed frequencies
of 0.2, 0.5, or 1.0 Hz. Each frame is assigned an action at
based on the labeling information.

We define a reward function rt = R(s, a) to penalize both
stimulation and seizure frames as follows:

rt =


−1.0 if seizure and stimulation off
−1.04 if seizure and stimulation on
+0.01 if no seizure and stimulation off
−0.03 if no seizure and stimulation on.

(11)

This reward function reflects an unresolved trade-off be-
tween the cost of a seizure and the cost of stimulation. We
arbitrarily chose to make the seizure events 25 times more
costly than stimulation events.

Each element of the training set F is then constructed by
concatenating the experience-tuples < st, at, rt, st+1 >.

For all of our experiments, the discount factor γ = 0.95.
We assume a discrete time step of 2 seconds. This is suf-

ficient to compute our input features in real time, yet is suf-
ficiently short to allow flexibility in the learned policy.

Training the regression trees
The procedure we use to train the trees is analogous to that
proposed by Ernst et al. (2006). A few of the implementa-
tion details are worth mentioning.

Note that in the experiments below, we grow a set ofM =
48 trees for each action. The estimate Q̂(s, a) is obtained by
averaging the value returned by each tree in the a-th set, for
the current state s.

The parameter K, the number of candidate tests created
when expanding a node, was set to 30. The value of nmin,
the minimum number of elements at each leaf, was set to 5.

Performance of the algorithm was quite robust to these
parameter choices, within an order of magnitude. This is
consistent with the original empirical analysis of tree-based
RL (Ernst et al. 2006).

During the training phase, value iteration is applied over
the set of trees. For the first 30 iterations, we allow the set
of trees to be rebuilt entirely at each iteration. After this first

phase, the structure of the trees is fixed and iterations are
applied until the Bellman error falls below a given threshold.
When the tree structure is fixed, only the leaf values in the
trees are updated. It is necessary to fix the tree structure at
some point to ensure proper convergence. Fixing the tree
structure from the beginning is not desirable, as the early
structure may be inadequate to reflect the final Q-function.

Note that the extremely randomized trees can be built
completely in parallel since they are independent of each
other. Our implementation was multithreaded to take advan-
tage of this and allow faster learning.

Testing tree-based RL strategies

To validate our method for optimizing adaptive stimulation
strategies, the obvious option is to test it directly in vitro on
epileptic brain slices, against other strategies of stimulation.
However, this approach is extremely labour-intensive, and
therefore not practical as a first test of feasibility.

An easier alternative would be to use an in silico model
of epilepsy, as is usually done to validate RL algorithms.
However to date there are no good generative models of
temporal-lobe epilepsy. Existing state-of-the-art models,
such as that of Netoff et al. (2004) do not include sponta-
neous transition into, and out of, seizures. Furthermore they
do not include any mechanisms for applying electrical stim-
ulation. So while they are interesting from a physiological
perspective, they are not useful to evaluate the effectiveness
of seizure-control strategies.

So instead, we rely on some simple empirical indicators
which we can calculate using a hold-out testing set, which
is separate from our training data. Our original data set in-
cludes recordings from 5 animal slices. Therefore during
testing we perform a 5-fold cross-validation, whereby we
train on data from 4 different animal slices, and test on the
5th. This means that data in the test set comes from a differ-
ent animal than the training data. It is well-documented that
epileptic seizures vary greatly between animals (as well as
individuals), therefore this is an important test for the gener-
alizability of our approach.

However there is a well-known difficulty in using a test
set to validate a target policy π. That is the fact that the test
set was collected under a given policy, thus the target policy
(which we wish to evaluate) cannot be applied on this test
set. The most common solution is to use a form of rejection
sampling to select only those segments of the test set which
are consistent with the target policy. Recall that the test set
is divided into single-step episodes: < si, ai, ri, si+1 >. We



then use the following indicator function:

Iπ(si, ai) =
{

1 if π(si) = ai
0 otherwise

(12)

to indicate that the action that would be selected by the tar-
get policy (namely π(si)) matches the action in the test set
(namely ai). We exclude all experience-tuples that do not
match the target policy.

Empirical evaluation
Throughout our empirical validation, we consider four dif-
ferent scores to quantify the performance of various stimu-
lation strategies.

The first score is an estimated proportion of seizure states
when following a particular strategy π. Again, we com-
pare the action selected by the policy and the action in the
test trace for each state-action-reward tuple from the test
trace, and count the number of states which were labeled
as ”seizure”:

Ŝπ =

N∑
i=0

Iπ(si, ai)Iseizure(si)

N∑
i=0

Iπ(si, ai)

, (13)

where Iseizure(si) indicates whether state si was labeled as
a seizure (1 if yes, 0 if no).

The second score we consider is the number of actual
electrical stimulation events that would be used by a par-
ticular strategy, over the test trace. These first two scores
are included because they are more common in the epilepsy
literature, and thus useful metrics to gauge the potential ac-
ceptability of our method.

The third score calculates the expected immediate re-
wards. Formally,

R̂π =

N∑
i=0

Iπ(si, ai)r(si)

N∑
i=0

Iπ(si, ai)

, (14)

where si ∈ Ttest∀i, Iπ(si, ai) is the indicator function de-
fined above, and r(si) is the immediate reward associated
with si from the labeling of the data.

The fourth score calculates the expected return (i.e. dis-
counted sum of rewards). Formally,

Q̂π =

N∑
i=0

Iπ(si, ai)
[
r(si) + γQ̂(si+1, π(si+1))

]
N∑
i=0

Iπ(si, ai)

, (15)

where Q̂ is the estimated expected value of applying a policy
π. In the case of the tree-based RL method, Q̂ is defined as

in Equation 10. For fixed stimulation strategies, which were
in fact deployed during data collection, we use the empirical
return instead.

These last two scores are included because they reflect the
actual reward function, and are more commonly used in the
RL literature to validate methods. Since our reward function
is a linear combination of the amount of both stimulation
and seizure, these are in some sense aggregates of the other
two scores.

Comparison to fixed stimulation strategies
In this section, we evaluate the performance of our tree-
based reinforcement learning stimulation policy (denoted
TBRL), in comparison to state-of-the-art stimulation strate-
gies in the epilepsy literature. Indeed, studies of electrical
stimulations have thus far focused strictly on fixed (peri-
odic) stimulation strategies. For the particular animal model
we are considering, extensive experiments have been con-
ducted using stimulation events at 0.2Hz, 0.5Hz, and 1.0Hz,
as well as observing what happens when no stimulation is
applied (denoted Control). According to these experiments,
the best fixed stimulation frequency for this type of epilepsy
is 1Hz (D’Arcangelo et al. 2005).

Figure 3 compares the proportion of states in which a
seizure is observed (according to our labels) under each of
the policies. This corresponds to the score in Equation 13.
We observe that TBRL is most efficient at reducing the in-
cidence of seizures. It shows a roughly 25% improvement
over the best standard stimulation policy currently used by
neuro-scientists (i.e. 1Hz), and is about a 60% improvement
compared to having no stimulation whatsoever (i.e. Con-
trol). This is extremely encouraging, especially given the
fact that the adaptive strategy (TBRL) was trained on other
animal data, and not on the test slice. We assume perfor-
mance would be greatly enhanced by continuing training
with the target animal. Informal results seem to confirm this
(e.g. including all five slices in the training set).

Figure 4 compares the number of stimulation actions ap-
plied under each strategy. As expected, this number in-
creases with frequency (in the case of the fixed stimulation
policies). The learned policy (TBRL) uses roughly a tenth
of the stimulation applied by the 1.0Hz policy. This is ex-
tremely important for two reasons: it reduces the potential
for tissue damage and it significantly increases battery life
of the neuro-stimulator.

Figure 5 shows the empirical reward for the various stimu-
lation policies. Figure 6 shows the empirical return for each
of the policies considered. The results here are not surpris-
ing, since in a way they represent an aggregate measure over
the two scores presented in the previous figures. These re-
sults confirm that TBRL is able to simultaneously minimize
the amount of both stimulation and seizure much more ef-
fectively than fixed strategies.

Comparison to other Adaptive Strategies
In this section, we explore other related methods of opti-
mizing stimulation strategies. While our choice of the tree-
based RL (TBRL) method was strongly motivated by their
solid empirical evaluation in previous tasks (Ernst et al.
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Figure 3: Proportion of seizures states (compared to non-
seizure), comparing the tree-based RL method (TRBL),
no stimulation (Control), and fixed stimulation strategies
(0.2Hz, 0.5Hz, 1Hz).
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Figure 4: Total number of stimulation actions, comparing
the tree-based RL method (TRBL), no stimulation (Control),
and fixed stimulation strategies (0.2Hz, 0.5Hz, 1Hz).
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Figure 5: Empirical reward, comparing the tree-based RL
method (TRBL), no stimulation (Control), and fixed stimu-
lation strategies (0.2Hz, 0.5Hz, 1Hz).

2006), it is worthwhile verifying whether the choice is in-
deed appropriate for the current problem domain.

For this reason, we trained a simple neural net function
approximator (denoted NNRL), as an alternative to the Ex-
tra Trees. The input to the neural net consists of the 114-
dimensional feature vector, as described above. The output
is the target Q-function, therefore we train a separate neural
net for each action. Each network includes 1 hidden layer
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Figure 6: Average empirical return, comparing the tree-
based RL method (TRBL), no stimulation (Control), and
fixed stimulation strategies (0.2Hz, 0.5Hz, 1Hz).

of 80 nodes, and a single output corresponding to the target
Q-function. We assume the same data and training/testing
protocol as for TBRL (as described above). The main mo-
tivation for including this result is to examine our choice of
function approximator; neural nets have been used exten-
sively in the RL literature to solve challenging real-world
tasks (Tesauro 1995).

In addition, we also train a second instance of TBRL, de-
noted TBRL-sf, which uses a reduced feature set, compared
to the original. Rather than using all 114 input features (ac-
quired from a full 16-second window), we consider only fre-
quency components extracted from a shorter 2-second win-
dow, and in the 7Hz-26Hz range. In total, we preserve 40
of the 114 original features. The idea here is to investigate
the effect of having a rich feature set. If we can get good re-
sults with a reduced feature set, then we can hope to improve
computational speed, and possibly response rates.

Note that all results for TBRL presented in this section are
identical to those in the previous section.

Figure 7 shows the proportion of time during which
seizures occur, under each of the methods listed above. We
see once again that the tree-based method is most efficient
at controlling seizures. The method is also quite robust to
a drastic reduction of its feature set. This confirms earlier
results showing that the extremely randomized trees are ro-
bust to the presence of extraneous features. The neural net
learner performs quite poorly (on par with the Control policy
of Figure 3). We tried various configurations for the neural
net (#hidden units, learning rate), without any improvement,
and in some cases, results were much worse.

Figure 8 shows the amount of stimulation applied by each
method. We see that the neural net appears to vastly over-
stimulate. We do not see any obvious reasons for this, and
presume the learner has reached a local minimum.

Finally, Figure 9 shows the empirical reward for each of
the adaptive stimulation policies. 1 As expected (based on

1We do not show the empirical return in this case. The estimate



the two previous figures), the tree-based methods have the
best scores, whereas the neural net performs quite poorly.
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Figure 7: Proportion of seizures states (compared to non-
seizure), comparing the tree-based RL method (TRBL),
tree-based RL with a reduced state set (TBRL sf), and a neu-
ral net learner (NNRL).
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Figure 8: Total number of stimulation actions, comparing
the tree-based RL method (TRBL), tree-based RL with a re-
duced state set (TBRL sf), and a neural net learner (NNRL).

We conclude our empirical evaluation by looking at some
sample traces, illustrating the TBRL policy in action. Fig-
ure 10 shows a sample trace from the test set, along with
the TBRL strategy chosen. In this segment, no actions were
applied during the actual data collection. Recall that TBRL
must choose between 4 actions: no simulation, 0.2 Hz stim-
ulation, 0.5 Hz stimulation, and 1.0 Hz stimulation. In ef-
fect, the TBRL policy is just a mixture of these fixed poli-
cies. We see in Figure 10 that the amount of stimulation
increases significantly during a seizure, and continues in-
termittently afterwards. Figure 11 shows similar results for
another excerpt from the dataset. In this case, there is signif-
icantly more pre-seizure activity (characterized by the short

of the return for the NNRL method includes a large bias term (due
to the fact that the Q-function did not converge to the correct value),
so the return estimates are not directly comparable between the two
TBRL policies, and the NNRL policy.
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Figure 9: Empirical reward, comparing the tree-based RL
method (TRBL), tree-based RL with a reduced state set
(TBRL sf), and a neural net learner (NNRL).
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Figure 10: Sample data trace and TBRL policy #1

spikes seen before and after the seizure), and consequently,
the adaptive policy responds by increasing the amount of
stimulation throughout (both before and after the seizure).

Discussion
This paper provides encouraging evidence that reinforce-
ment learning may be an important technique for optimizing
sequential treatment strategies for chronic diseases, and in
particular for epilepsy. The results obtained so far show that
an adaptive stimulation strategy, trained from batch data,
substantially outperforms fixed stimulation policies, which
have been the norm in the epilepsy literature. In particular,
results of our experiments show that by using reinforcement
learning, we are able to reduce the incidence of seizures
by 25%, compared to the current best stimulation strategies
in the neuroscience literature (and 60% compared to when
there is no stimulation). Furthermore, the total amount of
electrical stimulation to the brain is reduced by a factor of
about 10. If these results carry over to the human model of
epilepsy, the impact for patients will be substantial. The an-
ticipated benefits from reducing the incidence of seizures are
well-known; we note that the reduction in stimulation would
also have a direct impact on the quality of life of epilepsy



0 50 100 150 200 250 300

−6

−4

Time (seconds)

m
V

   
   

   
   

   
   

   
   

   
   

   
   

   
 

0 50 100 150 200 250 300

None

0.2Hz

0.5Hz

1.0Hz

   
   

   
   

   
   

   
   

   
   

   
   

   
 B

es
t a

ct
io

n

Figure 11: Sample data trace and TBRL policy #2

patients since electrical stimulation accounts for approxi-
mately 50% of the power consumption in neuro-stimulators,
and batteries can only be changed through surgery.

The results presented above were obtained using data
from an in vitro model of epilepsy. We are now planning
a series of experiments, whereby the adaptive stimulation
strategy learned using the batch data will be evaluated on-
line, using live in vitro slices. Performing such experiments
is very time-consuming and expensive. This highlights the
value of developing good computational models of dynam-
ical diseases. Such models exist for some diseases, such
HIV/AIDS and cancer, however none are currently available
for epilepsy. This may be due to the highly unpredictable
nature of the disease. This presents interesting challenges
related to statistical modeling and inference.

Most of the reinforcement learning methodology lever-
aged in this paper is well known in the AI community. In
particular, fitted Q-iteration with Extra Trees has been exten-
sively tested in standard RL simulation tasks (Ernst, Geurts,
& Wehenkel 2005), as well as clinical tasks (Ernst et al.
2006). The results presented here confirm the approach per-
forms very well, even with complex, multi-dimensional in-
put. Furthermore it seems robust to extraneous variables
and other sources of noises, much more so than neural nets
which performed quite poorly in the problem domain.

In conclusion, this paper presents a novel application of
reinforcement learning methodologies to a challenging and
important optimization problem. The potential impact of
this work is tremendous, and while the early results are
promising, there remains a long road of empirical valida-
tion. Along the way, many interesting computational ques-
tions will arise, including: How should we quantify perfor-
mance of adaptive strategies? How we can learn from very
little training data? Can we design ”safe” exploration poli-
cies, with formal guarantees on worse-case performance?
How can we re-use data, or learned policies, between dif-
ferent patients? These are just a few of the questions which
are pertinent to the task at hand. Many of these have been
on the agenda of AI researchers for a number of years. We
hope this paper encourages them to continue investigating
these challenging issues, as well as look towards applica-
tions pertaining to adaptive treatment strategies to motivate

and validate their research endeavours.
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