
PAC-Learning of Markov Models with Hidden State

Ricard Gavaldà1, Philipp W. Keller2, Joelle Pineau2, Doina Precup2

1Universitat Politècnica de Catalunya, Barcelona, Spain
2McGill University, School of Computer Science, Montreal, QC, Canada

Abstract. The standard approach for learning Markov Models with Hidden State
uses the Expectation-Maximization framework. While this approach had a sig-
nificant impact on several practical applications (e.g. speech recognition, bio-
logical sequence alignment) it has two major limitations: it requires a known
model topology, and learning is only locally optimal. We propose a new PAC
framework for learning both the topology and the parameters in partially observ-
able Markov models. Our algorithm learns a Probabilistic Deterministic Finite
Automata (PDFA) which approximates a Hidden Markov Model (HMM) up to
some desired degree of accuracy. We discuss theoretical conditions under which
the algorithm produces an optimal solution (in the PAC-sense) and demonstrate
promising performance on simple dynamical systems.

1 Introduction

Hidden Markov Models (HMMs) are widely used tools for prediction under uncer-
tainty. Successful applications of these technologies include speech recognition (Ra-
biner, 1989) and DNA sequence alignment (Durbin et al, 1998). In this paper, we ad-
dress the issue of learning such models from data.

The standard approach at the moment is to estimate model parameters directly from
trajectories of observations (or action-observation pairs) using Expectation-Maximization
(EM) (Rabiner, 1989). This approach has proved successful in many applications, but
it also has some significant drawbacks. First, it assumes a known set of “real” hidden
states S. In many domains, in particular in physical systems, there is a natural state
representation. For example, in speech recognition, the set of phonemes is the standard
choice of state representation, and in computational biology, the type of the subse-
quence (e.g., gene or promoter) is a natural choice. However, there are many domains
where the choice of states is not at all obvious. For example in dialogue modelling, the
state representation must somehow capture the user’s communication goals. Similarly,
in medical diagnostic and adaptive treatment design, the state must capture complex
information about the patient, his/her disease and treatment history. In these and similar
cases, the state is best represented by summary statistics over the set of past observa-
tions. Some recent research has focused on modeling just the observed data (Jaeger et
al, 2006, Rosencrantz et al, 2004, Singh et al, 2003). In this case, knowing or defining
hidden states ahead of time is not necessary. The algorithm we propose in this paper
has a similar goal, although the methodology is different. We build a learning algorithm
for probabilistic models which can simultaneously estimate a good state topology and
a corresponding set of parameters.

The second drawback of EM is that it converges to a locally optimal solution, and
there are no guarantees on the quality of the final solution. In some domains, this is very
problematic. The algorithm we propose has PAC-style guarantees on the model learned,
using a polynomial amount of data.

We use Probabilisitc Deterministic Finite Automata (PDFA), a standard tool in com-
putational learning theory, as the basic representation to be learned. We show how
PDFAs can approximate HMMs. Our algorithm is based on a state-splitting and merg-
ing technique, and is designed to be able to provide PAC guarantees. We illustrate the
algorithm on some example problems, and show promising empirical results.

Some proofs and discussions are omitted in this version. More details can be found
in the technical report version, available from the first author’s homepage.

2 Background

We address the problem of learning the structure and parameters of a dynamical system,
directly from observational data generated by the system. The data typically consists of
a set of trajectories, D = {d1,d2, ...,dn}, each containing a finite sequence of observa-
tions d = σ0σ1...σk. Different models have been used to capture this type of data; in
this paper, we focus on Hidden Markov Models and Probabilistic Finite Automata.

A probabilistic deterministic finite automaton (PDFA) is a tuple 〈S,Σ,T,O,s0〉,
where S is a finite set of states, Σ is a finite set of observations, T : S×Σ → S is the
transition function O : S×Σ → [0,1] defines the probability of emitting each observa-
tion from each state, O(s,σ) = P(σt = σ|st = s), and s0 ∈ S is the initial state. Note
that the transition to a new state is deterministic once an observation has been selected:
T (s,σ) gives the next state s′. A special symbol is reserved to mark the end of a string;
alternatively, one can interpret this as a stop state with no outgoing edges. A probabilis-
tic nondeterministic finite automaton (PNFA) is defined similarly except the transition
function is stochastic: T : S×Σ×S→ [0,1], and T (s,σ,s′) = P(st+1 = s′|st = s,σt = σ).

Given an observation trajectory d = σ0σ1, ...,σk emitted by a known PDFA, the
state at each time step can be tracked by starting from the initial state s0 and fol-
lowing the labelled transitions according to d. Also, the probability of generating a
given trajectory d = σ0σ1, ...,σk from a state s can be calculated recursively as follows:
O(s,σ0σ1...σk) = O(s,σ0)O(T (s,σ0),σ1...σk).

A Hidden Markov Model is a tuple 〈S,Σ,T,O,b0〉, where S is a finite set of states,
Σ is a finite set of observations, T (s,s′) = P(st+1 = s′|st = s) defines the probability of
transitioning between states, O(s,σ) = P(σt = σ|st = s) defines the emission probability
of each observation on each state, and b0(s) = P(s0 = s) is the initial state distribution.
Given an observation trajectory d emitted by a known HMM, the probability distribu-
tion over states at any time bt+1, can be estimated recursively by Bayesian updating:

bt+1(s) ∝ Σs′∈Sbt(s
′)O(s′,σt)T (s′,s) (1)

Several links have been established between HMMs and probabilistic automata; a
comprehensive review is in (Dupont et al., 2005). From the point of view of this paper,
it is most important to note that an HMM can be transformed into an equivalent PNFA
with the same number of states. A PNFA can also be transformed into an HMM, but

not necessarily with the same number of states. Any PDFA M = 〈S,Σ,T,O,s0〉 can be
converted to an equivalent HMM M′ = 〈S′,Σ,T ′,O′,b0〉. The states in S′ correspond to
pairs of states in S among which a transition is possible: S′ = {(s1,s2) ∈ S× S|∃σ ∈
Σ s.t. T (s,σ) = s′}. The probability distributions of the HMM are then built as follows:

b0((s0,s
′)) = 1/|S| O′((s,s′),σ) =

O(s,σ)

∑σ′=Σ O(s,σ′)

T ′((s,s′),(s′,s′′)) = ∑
σ∈Σ

O(s′,σ)δ(T (s′,σ),s′′)

where δ is an indicator function. All other parameters are 0. It is easy to show that
M′ defines a proper HMM, and that M and M′ generate the same probability distribu-
tion over observation trajectories. Unfortunately, the reverse is not true: there are finite
HMMs that can only be converted into PDFAs of infinite size. However, we will now
show that any HMM can be approximated with a finite PDFA up to any desired degree
of precision.

3 Approximating HMMS with PDFAs

Recalling that every HMM is equivalent to a PNFA (Dupont et al, 2005), we show that
every finite-size PNFA can be approximated by a finite-size PDFA.

Theorem 1. Let N be a PNFA and L be the expected length of strings generated by
N. Then there exists a PDFA of size at most L/ε2 that generates a distribution over
trajectories that is ε-close to the distribution generated by N, under the L∞ distance.

Proof. Recall that L∞ measures the maximum difference between the corresponding
components of two vectors. Here, we will use it to measure the maximum difference
between the probability assigned to the same string by two different distributions. Let
S be the set of strings having probability at least ε in N. Note that there are at most 1/ε
such strings, i.e., finitely many. It is easy to build a finite, tree-like PDFA M with |S|
leaves that generates exactly the strings in S, each with the same probability as N, and
no other string. Hence, the distributions of M and N are ε-close.

To explicitly bound the size of the tree, we observe that if u ∈ S, then necessarily
|u| ≤ L/ε. Let SN be the random variable describing the string output by PNFA N. Then
by Markov’s inequality we have
ε ≤ Pr[SN = u] ≤ Pr[|SN | ≥ |u|] ≤ E[|SN |]/|u| ≤ L/|u|
which completes the proof.

This is a generic construction whose value is only to show that finite-size approx-
imation of PNFA (and HMM) by PDFA is always possible. However, the machine we
construct for the proof does not capture the internal structure of the PNFA/HMM. But
the fact that PDFAs can be used to approximate HMMs suggests a new class of al-
gorithms that could be used to learn HMMs. More precisely, one can think of trying
to learn a PDFA that approximates an HMM. The size of the PDFA would depend on
factors such as the desired degree of accuracy, and the amount of data available.

PDFAs and PNFAs have been studied extensively in computational learning the-
ory, especially in the context of PAC-learning. In this context, the goal of learning is
to find a model that approximates the true probability distribution over observation
trajectories, P . A learning algorithm will produce a model which generates a distri-
bution over observation trajectories P̂ . A model, or hypothesis, is called ε-good, if the
distance between m(P , P̂) < ε, where m is a reasonable distance measure (e.g. L∞ or
the Kullback-Leibler divergence) and ε > 0 is the desired precision. Given observation
trajectories that are drawn i.i.d. from the system, an error parameter ε > 0 and a con-
fidence parameter δ ∈ (0,1), a PAC-learning algorithm must output an ε-good model
with probability at least 1− δ. A class of machines is called efficiently PAC-learnable
if there exists a PAC-learning algorithm whose time complexity is polynomial in 1/ε,
1/δ and the number of parameters of the target machine. A class of machines is poly-
nomially PAC-learnable if the training sample (i.e. the number of trajectories needed)
is polynomial in the same quantities.

Several PAC-style results have been established over the years on the topic of learn-
ing PDFAs and HMMs. (see Dupont et al, 2005 for a comprehensive discussion). Of
particular relevance to our work is the result by Kearns et al. (1994) establishing that
the class of all PDFAs is in fact not efficiently PAC-learnable. However Ron et al.
(1995) argued that by restricting attention to the class of PDFAs that are acyclic and
have a distinguishability criterion between states, PAC-learning is possible.

Definition 1. Let m be a measure of the difference between two probability distribu-
tions. A PDFA has distinguishability µ if for any two states s and s′, the probability
distributions over observation trajectories starting at s and s′, Ps and Ps′ , differ by at
least µ: m(Ps,Ps′) ≥ µ,∀s,s′ ∈ S.

Intuitively, this class of machines does not have states that are “too similar” in terms
of the probability distribution of trajectories following them. More recently, Clark and
Thollard (2004) provided an efficient PAC-learning algorithm for this subclass of PDFAs
which requires an amount of data polynomial in the number of states in the target, the
“distinguishability” of states and the expected length of strings generated from any
state. In the next section, we build on their work to provide a learning algorithm for
PDFAs/HMMs with PAC-style guarantees, then analyze this algorithm.

4 A PAC-learning algorithm

The algorithm builds a graph whose nodes intuitively represent postulated states of the
target machine. We call these nodes “safe states”. The algorithm also maintains a list of
“candidate states” that will eventually be merged with existing safe states or promoted
to be new safe states.

The algorithm uses both state splitting and state merging operations. We begin by
assuming that the initial model is a trivial graph with a single safe state representing
the initial state of the target machine. In the induction step, we refine the graph by
adding a new safe state sσi, whenever the training data suggests that there is a sufficient
difference between the probability distribution over the trajectories observed from sσi

and the distribution observed from any safe state s′. Similarly. if the distribution of

trajectories observed from sσi and an existing safe state s′ are sufficiently similar, we
merge (or identify) these states. The remainder of this section formalizes these basic
ideas, including the precise criteria for creating new safe states and merging candidate
states into existing safe states.

We assume that the set of possible observations Σ is known, and that we have a set of
training trajectories D, with each trajectory being sampled i.i.d. from the correct target.
The algorithm assumes the following input parameters: δ,n,µ where δ is the desired
confidence (as in standard PAC-learning (Valiant, 1984)), n is an upper bound on the
number of states desired in the model, and µ is a lower bound on the distinguishability
between any two states. We assume the L∞ norm as the measure m (see Definition 1).

We begin by defining a single safe state S = {s0}, labeled with a null observation.
Then we consider a set of candidate states s0σ for every observation σ ∈ Σ. With each
safe and candidate state, we associate a multiset, Ds and Dsσ respectively, storing the
suffixes of all training trajectories that pass through this state (or a sufficient statistic
thereof).

For each given training trajectory d = σ0 . . .σi−1σiσi+1 . . .σk, we traverse the graph
matching each observation σi to a state until either (1) all observations in d have been
exhausted (in which case we discard d and proceed to the next training trajectory), or (2)
a transition to a candidate state is reached. This occurs when all transitions up to σi−1

are defined and lead to a safe state s, but there is no transition out of s with observation
σi. In this case, we add the sub-trajectory {σi+1 . . .σk} to the multiset Dsσi .

The next step is to decide what to do about candidate state sσ. There are three
possibilities: (1) retain it as a candidate state; (2) merge it with an existing state s′ ∈ S;
(3) promote it to be a new state S = S∪{sσ}. This step is the core of the algorithm.

The decision of whether to merge, promote, or retain a candidate state depends on
the content of its multiset Dsσ. To better explain this step, we introduce some notation,
which applies both for safe and candidate states. We denote by |Ds| the cardinality of Ds

and by Ds(d) the number of times trajectory d occurs in Ds. We denote by |Ds(σ)| the
number of trajectories starting with observation σ in multiset Ds. Note that |Ds(d)|/|Ds|
can be regarded as an empirical approximation of the probability that trajectory d will
be observed starting from state s.

The decision of whether to retain a candidate is taken first. If the state is not retained,
we then consider whether to promote it or merge it with an existing state. A candidate
state sσ is declared large when:

(largeness condition) |Dsσ| ≥
3(1+µ/4)

(µ/4)2 · ln
2
δ′

(2)

where δ′ = δµ
2(n|Σ|+2) . When a candidate state is declared large, it will not be retained.

Intuitively, in this case there is enough information to promote or merge it correctly.
Suppose state sσ has been declared large. If there exists some safe state s′ such that

for every trajectory d we have
∣

∣

∣

∣

|Dsσ(d)|

|Dsσ|
−

|Ds′(d)|

|Ds′ |

∣

∣

∣

∣

≤ µ/2, (3)

then we merge sσ and s′: we therefore remove sσ as a candiate state, we create a transi-
tion from s to s′ labelled with σ, and increase the counts of |Ds′(d)| by those of |Dsσ(d)|.

If, on the contrary, for every s′ there is a d such that
∣

∣

∣

∣

|Dsσ(d)|

|Dsσ|
−

|Ds′(d)|

|Ds′ |

∣

∣

∣

∣

> µ/2

then we promote sσ to be a new safe state; we add a transition from s to sσ labelled with
σ and add candidate states sσσ′ for every observation σ′ ∈ Σ. All trajectories in Dsσ are
moved appropriately to these new candidate states, as if they had been observed from
sσ.

The graph built as described above can easily be transformed into a PDFA. Every
safe state becomes a state of the automaton. The set of observations Σ is the same. The
observation probability function O(s,σ) is calculated using the multiset statistics:

O(s,σ) =
|Ds(σ)|

∑σ′∈Σ |Ds(σ′)|
(1− (|Σ|+1)γ)+ γ, (4)

where γ < 1
|Σ|+1 is a small smoothing probability (which can be set to 0 if smoothing is

not desired).
The only real question left is what to do about the candidate states. Given a candi-

date state sσ, we look for the safe state s′ that is most similar to it according to a chosen

distance metric. E.g., assuming L∞, we have s′ = argmaxs′∈S

(

|Dsσ(d)|
|Dsσ|

−
|Ds′ (d)|

|Ds′ |

)

. We

then add an edge from s to s′ with label σ to the automaton M and calculate the obser-
vation probability as in Equation 4. Finally, the transition function is T (s,σ) = sσ.

Table 1. Learning Algorithm

M = PDFA-Learn (Σ,D,δ,n,µ)
Initialize safe states S = {s0} INITIALIZING

Ds0 = D
Initialize candidates S̄ = {s0σ|∀σ ∈ Σ}
Ds0σ = {σ2 . . .σk|∃d ∈ Ds0 ,d = σσ2 . . .σk}
While ∃sσ ∈ S̄ which is large, as given by (2)

Remove sσ from S̄
If ∃s′ ∈ S such that ∀d (3) is satisfied MERGING

Add transition from s to s′ labelled by σ
Ds′ = Ds′ ∪Dsσ

Else PROMOTING

s′ = sσ
S = S∪{s′}
Ds′ = Dsσ
S̄ = S̄∪{s′σ′|∀σ′ ∈ Σ}
Ds′σ = {σ2 . . .σk|∃d ∈ Ds′ ,d = σσ2 . . .σk}

End if
End while
Construct the output graph representing the learned PDFA.

Table 1 summarizes the algorithm presented in this section. Note that, as presented
here, the algorithm works in batch mode. As such, there will necessarily be a point at
which no candidate state meets the largeness condition, and the algorithm terminates.
However, it is easy to imagine implementing this as an incremental algorithm, in which
the graph is restructured after each trajectory is received. In this case, the largeness
condition will be checked every time a new trajectory is added to the multiset of a
state. It is important to note that if the algorithm runs on-line, states can continue to
become large as more data is gathered, and the machine will continue to grow. One
possibility to stop this is to limit the number of acceptable states, using the parameter n.
In Appendix A, we discuss a different, sufficient termination condition for this case. It is
based on using the precision ε desired in the approximation of the trajectory distribution,
and provides a strong improvement over the bounds of Clark & Thollard (2004) .

It is in general not necessary to recover a true HMM from the learned PDFA; we
will consider the learned PDFA to be an approximation of the HMM, which can be used
to compute (approximately) the probabilities of different trajectories. Not that an HMM
can be recoverred followinng the steps outlines in Sec. 2. It should be noted that this
output HMM may be of larger size than the target machine.

5 Analysis

A full analysis of the algorithm should show that 1) after seeing a certain number of ex-
amples, the graph under construction becomes isomorphic to that of the target machine,
except for low-probability states, and that 2) in addition, after some more examples, the
edge probabilities are close enough to the target ones that the distance in the probability
distribution over trajectories is small. In this section we present a sketch of these proofs,
highlighting the differences with results by Clark and Thollard (2004).

We first state how long it takes for a candidate state to become large. Observe that
the more frequent a state is, the sooner it will be identified. In contrast, typical PAC ap-
proaches require a lower bound on the desired frequency, P, and run in time polynomial
in 1/P even if most states have frequency much larger than P. No such parameter is
required by our algorithm. This adaptive behavior shows good potential for the practi-
cality of our approach.

Let |D̂s| denote E[|Ds|] and |D̂s(d)| denote E[|Ds(d)|].

Theorem 2. (1) Let s be a candidate or safe node. At the time when s is declared
large we have ||Ds| − |D̂s|| ≤ |D̂s| · (µ/4) with probability 1− δ′. That is, |Ds| is an
approximation to |D̂s| up to a multiplicative factor of µ/4.

(2) Let sσ be a candidate node, and p · t be the expected value of |D̂sσ| at time t
Then sσ is declared large at most

T =
3(1+µ/4)

(1−µ/4)(µ/4)2p
· ln

2
δ′

steps after it was created, with probability at least 1−δ′.
The proof is technically similar to some used in (Lipton and Naughton, 1995) in the
context of databases. The details are omitted here, but are presented in the associated
technical report.

Theorem 3. The largeness condition in Equation (2) guarantees that, for any large
state s,

∀d

∣

∣

∣

∣

|Ds(d)|

|Ds|
−

|D̂s(d)|

|D̂s|

∣

∣

∣

∣

<
µ
4

(5)

with probability 1−δ.

The proof is essentially given in Section 6.1 of (Clark and Thollard, 2004).
From this claim, one can argue that the decisions to merge and promote candidate

states are correct with high probability. Indeed, suppose that at any point we decide to
merge sσ with s′. This is because sσ has become large and

∀d,

∣

∣

∣

∣

|Dsσ(d)|

|Dsσ|
−

|Ds′(d)|

|Ds′ |

∣

∣

∣

∣

≤ µ/2.

Then by the claim and the triangle inequality we have
∣

∣

∣

∣

D̂sσ(d)

|D̂sσ|
−

D̂s′(d)

|D̂s′ |

∣

∣

∣

∣

< µ.

Under the assumption that any two states in the target machine are µ-distinguishable,
we conclude that sσ and s′ indeed reach the same state in the target machine.

Similarly, suppose that we decide to promote sσ to be a new safe state. This is
because for every s′ there is some d such that

∣

∣

∣

∣

|Dsσ(d)|

|Dsσ|
−

|Ds′(d)|

|Ds′ |

∣

∣

∣

∣

> µ/2.

Then by the claim and the triangle inequality we have
∣

∣

∣

∣

D̂sσ(d)

|D̂sσ|
−

D̂s′(d)

|D̂s′ |

∣

∣

∣

∣

> 0.

So, assuming µ-distinguishability, we know that sσ reaches a state not reached by any
safe s′ in the target machine.

Finally with these claims one can make the following argument: suppose that every
state in the target machine can be reached by some path containing only transitions of
probability≥ p. Then, every candidate state will be either promoted or merged correctly
in time T , where T is given by Theorem 2. Therefore, by time at most n ·T , no candidate
state is left and the graph constructed is isomorphic to the graph of the target machine.

In other words, if any candidate states remain after time n · T , they should have
probability less than p. Thus we can show that for sufficiently low p, these nonfrequent
states can be ignored without introducing large errors.

Finally, putting all these steps together, we obtain the following result:

Theorem 4. For every PDFA M with n states, with distinguishabilty µ > 0, such that
the expected length of the string generated from every state is less than L, for any δ > 0
and ε > 0, the PDFA-Learn algorithm will output a hypothesis PDFA M ′ such that, with
probability greater than 1− δ, the maximum difference in the probability assigned by
the PDFA to any string is at most ε.

Using the previous result on approximating PNFAs with PDFAs, and the fact that
HMMs can be mapped to PNFAs, we now have a PAC-learning algorithm which will
enable us to learn a good approximation of an HMM.

6 Illustration

We consider a few examples to illustrate the empirical behaviour of the algorithm. Con-
sider first a synthetic text generator with a simple alphabet Σ = {a,b,#}, which is de-
signed to generate only three words d = {abb,aaa,bba} and where # indicates word
termination. We can make a generative model for this text generator using an HMM as
shown in Figure 1. All observations are deterministic, transitions are also deterministic,
except from s10, and the initial state distribution is the same as transitions from s10.

s1 s3

s4 s5 s6

s7 s8 s9

s10

a

b b a

a

b

aa

b

s2

#

0.3

0.1

0.6

N_6

N_0 N_1
a / 0.71

N_4

b / 0.29

N_5

a / 0.14

N_2
b / 0.86

b / 1

N_3
a / 1

b / 1
/ 1

Fig. 1. A simple text-generation HMM (left) and the learned model (right)

We generate a number of trajectories from this HMM and apply the algorithm pre-
sented in Section 4 (using δ = 0.05, n = 8, µ = 0.1). The right panel in Figure 1 shows
the model that is learned. Nodes represent safe states. Edges are annotated by an obser-
vation and its probability (zero probability observations are not shown).

We now modify the HMM to produce noisy observations and repeat the experiment.
We assume each state in Figure 1 generates the character shown with P = 0.9, and gen-
erates the other character (i.e. “b” instead of “a” and vice-versa) with P = 0.1. In this
case, as shown in Figure 2, our algorithm learns a slightly more complex model to ac-
count for the greater number of possible trajectories. It is easy to verify that the models
shown in Figures 1 and 2 generate the observation strings with the same probability as
the corresponding HMM.

The right panel in Figure 2 shows the bound on the number of samples required
as a function of the desired model precision. The increased data requirement with low
ε values are natural, since the size of the model must grow to achieve this increased
precision. As expected, greater amounts of data are required when learning with noisy
observations.

Next, we learn a model for a maze navigation domain called Cheese, illustrated in
the left panel of Figure 3. We modify the original problem slightly as follows. We as-
sume the agent randomly starts in states s5 or s7. We assume a single action float which

N_7

N_0

N_1

a / 0.66

N_4
b / 0.34

N_6a / 0.2

N_2

b / 0.8

N_5

a / 0.12

b / 0.88

N_3
a / 0.59

b / 0.41

a / 0.15

b / 0.85

/ 1

a / 0.75

b / 0.25

10
−3

10
−2

10
−1

10
0

0

1

2

3

4
x 10

5

epsilon

nu
m

. s
am

pl
es

HMM
Noisy HMM

Fig. 2. Learned model with noisy observations (left) and the number of samples predicted by the
PAC bounds for achieving the desired model precision (right). The noisy observation case is in
blue.

moves the agent to any adjacent cell with equal probability. The task resets whenever
the agent gets to s10. Observations are generated deterministically and correspond to
the number of walls in each state (“a”=1 wall, “b”=2 walls, “c”=3 walls), with the ex-
ception of s10 which produces a distinct terminal observation (“#”).

S0 S1 S2 S3 S4

S7

S9S10

S6S5

S8

N_6

N_0

N_1
b / 1

c / 0.5

N_2
b / 0.5

N_3b / 1 c / 0.25

b / 0.49

N_4

a / 0.25N_5

b / 1

/ 0.17

b / 0.33

a / 0.5

Fig. 3. Cheese maze (left) and the corresponding learned model (right)

The right panel of Figure 3 shows the results of applying our learning algorithm.
It is interesting to note the particular structure learned by our model. The states can be
seen to represent core beliefs of the HMM after each float action (and before the obser-
vation is seen). For example, the states of the learned model in the figure represent the
following:
N0: Pr(s5) = Pr(s7) = 0.5;
N1: Pr(s8) = Pr(s0) = Pr(s4) = Pr(s9) = 0.25;
N2: Pr(s5) = Pr(s1) = Pr(s3) = Pr(s7) = 0.25;
N3: Pr(s8) = Pr(s9) = 0.125, Pr(s0) = Pr(s4) = Pr(s2) = 0.25;
N4: Pr(s1) = Pr(s3) = Pr(s6) = 0.333;
N5: Pr(s0) = Pr(s4) = Pr(s10) = 0.0833, Pr(s2) = 0.5;
N6: end of trajectory.
This confirms that the graph learned is not arbitrary and has a nice structural interpre-
tation.

7 Discussion and future work

There is considerable literature devoted to learning for all of the models introduced
above. In HMMs, most of the existing work uses expectation maximization, like the
ones described in (Rabiner, 1989) . In these algorithms, the number of hidden states is
assumed known. The algorithm starts with a guess about the parameters of the model
and modifies this guess in such a way as to improve the likelihood of the observed data.

Several papers have looked at removing assumptions about the model topology.
State splitting/merging approaches exist for learning PDFAs (Carrasco and Oncina,
1994; Ron et al, 2005; Thollard et al, 2000) and HMMs (Stolcke et al, 1992, Osten-
dorf et al, 1997). However the criterion for splitting/merging is typically heuristic or
Bayesian in nature and does not provide correcteness guarantees.

More recent procedures rely on finding a minimal linear basis for the space of pos-
sible trajectories, by using techniques similar to singular value decomposition or princi-
pal component analysis (Jaeger et al, 2006,Singh et al, 2003, Rosencrantx et al, 2004).
These procedures aim to find a globally or locally optimal solution in the sense of the
L2 norm. Usually, very large amounts of data are required for a good solution, and no
PAC-style guarantees exist yet. A procedure very similar to the one we propose has been
devised very recently by Holmes and Isbell (2006), but only for deterministic systems.
In the future, we will explore more the connections with their work.

To summarize, we developed an algorithm that learns a PDFA that approximates
an HMM. The algorithm addresses the problem of joint topology and parameter infer-
ence in Markov models with hidden state. We provided improved theoretical guarantees
for PAC-learning of PDFAs from data, and described a natural extension to learning
HMMs and POMDPs. This paper highlights important connections between the litera-
ture on learning automata and the problem of HMM and POMDP learning. Preliminary
empirical results suggest that the algorithm learns correct models for simple HMMs.
Further experiments will be conducted to better investigate generality and scalability of
the approach.

Acknowledgements

Ricard Gavaldà was supported in part the EU PASCAL Network of Excellence, IST-
2002-506778, and by MOISES-TA, TIN2005-08832-C03.Philipp Keller, Joelle Pineau,
and Doina Precup were supported in part by grants from NSERC and CFI.

References

Carrasco, R. and Oncina, J. “Learning stochastic regular grammars by means of a state merging
method”. LNAI 862. 1994.

Clark, A. and Thollard, F. “PAC-learnability of Probabilistic Deterministic Finite State Au-
tomata”. Journal of Machine Learning Research, 5. 2004.

Dupont, P., Denis, F. and Esposito, Y. “Links between Probabilistic Automata and Hidden
Markov Models”. Pattern Recognition, 38 (9). 2005.

Durbin, R., Eddy, S.R., Krogh, A., Mitchison, G.J. “Biological Sequence Analysis: Probabilistic
Models of Proteins and Nucleic Acids”. Cambridge University Press. 1998.

Holmes, M. and Isbell, C. “Looping Suffix Tree-Based Inference of Partially Observable Hidden
State ”. In Proceedings of ICML. 2006.

Jaeger, H., Zhao, M. and Kolling, A. “Efficient estimation of OOMs”. In Proceedings of NIPS.
2005.

Kearns, M., Mansour, Y., Ron, D., Rubinfeld, R., Schapire, R. E. and Sellie, L. “On the learn-
ability of discrete distributions”. ACM Symposium on the Theory of Computing. 1995.

Lipton, R.J. and Naughton, J.F. “Query size estimation by adaptive sampling”, J. Computer and
System Sciences 51, 1995, 18–25.

Ostendorf, M. and Singer, H. “HMM topology design using maximum likelihood successive state
splitting”. Computer Speech and Language, 11. 1997.

Rabiner, L. R. “A tutorial on Hidden Markov Models and Selected Applications in Speech Recog-
nition”. Proceedings of the IEEE, 77(2). 1989.

Ron, D., Singer, Y. and Tishby, N. “On the learnability and usage of acyclic probabilistic finite
automata”. In Proceedings of COLT,1995.

Rosencrantz, M., Gordon, G. and Thrun, S. “Learning Low Dimensional Predictive Representa-
tions”. In Proceedings of ICML, 2004.

Singh, S., Littman, M. L., Jong, N. K., Pardoe, D. and Stone, P. “Learning Predictive State
Representations”. In Proceedings of ICML, 2003.

Stolcke, A. and Omohundro, S. M. “Hidden Markov Model Induction by Bayesian Model Merg-
ing”. In Proceedings of NIPS, 1993.

Thollard, F., Dupont, P. and Higuera, C. de la. “Probabilistic DFA Inference using Kullback-
Leibler Divergence and Minimality”. In Proceedings of ICML, 2000.

Valiant, L. “A theory of the learnable” Communications of the ACM, 27(11). 1984.

Appendix A: A termination condition for on-line learning

Suppose that the target model M∗ would not only let us sample trajectories d, but also
provide their true probability of occurring, pM∗(d). We can let the PDFA construction
algorithm proceed until the distance between the target model M∗ and the current model
M is estimated to be less than a desired error parameter ε. Clearly, this step, and hence
the running time of the algorithm, depend on the chosen notion of distance.

We propose the following test, based on the L∞ distance. For a suitably defined B,
draw B trajectories from M∗, and obtain their probabilities, pM∗(d). For every trajectory
d, compute its probability using the learned model so far, pM(d). If there is some d such
that |pM(d)− pM∗(d)| ≥ ε, consider that L∞(M,M∗) ≥ ε and let the learning continue.
Otherwise, consider that L∞(M,M∗) ≤ ε and terminate.

We set B = 3
(ε/4)2 · ln 8

δε . We will now show that this test gives the correct answer

whenever L∞(M,M∗) ≤ ε/2 or L∞(M,M∗) ≥ 3ε/2, i.e., when the L∞ is at a certain
distance from ε either way.

Claim. Let D1 and D2 be the two probability distributions to which the test is applied.
With probability 1−δ, if L∞(D1,D2) ≥ 3ε/2 then the test above says “distance greater
than ε”, and if if L∞(D1,D2) ≤ ε/2 it says ‘distance less than ε”

The proof is easy and omitted in this version. It can be furthermore shown as in
Clark and Thollard (2004) that the distance between hypothesis and target machines
will be below ε in a number of steps polynomial in the parameters: 1/ε, 1/µ, ln(1/δ),
n, as well as the expected length of strings generated at any step, L.

