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a  b  s  t  r  a  c  t

Deep  brain  stimulation  (DBS)  is  a  promising  therapeutic  approach  for epilepsy  treatment.  Recently,
research  has  focused  on  the  implementation  of  stimulation  protocols  that would  adapt  to the patients
need  (adaptive  stimulation)  and  deliver  electrical  stimuli  only  when  it is most  useful.  A formal  mathe-
matical  description  of  the  effects  of electrical  stimulation  on neuronal  networks  is a  prerequisite  for  the
development  of  adaptive  DBS  algorithms.  Using  tools  from  non-linear  dynamic  analysis,  we  describe  an
evidence-based,  mathematical  modeling  approach  that  (1)  accurately  simulates  epileptiform  activity  at
time-scales  of  single  and  multiple  ictal  discharges,  (2) simulates  modulation  of  neural  dynamics  during
epileptiform  activity  in  response  to  fixed,  low-frequency  electrical  stimulation,  (3)  defines  a mapping
from  real-world  observations  to model  state,  and (4)  defines  a mapping  from  model  state  to  real-world
observations.  We  validate  the  real-world  utility  of the  model’s  properties  by statistical  comparison
between  the  number,  duration,  and  interval  of  ictal-like  discharges  observed  in  vitro  and  those  simulated
in  silica  under  conditions  of  repeated  stimuli  at fixed-frequency.  These  validation  results  confirm  that  the
evidence-based  modeling  approach  captures  robust,  informative  features  of  neural  network  dynamics
of in  vitro  epileptiform  activity  under  periodic  pacing  and  support  its use  for  further  implementation  of
adaptive  DBS  protocols  for  epilepsy  treatment.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

It is well established that electrical stimulation can manipu-
late the dynamics of the neuronal activity generated by brain slices
maintained in vitro to reduce the frequency, duration, or amplitude
of ictal-like discharges (Bawin et al., 1986; Nakagawa and Durand,
1991; Durand, 1993; Durand and Warman, 1994; Schiff et al., 1994;
Jerger and Schiff, 1995; Gluckman et al., 1996; Barbarosie and
Avoli, 1997; Warren and Durand, 1998; D’Arcangelo et al., 2005).
In particular, fixed-frequency stimulation, also known as periodic
pacing, has achieved robust suppression of epileptiform activity in
a diversity of in vitro chemical models of ictogenesis, e.g., high-
K+ (Jerger and Schiff, 1995), low-Mg2+ (Schiff et al., 1994), and
4-aminopyridine (4AP) (Barbarosie and Avoli, 1997; D’Arcangelo
et al., 2005). The next logical step beyond periodic pacing is the
deployment of an adaptive control system that intelligently selects
the timing of stimulations to maximize the suppression of ictal-
like discharges while minimizing current pulses. Such intelligent
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control systems rely on accurate knowledge of causal relation-
ships in the dynamics of the system of interest. Therefore, they
are feasible only to the degree with which the modulating effects
of electrical stimulation can be accurately modeled and predicted.
However, a complete understanding of the dynamics underlying
the response of neuronal networks to electrical stimulation is still
lacking.

Predictive models must accurately capture both the system’s
state (a numerical representation of the system’s current behavior)
and its transition function (a mapping from the current state and
control action, e.g., stimulation, onto the future state). The state
and transition function can be modeled by one of two distinct
approaches. The first principles approach builds up the model from
neurophysiology theory. The evidence-based approach builds up
the model from abstract rules that best describe observations of
the real-world system. With respect to neural network dynamics
of in vitro epileptiform activity under periodic pacing, only first
principles models have been studied (see for example Biswal
and Dasgupta, 2002; Franaszczuk et al., 2003). However, two
weaknesses make them poorly suited for use in the construction
and/or validation of neural control systems. First, they are unable
to quantitatively reproduce the efficacy of dynamic modulation of
neuronal activity as a function of stimulation frequency with the
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accuracy necessary to make effective control decisions. Second,
they provide no mapping between the model’s state space and
real-world observations.

Here, we describe an evidence-based modeling approach that
combines non-linear dynamic analysis (time-delay embeddings) to
identify the neural system’s state with machine learning (nearest
neighbor methods) to approximate the neural system’s transition
function. Directly from the data, this approach (1) simulates the
occurrence of epileptiform activity in vitro at time-scales of single
and multiple ictal discharges, (2) simulates modulation of epilep-
tiform activity in response to periodic pacing protocols, (3) defines
a mapping from real-world observations to model state (allow-
ing the model to act as a stand-alone predictor or as part of a
control system), and (4) defines a mapping from model state to
real-world observations (allowing the model to act as a simula-
tor). We quantitatively validate the model’s predictive accuracy
under multiple stimulation protocols by first-order and higher-
order statistical comparison between dynamics of the model and
of a previously unseen dataset. We also compare the model’s simu-
lated field potentials directly against previously unseen real-world
field potential recordings as qualitative, visual evidence of the
model’s efficacy in describing neural network dynamics of in vitro
epileptiform activity under periodic pacing.

2. Materials and methods

2.1. Theory

The state of a dynamic system is a real-valued vector that
uniquely determines the future state of the system according to
the system’s rules. These rules are termed the transition function.
Models of real-world dynamic systems are founded on accurate
identification of the system’s underlying state and transition func-
tion. With regard to neuronal networks studied in vitro, obstacles
to system identification are numerous: dynamic variance, non-
stationarity, limited exploration, noise, transients, and limited
knowledge of first principles; however, the most challenging obsta-
cle is partial observability, which implies that all of the components
required to uniquely quantify the neuronal networks state cannot
be directly observed. Indeed, network activity generated by brain
slices maintained in vitro contains millions of hypothetically mea-
surable parameters, yet it can only be observed through a small
number of field potentials.

Nonlinear dynamic systems theory provides means of recon-
structing complete state observability from partial observability
via the method of delayed embeddings, formalized by Takens’ The-
orem (Takens, 1980). Here we present the key points of Takens’
Theorem utilizing the notation of Huke and Warman (2006) in a
deterministically forced system.

Let the system state, s, be a M-dimensional, real-valued,
bounded vector space indexed by time, t, and a is a real-valued con-
trol action. Consider the state update function, f, is a deterministic
function:

s(t + 1) = f (s(t), a(t)). (1)

Let the action choice a(t) be set by a deterministic control function,
!:

a(t) = !(s(t)), (2)

then Eq. (2) may be composed with Eq. (1):

s(t + 1) = f (s(t), !(s(t)))
= "(s(t)),

(3)

where " specifies the discrete time evolution of the forced system.
If " is a smooth map, " : RM → RM , and the system is observed
through partial state, s̃, via function, y, such that:

s̃(t) = y(s(t)),

and y : RM → R, then if "−1 exists, and ", "−1, and y are continu-
ously differentiable, we may apply Takens’ Theorem (Takens, 1980)
to reconstruct the complete state space of the observed system.
Thus, for each s̃(t), we can construct a vector sE(t),

sE(t) = [s̃(t), s̃(t − 1),  . . . , s̃(t − (E − 1))], E > 2M,

such that sE lies on a subset of RE which is an embedding of
s. Because embeddings preserve the connectivity of the original
vector-space, in the context of system dynamics, a mapping  ,

sE(t + 1) =  (sE(t)), (4)

may be substituted for f (Eq. (3)), and vectors sE(t) may be substi-
tuted for vectors s(t) without loss of generality.

The properties of a correctly constructed embedding vector, sE,
guarantee that we can reconstruct the complete state of a large
class of partially observable dynamical systems directly from a
sequence of their observations and that this reconstruction may
occur independently of identification of the transition function,
 . We exploit both of these facts in our methodology to use
simple but powerful semi-parametric modeling methods, which
differentiates our approach from important earlier approaches
to modeling forced physiological systems using parametric func-
tions of Volterra–Wiener kernels (Marmarelis and Orme, 1993;
Marmarelis, 1997; Marmarelis et al., 1999).

Takens’ Theorem does not define how to compute the embed-
ding dimension, E, of arbitrary sequences of observations nor does
it provide for a test to determine if the theorem is applicable to a
specific dataset. In practice the intrinsic dimension, M,  of a system
is often unknown. Finding high-quality embedding parameters of
challenging domains, such as chaotic or noise-corrupted nonlin-
ear signals, occupy much of the fields of subspace identification
and nonlinear dynamic analysis. Numerous methods of note exist
(Galka, 2000; Kennel and Abarbanel, 2002; Katayama, 2005), drawn
from both disciplines. We build-upon a spectral approach (Galka,
2000) premised on the singular value decomposition (SVD). It has
the advantage of being non-parametric, computationally efficient,
and robust to additive noise—all of which are useful in practical
application.

We summarize the spectral parameter selection algorithm as
follows. Given a sequence of state observations s̃ of length S̃,  we
choose a sufficiently large embedding dimension, Ê.  Sufficiently
large refers to a cardinality of dimension which is certain to be
greater than twice the dimension in which the actual state space
resides. For each embedding window size, tmin ∈ {Ê, . . . , S̃},  we
define a matrix SÊ(tmin) having row vectors, sÊ(t), t ∈ {tmin, . . . , S̃},
constructed according to

sÊ(t) = [s̃(t), s̃(t − #), . . . , s̃(t − (Ê − 1)#)], (5)

where # = tmin/(Ê − 1). We compute the SVD of the matrix SÊ(tmin),
and we record the vector of singular values, !(tmin). Embedding
parameters of s̃ are found by analysis of the sequence of second
singular values, $2(tmin), tmin ∈ {Ê, . . . , S̃}.  The value of tmin at the
first local maxima of this sequence is the approximate embedding
window size, Tmin. The approximate embedding dimension, E, is the
number of non-trivial singular values of !(Tmin), where we define
non-trivial as a value greater than the long term trend of !(tmin)
with respect to !(Tmin), tmin % Tmin.

The spectral method provides a mechanism for efficiently pro-
jecting into, and out of, the E-dimensional state space. These
projections exist because the SVD returns a decomposition of a
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matrix, X, as X = U!VT. It is well-known that matrix V defines
an orthonormal basis of covariance matrix, XTX, with vectors
ordered by the corresponding singular values, diag(!). Thus,
VÊ[1,  . . . , E](Tmin), i.e., the first E columns of matrix V returned by
the SVD of the embedding SÊ(Tmin), form a basis, renamed VE, of a
low-dimensional manifold, SE, which maximally captures the vari-
ance of the embedded observations. Therefore, we make a change of
coordinates such that VESE = SÊ(Tmin). We achieve this by comput-
ing the Moore–Penrose pseudoinverse, V†E , of VE and left-multiply
such that SE = V†ESÊ(Tmin). SE is model’s state space.

The matrix V†E defines the projection from an Ê-dimensional
vector of embedded observations, given by Eq. (5),  into the recon-
structed, reduced E-dimensional state space, SE. VE defines the
opposite projection (from the E-dimensional state space to the
space of embedded observations). Thus, any numerical system
state can be mapped, without loss of generality, to an approximate
sequence of observations. Likewise, sequences of observations can
be mapped to a numerical state.

The preservation of locality and dynamics afforded by such an
embedding allows approximation of the underlying dynamic sys-
tem. To model these dynamics we assume that the derivative of the
region surrounding each state is well-approximated by the deriva-
tive of the state itself, a nearest-neighbors derivative (Parlitz and
Merkwirth, 2000). We simulate trajectories as iterative numerical
integration of the local state and gradient. We define the model and
integration process formally.

Consider a dataset D  of observations, s̃(t), t ∈ {1, . . . , S̃}.  Apply-
ing the spectral embedding method to D  yields parameters E and
Tmin. Embedding D  according to Eq. (5) and projecting into state
space via V†E yields a sequence of vectors sE(t) in RE indexed by
t ∈ {Tmin, . . . , S̃}.  A model, M, of D  is the set of vectors, m(t) = sE(t),
t ∈ {Tmin, . . . , S̃}.

Consider a state vector x(i) in RE indexed by simulation time, i.
To numerically integrate this state we define the gradient according
to our definition of locality: nearest neighbor. The model’s nearest
neighbor of x(i), denoted m(tx(i)), is defined as1

m(tx(i)) = argmin
m(t)∈M

‖m(t) − x(i)‖2. (6)

The model gradient and numerical integration are defined, respec-
tively, as,

∇x(i) = m(tx(i) + 1) − m(tx(i)) (7)

and

x(i + 1) = x(i) + ∇x(i) + ", (8)

where " is a vector of noise. Applying Eqs. (6)–(8) iteratively
simulates a trajectory of the underlying system, termed a surro-
gate dataset, D̃, or simply surrogate. Surrogates are initialized from
some state, x(0). Eq. 8 assumes that dataset D  contains noise. This
noise biases the derivative estimate in RE , via Eq. 5. In practice, a
small amount of additive noise facilitates generalization. Note, our
technique does not preclude the use of non-local function approx-
imation, but here we assume a sufficient density of data exists to
reconstruct the embedded state space with minimal bias.

As defined, the model generates surrogates that mimic
real-world neural network dynamics without stimulation (exper-
imental control condition). We extend this model to account for
electrical stimulation effects as follows. Let dataset D  also include
sequence a, comprised of actions, a(t), t ∈ {1, . . . , S̃}.  We now define
the model, M, of D  to be the set of 2-tuples, m(t) = {sE(t), a(t)},

1 The operation argmin
x

f (x) returns the argument, x, at which the function, f(x), is

at  its global minimum.

t ∈ {Tmin, . . . , S̃},  and we add the operation Z(m(t)) ≡ [s(t), ωa(t)]
where ω is a parameter which scales the action dimension to the
model’s state space. In this formulation, we redefine the nearest
neighbor to be conditioned on the action input to the model, a(i):

m(tx(i)) = argmin
m(t)∈M

‖Z(m(t)) − [x(i), ωa(i)] ‖2, a ∈ R. (9)

Using Eq. (9),  numerical integration of the model can generate sur-
rogates for arbitrary stimulation protocols.

We extend the model definition further by introducing the
notion of a labeled state space. Let the dataset D  also include the
sequence l, comprised of labels l(t), t ∈ {1, . . . , S̃}.  We define the
model, M, of D  to be the set of 3-tuples, m(t) = {sE(t), a(t), l(t)},
t ∈ {Tmin, . . . , S̃},  and we add the operation L(m(t)) ≡ l(t), which
extracts the label assigned to model state, m(t). This extension pro-
vides the necessary mathematical tools for analysis of the model’s
simulation performance described in Eq. (11).

2.2. Calculation

To construct and validate the evidence-based modeling
approach using real-world observations, we collect a dataset, D,
containing field potential recordings under each stimulation pro-
tocol, &, from the set of all protocols, P. For each observation, s̃(t),
assign the label, l(t), and the control action, c(t), as either idle = 0 or
stimulation = 1. We then perform spectral embedding (cf. Section
2.1) to identify the parameters E and Tmin. For each observation,
we define the time elapsed since the last c = 1, termed time-since-
stimulation or tss and the maximum tss, denoted tmax, as the largest
interval between stimulations in the dataset. We filter the data such
that if tss(t) > tmax then tss(t) = tmax (i.e., scale the tss of the control
protocol to tmax) and then normalize tss by tmax. Finally, we define
the model action, a(t) = tss(t). We then partition the dataset into dis-
joint training dataset, Dtrn, and test dataset, Dtst , ensuring that both
datasets contain approximately the same distribution of stimula-
tion protocols. Assuming that N unique partitions are possible, we
term this N-fold cross validation and we define the set of cross-
validation tests, N  ≡ {1, . . . , N}. For all datasets Dtrnn and Dtstn , n ∈ N,
we embed the datasets via parameters E and Tmin and compute the
projections VE and V †E . We then compute the reduced-dimensional
states via change of coordinates and combine the states with the
corresponding actions and labels to form the training models, Mtrn

n ,
and testing models, Mtst

n , n ∈ N.
We define measurements, ',  and we measure each training

dataset, Dtrnn , n ∈ N, yielding results vector, (trnn = '(Dtrnn ), n ∈ N.
These measurements summarize important characteristics of the
system that should be reproduced by the model. As an example,
measurements of stimulated epileptiform activity could include the
efficacy of various fixed-frequency policies in suppressing ictal-like
discharges. For a wide range of parameters ) and ω,  we numerically
integrate Mtrn

n , forming surrogates, D̃trnn [), ω] and then measure
the surrogates, (̃trnn [), ω] = '(D̃trnn [), ω]). The best training model
parameters, for each training dataset, are defined as:

{)n, ωn} = argmin
{),ω}

(‖(̃trnn [), ω] − (trnn ‖2). (10)

This minimization over parameters )n and ωn maximizes, accord-
ing to the measurement ',  the likelihood that dataset Dtrnn would
be observed by simulation of model Mtrn

n .
Using parameters )n and ωn, we numerically integrate test mod-

els Mtst
n , n ∈ N, according to Eqs. (6)–(8),  yielding test surrogates,

D̃tstn , n ∈ N: these are the model’s predictions. We report predic-
tions as distributions of N means of K randomly initialized trials
executed on each test model. Each prediction, therefore, requires
the generation of K × N surrogates.
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2.3. Experimental

Male, adult Sprague–Dawley rats (250–300 g) were decapitated
under deep isoflurane anesthesia. The brain was quickly removed
and placed in cold (0–2 ◦C) artificial cerebro-spinal fluid (ACSF)
of the following composition (mM): 124 NaCl, 2 KCl, 2 MgSO4, 2
CaCl2, 1.25 KH2PO4, 26 NaHCO3 and 10 d-glucose, continuously
bubbled with gas mixture (CO2 5% and O2 95%) to equilibrate at
pH ∼7.35. Partially disconnected combined hippocampus-EC slices
(450 !m thick) were cut as previously described (Panuccio et al.,
2010) using a VT1000S vibratome (Leica, Germany). In these brain
slices, which included the most ventral part of the hippocampal
formation, fast CA3-driven interictal-like activity disclosed by 4AP
bath-application was restrained to the hippocampus proper and did
not propagate to the EC (cf., Avoli et al., 1996, but see also Avoli et al.,
2002). Slices were then transferred to an interface recording cham-
ber, lying between warm (∼32 ◦C) ACSF and humidified gas (CO2 5%
and O2 95%), where they were allowed to recover for ≥ 1 h before
beginning continuous bath-application of 4AP (∼1 ml/min). Chem-
icals were acquired from Sigma–Aldrich Canada, Ltd. (Oakville,
Ontario, Canada). All the procedures were carried on in accordance
to the Canadian Council on Animal Care and McGill University
guidelines. Field potential recordings were performed with ACSF-
filled pipettes (tip diameter <10 !m; resistance <10 M*)  pulled
from borosilicate capillary tubing (World Precision Instruments
Inc., Sarasota, FL, USA) using a P-97 puller (Sutter Instrument,
Novato, CA, USA). Extracellular signals were fed to a Cyberamp
380 amplifier (Molecular Devices, Palo Alto, CA, USA) connected
to a digital interface device (Digidata 1320A, Molecular Devices).
Data were acquired at a sampling rate of 5 kHz and low-passed at
2 kHz, using the software Clampex 8.2 (Molecular Devices), stored
on the hard drive and analyzed off-line. Recording electrodes were
placed in the EC deep layers and in the subiculum. Extracellular cur-
rent pulses (100–250 !A, pulse width 100 !s) were delivered in the
subiculum through a bipolar concentric Pt–Ir electrode (FHC, Bow-
doin, ME, USA) plugged onto a high voltage stimulus isolator unit
(A360, WPI Inc., Sarasota, FL, USA) connected to the pulse generator
Pulsemaster A300 (WPI Inc., Sarasota, FL, USA). Stimulus intensity
was established prior to beginning the experimental protocols in
order to reliably induce an interictal-like event in the EC. The fol-
lowing periodic pacing protocols were implemented: 0.2 Hz, 0.5 Hz,
1 Hz, and 2 Hz. Each stimulation phase was preceded by a control
period and followed by a post-stimulation recovery period, which
served as the control recording for the following stimulation pro-
tocol. Recordings were pursued until at least 4 ictal-like discharges
were generated (control and ineffective stimulation protocols) or
for a period of ≥3 times the previously observed interval between
ictal-like discharges (effective stimulation).

We assigned a label to each data point of the recordings: ictal= 1
and non-ictal= 0. The latter includes both baseline and interictal-
like discharges. We also assigned a time-since-stimulation value,
tss, where tmax, the maximum interval between pulses, is 5.0 s, cor-
responding to the 0.2 Hz protocol. We low-pass filtered (50 Hz) the
recordings and desampled them (500 Hz). We then centered the
data by a filter such that baseline data points had a mean poten-
tial of 0.0 mV. We combined recordings from 5 brain slices to form
a dataset of 30,421 s, including 46 ictal-like discharges. We parti-
tioned the dataset into cross-validation training datasets, Dtrnn and
test datasets, Dtstn , n ∈ N, N  ≡ {1, . . . , 6}, comprised of data from 3
and 2 in vitro experiments, respectively (6 partitions constructed
from the 5 slice recordings ensured that each training and testing
pair contained an approximately balanced composition of control
and stimulation protocols). We formed models from each of these
datasets, Mtst

n and Mtst
n , n ∈ N. A visual example of the embed-

ding spectrum of one training dataset is shown in Fig. 1a. Here,
by the methods described in Sections 2.1 and 2.2, we computed

embedding parameters E = 3 and Tmin = 0.5. A projection of the data,
given by Fig. 1b and c, illustrates the geometry of the embedding
as well as the relative positions of non-ictal and ictal data points.

A model of neural network dynamics of in vitro epileptiform
activity under periodic pacing should reproduce modulation of
ictal-like discharges in response to stimulation. To enforce these
characteristics in the model, we defined the fraction of ictal-like
discharges to be +,

+ =
∑|D|

i=1L (D(i))
|D|

, (11)

as the measurement, ',  to be optimized during selection of the
numerical integration parameters, ) and ω.

Thus, for each Mtrn
n and for each pair of parameters ) and ω

drawn from the set of pairs defined by the cross product of ranges
) = [0.0, 0.001] sampled at intervals 0.0001 and ω = [0.0, 1.0] sam-
pled at intervals of 0.05, we simulated K = 30 surrogates of 1800 s
length for each protocol, &, & ∈ P = {control, 0.2 Hz, 0.5 Hz, 1.0 Hz,
2.0 Hz}. We computed (̃trnn [), ω] by averaging all K values of + for
each stimulation protocol. We computed similar measurements
of the training datasets, and we solved for the parameter pair )n
and ωn that yielded minimum error according to Eq. (10). Once
found, parameters )n and ωn remained unchanged throughout the
experiments.

3. Results

3.1. State validation

Embedding theory implies that a single E-dimensional state
of the model captures the dynamic information contained in a
sequence of historical observations. In the context of modeling
neural network dynamics of in vitro epileptiform activity under
periodic pacing, the dynamic information is the state’s label. If the
distribution of labels in the model’s state space (see Fig. 1b and c) is
both accurate and generalizable, then test data projected into the
model’s state space will have similar structure and distribution.
Adherence of the model to embedding theory, therefore, can be
measured experimentally by using the model to predict the labels
of previously unseen observations.

For each Mtrnn and Dtstn , n ∈ N, we embedded dataset Dtstn using
model’s E and Tmin parameters and mapped these data into a
state space using the model’s projection, V †E . For each element in
this projection, we applied the L operation to the result of Eq. 6;
the resulting label is the model’s prediction, which we compared
against the actual labels of the elements of Dtstn .

To assess the structural quality of our embedding we computed
the performance for each of the training models in classifying the
corresponding test dataset. We measured performance in terms
of likelihood ratios (Hogg et al., 2004) (LR+

n ) of ictal classification.
Likelihood ratios measure how much the odds of a positive event
change in response to a classifier’s positive prediction of that event.
A random classifier yields LR+ = 1.0, indicating that the prediction
provides zero information. For an ideal classifier, LR+ approaches
∞.  Our classifier (i.e., model) achieved LR+ = 9.33 (2.37–16.28 for
the 95% confidence limits), indicating that a point classified as ictal
is 933% more likely to actually be ictal.

3.2. Transition function validation

Embedding theory also implies that transitions between model
states are equivalent to transitions in the underlying dynamic
system. Thus, state sequences, and hence label sequences, of
both real and surrogate datasets should be similar. We compared
similarities between sequences of labels in the test datasets and
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Fig. 1. (a) Embedding spectrum assuming E = 15; E was determined empirically to be sufficiently large to contain all the observable dynamics (magnitudes of $E at greater E
are  indistinguishable within a small constant). Maxima $2 occurred at approximately Tmin = 0.5 s. The mean and standard deviation of the spectra of singular values ($2–$15

over 0.0–2.0 s) are presented as bold dashed (mean) and dashed (±std. dev.) horizontal lines. Singular values 1–3 fall above the first standard deviation of this trend at
Tmin = 0.50 s, which indicates that the intrinsic dimension of the embedded system is E = 3. (b) and (c) are examples of a real training dataset after embedding and projection
into  the model’s state space; the dataset is viewed along the 1st and 2nd as well as 2nd and 3rd principal axes of VE , respectively.

the test surrogates at two time-scales: macroscopic (multiple ictal
discharges) and mesoscopic (single ictal discharge).

To validate macroscopic temporal predictions of the model we
compared the distributions of fractions of ictal labels (see Eq. 11)
between the test datasets and test surrogates for each stimulation
protocol. As illustrated in Fig. 2a, the model accurately captures the
non-linear functional relationship between the stimulation policy
and the fraction of ictal labels observed (i.e., the model accurately
reproduces the degree of control of ictal-like discharges in response
to stimulation). To validate mesoscopic temporal predictions, we
compared the distributions of ictal-like discharge duration (Fig. 2b)
and interval (Fig. 2c) between the test datasets and test surrogates
for each stimulation protocol. Our results confirm that the model
is faithfully capturing higher-order, non-linear functional relation-
ships between the stimulation policy and the dynamic response of
stimulated neural networks.

These results do, however, illustrate a difficulty of fairly eval-
uating the model and real data using cross-validation. When ictal
samples are sparsely distributed in the dataset, as is the case for
periodic pacing results in both the test dataset and the test surro-
gate, then the impact of outliers can be augmented. Only a single
ictal discharge interval exists in the test dataset under the 0.2 Hz

protocol. However, due to 6-fold partitioning of the dataset as
part of cross validation of the in vitro experiments, this single ictal
discharge interval appears three times attributing to a large mean-
value having zero variance. A similar artifact occurs for the test
surrogate at 1.0 Hz periodic pacing. Only one of the six cross valida-
tion models produced a mean ictal discharge duration. This single
value, likely caused by noise in the model, dominates the mean
value.

3.3. Generation of surrogate data

The spectral embedding method yields a projection, VE, from
the model’s state space to a vector of observations (given by Eq.
5). The first element of the resultant vector is the simulated obser-
vation of the field potential corresponding to the model’s current
state. During numerical integration of the model, each state may
be projected onto such a field potential; the resulting sequence is
a surrogate field potential recording. Fig. 3 illustrates examples of
test surrogate field potentials alongside examples of field potential
recordings for each of the five stimulation protocols.

The time correspondence between the test dataset and
surrogate (which is, in general, very good) arises from
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Fig. 2. (a) Comparison of the fraction of ictal-like discharges observed as a function of stimulation protocol between test datasets and test surrogates. Bars summarize
the  means of the distributions of the cross-validation experiments and error bars indicate the 95% confidence limits. Numbers above the error bar indicate the number of
cross-validation experiments comprising the distribution. Asterisk (*) indicates that the distribution has zero mean and variance and cannot be plotted. (b) Comparison of
ictal-like discharge durations as a function of stimulation protocol between test datasets and test surrogates. (c) Comparison of ictal-like discharge intervals as a function
of  stimulation protocol between test datasets and test surrogates. To construct these comparisons we generated K = 30 randomly initialized surrogates of 1800 s length for
each  of N = 6 test models, Mtst

n , n ∈ N, for each stimulation protocol. For each surrogate we computed the fraction of ictal labels, according to Eq. 11,  as well as the duration
and  interval of ictal-like discharges. We separated the data by stimulation protocol and averaged together the K quantities (i.e., fractions of ictal labels or ictal-like discharge
durations and intervals) computed for each protocol on each test model, yielding N = 6 quantities for each protocol. We computed the analogous N quantities of the test
datasets for each stimulation protocol.

structural consistencies in the dataset that are exploited by
the evidence-based modeling approach. However, excellent tem-
poral reproduction does not imply the ability to accurately predict
specific trajectories, particularly, future epileptiform discharges.
The presence of noise and the nonlinear (potentially chaotic)
nature of this dynamical system make prediction of specific
closed-loop trajectories difficult; previous work in dynamic mod-
eling of epileptiform systems suggests that such predictions may
be infeasible (Lopes da Silva et al., 2003).

Another visual aspect of the plots in Fig. 3 is the degradation
of temporal detail reproduced in the surrogate as the frequency
of stimulation increases. This observation stands in contrast to
the agreement between the test surrogate and test dataset results
depicted in Fig. 2a across stimulation frequencies. Because the
spectral embedding method extracts embeddings that maximally
capture dataset variance, we speculate that model fidelity is
preserved in high-variance regimes of the dataset (i.e., lower-
frequency stimulation and control) at the expense of low-variance
regimes (i.e., higher-frequency stimulation), which is supported by
the visual evidence.

4. Discussion

We proposed and validated an evidence-based model that faith-
fully reproduces epileptiform discharges as well as the effects
of low-frequency periodic pacing on ictal-like activity generated
by a brain slice preparation in vitro. Our use of cross-validation
for reporting the model performance is a well-known machine
learning technique for identifying how model predictions will gen-
eralize to previously unseen data. The technique succeeds because
it approximates an unbiased estimate of the actual distribution to
which the model is being fit (Kohavi, 1995).

The key physiological insight to be drawn from successful appli-
cation of the evidence-based approach to this dataset is its ability
to validate the existence of a low-dimensional manifold that cap-
tures canonical dynamics of a complex neural circuit governed
by millions of variables. Cross-validated simulations using this
manifold confirm, topologically, the robustness of neural dynamic
modulation during epileptiform activity in response to fixed, low-
frequency electrical stimulation that has been reported in the
literature. Further, we know of no other computational modeling
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Fig. 3. Comparison of selected segments of surrogate field potential traces versus selected segments of the test dataset that share similar dynamics. Dots indicate the timing
of  stimulations. Horizontal black lines indicate ictal labels. The test dataset labels were assigned by humans whereas the test surrogate labels were assigned automatically
by  the model. No effort was made to identify traces that are visually similar. Rather, visual similarity between the dynamic structure of the surrogates and datasets was
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approach that is capable of generating surrogate data featuring:
(1) spontaneous ictal-like discharges having frequency, duration,
amplitude, and higher-order dynamics similar to that of real-world
observations, (2) spontaneous interictal-like discharges that do not
lead to ictal-like events, and (3) post-ictal depression.

The versatility of this approach, however, comes at a cost:
evidence-based models are limited in the testable hypotheses that
they can inform. We consider this approach most appropriate for
hypotheses in which accurate prediction of causal relationships is
paramount to understanding the physiological roots of these rela-
tionships.

One can easily imagine a large set of testable hypotheses that
require designing and implementing neural control systems, be it
automated exploration of neural dynamics or treatment of neu-
rological diseases (Sun et al., 2008; Jahangiri et al., 1997; Schiff
et al., 1994; Pineau et al., 2009; Schiff and Sauer, 2008). Currently,
first-principle approaches, while unlimited in the testable hypothe-
ses that they can inform, are unsuitable for control applications
because they do not model the causal relationships in real-world
neural networks with the accuracy necessary to make effective con-
trol decisions; they also provide no mapping between real-world
observations and the models state, making it difficult to query the
model in a specific real-world scenario.

We anticipate specific need for the evidence-based modeling
approach in the fields of intelligent and adaptive control. Training
algorithms for these classes of control systems rely on accurate rep-
resentations of the neural system’s state and its transition function
to succeed. We leave the application of the model to control sys-
tems for future work; however, the evidence-based approach does
solve a key challenge posited by prior neural control research using

Kalman filtering (Schiff and Sauer, 2008) in that it does not assume
the form of the system’s dynamics a priori. Compared to past meth-
ods, this difference makes the evidence-based approach scalable to
real-world neural control systems.
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