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Abstract

Kernel-based reinforcement learning (KBRL) stands out among approximate reinforcement
learning algorithms for its strong theoretical guarantees. By casting the learning problem
as a local kernel approximation, KBRL provides a way of computing a decision policy
which converges to a unique solution and is statistically consistent. Unfortunately, the
model constructed by KBRL grows with the number of sample transitions, resulting in a
computational cost that precludes its application to large-scale or on-line domains. In this
paper we introduce an algorithm that turns KBRL into a practical reinforcement learn-
ing tool. Kernel-based stochastic factorization (KBSF) builds on a simple idea: when a
transition probability matrix is represented as the product of two stochastic matrices, one
can swap the factors of the multiplication to obtain another transition matrix, potentially
much smaller than the original, which retains some fundamental properties of its precursor.
KBSF exploits such an insight to compress the information contained in KBRL’s model
into an approximator of fixed size. This makes it possible to build an approximation con-
sidering both the difficulty of the problem and the associated computational cost. KBSF’s
computational complexity is linear in the number of sample transitions, which is the best
one can do without discarding data. Moreover, the algorithm’s simple mechanics allow for
a fully incremental implementation that makes the amount of memory used independent
of the number of sample transitions. The result is a kernel-based reinforcement learning
algorithm that can be applied to large-scale problems in both off-line and on-line regimes.
We derive upper bounds for the distance between the value functions computed by KBRL
and KBSF using the same data. We also prove that it is possible to control the magnitude
of the variables appearing in our bounds, which means that, given enough computational
resources, we can make KBSF’s value function as close as desired to the value function
that would be computed by KBRL using the same set of sample transitions. The potential
of our algorithm is demonstrated in an extensive empirical study in which KBSF is ap-
plied to difficult tasks based on real-world data. Not only does KBSF solve problems that
had never been solved before, but it also significantly outperforms other state-of-the-art
reinforcement learning algorithms on the tasks studied.
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1. Introduction

Reinforcement learning provides a conceptual framework with the potential to materialize a
long-sought goal in artificial intelligence: the construction of situated agents that learn how
to behave from direct interaction with the environment (Sutton and Barto, 1998). But such
an endeavor does not come without its challenges; among them, extrapolating the field’s
basic machinery to large-scale domains has been a particularly persistent obstacle.

It has long been recognized that virtually any real-world application of reinforcement
learning must involve some form of approximation. Given the mature stage of the supervised-
learning theory, and considering the multitude of approximation techniques available today,
this realization may not come across as a particularly worrisome issue at first glance. How-
ever, it is well known that the sequential nature of the reinforcement learning problem
renders the incorporation of function approximators non-trivial (Bertsekas and Tsitsiklis,
1996).

Despite the difficulties, in the last two decades the collective effort of the reinforcement
learning community has given rise to many reliable approximate algorithms (Szepesvári,
2010). Among them, Ormoneit and Sen’s (2002) kernel-based reinforcement learning (KBRL)
stands out for two reasons. First, unlike other approximation schemes, KBRL always con-
verges to a unique solution. Second, KBRL is consistent in the statistical sense, meaning
that adding more data improves the quality of the resulting policy and eventually leads to
optimal performance.

Unfortunately, the good theoretical properties of KBRL come at a price: since the
model constructed by this algorithm grows with the number of sample transitions, the cost
of computing a decision policy quickly becomes prohibitive as more data become available.
Such a computational burden severely limits the applicability of KBRL. This may help
explain why, in spite of its nice theoretical guarantees, kernel-based learning has not been
widely adopted as a practical reinforcement learning tool.

This paper presents an algorithm that can potentially change this situation. Kernel-
based stochastic factorization (KBSF) builds on a simple idea: when a transition probability
matrix is represented as the product of two stochastic matrices, one can swap the factors of
the multiplication to obtain another transition matrix, potentially much smaller than the
original, which retains some fundamental properties of its precursor (Barreto and Fragoso,
2011). KBSF exploits this insight to compress the information contained in KBRL’s model
into an approximator of fixed size. Specifically, KBSF builds a model, whose size is inde-
pendent of the number of sample transitions, which serves as an approximation of the model
that would be constructed by KBRL. Since the size of the model becomes a parameter of
the algorithm, KBSF essentially detaches the structure of KBRL’s approximator from its
configuration. This extra flexibility makes it possible to build an approximation that takes
into account both the difficulty of the problem and the computational cost of finding a
policy using the constructed model.

KBSF’s computational complexity is linear in the number of sample transitions, which
is the best one can do without throwing data away. Moreover, we show in the paper that
the amount of memory used by our algorithm is independent of the number of sample
transitions. Put together, these two properties make it possible to apply KBSF to large-
scale problems in both off-line and on-line regimes. To illustrate this possibility in practice,
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we present an extensive empirical study in which KBSF is applied to difficult control tasks
based on real-world data, some of which had never been solved before. KBSF outperforms
least-squares policy iteration and fitted Q-iteration on several off-line problems and SARSA
on a difficult on-line task.

We also show that KBSF is a sound algorithm from a theoretical point of view. Specifi-
cally, we derive results bounding the distance between the value function computed by our
algorithm and the one computed by KBRL using the same data. We also prove that it is
possible to control the magnitude of the variables appearing in our bounds, which means
that we can make the difference between KBSF’s and KBRL’s solutions arbitrarily small.

We start the paper presenting some background material in Section 2. Then, in Sec-
tion 3, we introduce the stochastic-factorization trick, the insight underlying the devel-
opment of our algorithm. KBSF itself is presented in Section 4. This section is divided
in two parts, one theoretical and one practical. In Section 4.1 we present theoretical re-
sults showing that not only is the difference between KBSF’s and KBRL’s value functions
bounded, but it can also be controlled. Section 4.2 brings experiments with KBSF on four
reinforcement-learning problems: single and double pole-balancing, HIV drug schedule do-
main, and epilepsy suppression task. In Section 5 we introduce the incremental version of
our algorithm, which can be applied to on-line problems. This section follows the same
structure of Section 4, with theoretical results followed by experiments. Specifically, in Sec-
tion 5.1 we extend the results of Section 4.1 to the on-line scenario, and in Section 5.2 we
present experiments on the triple pole-balancing and helicopter tasks. In Section 6 we take
a closer look at the approximation computed by KBSF and present a practical guide on how
to configure our algorithm to solve a reinforcement learning problem. In Section 7 we sum-
marize related works and situate KBSF in the context of kernel-based learning. Finally, in
Section 8 we present the main conclusions regarding the current research and discuss some
possibilities of future work.

The paper has three appendices. Appendix A has the proofs of our theoretical results.
The details of the experiments that were omitted in the main body of the text are described
in Appendix B. In Appendix C we provide a table with the main symbols used in the paper
that can be used as a reference to facilitate reading.

Parts of the material presented in this article have appeared before in two papers pub-
lished in the Neural Information Processing Systems conference (NIPS, Barreto et al., 2011,
2012). The current manuscript is a substantial extension of the aforementioned works.

2. Background

We consider the standard framework of reinforcement learning, in which an agent interacts
with an environment and tries to maximize the amount of reward collected in the long
run (Sutton and Barto, 1998). The interaction between agent and environment happens at
discrete time steps: at each instant t the agent occupies a state s(t) ∈ S and must choose
an action a from a finite set A. The sets S and A are called the state and action spaces,
respectively. The execution of action a in state s(t) moves the agent to a new state s(t+1),
where a new action must be selected, and so on. Each transition has a certain probability
of occurrence and is associated with a reward r ∈ R. The goal of the agent is to find a
policy π : S 7→ A, that is, a mapping from states to actions, that maximizes the expected
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return. Here we define the return from time t as:

R(t) = r(t+1) + γr(t+2) + γ2r(t+3) + ... =
T∑
i=1

γi−1r(t+i), (1)

where r(t+1) is the reward received at the transition from state s(t) to state s(t+1). The
interaction of the agent with the environment may last forever (T =∞) or until the agent
reaches a terminal state (T < ∞); each sequence of interactions is usually referred to as
an episode. The parameter γ ∈ [0, 1) is the discount factor, which determines the relative
importance of individual rewards depending on how far in the future they are received.

2.1 Markov Decision Processes

As usual, we assume that the interaction between agent and environment can be mod-
eled as a Markov decision process (MDP, Puterman, 1994). An MDP is a tuple M ≡
(S,A, P a, Ra, γ), where P a and Ra describe the dynamics of the task at hand. For each
action a ∈ A, P a(·|s) defines the next-state distribution upon taking action a in state s.
The reward received at transition s

a−→ s′ is given by Ra(s, s′), with |Ra(s, s′)| ≤ Rmax <∞.
Usually, one is interested in the expected reward resulting from the execution of action a
in state s, that is, ra(s) = Es′∼Pa(·|s){Ra(s, s′)}.

Once the interaction between agent and environment has been modeled as an MDP, a
natural way of searching for an optimal policy is to resort to dynamic programming (Bell-
man, 1957). Central to the theory of dynamic-programming is the concept of a value
function. The value of state s under a policy π, denoted by V π(s), is the expected re-
turn the agent will receive from s when following π, that is, V π(s) = Eπ{R(t)|s(t) = s}
(here the expectation is over all possible sequences of rewards in (1) when the agent fol-
lows π). Similarly, the value of the state-action pair (s, a) under policy π is defined as
Qπ(s, a) = Es′∼Pa(·|s){Ra(s, s′) + γV π(s′)} = ra(s) + γEs′∼Pa(·|s){V π(s′)}.

The notion of value function makes it possible to impose a partial ordering over decision
policies. In particular, a policy π′ is considered to be at least as good as another policy π
if V π′(s) ≥ V π(s) for all s ∈ S. The goal of dynamic programming is to find an optimal
policy π∗ that performs no worse than any other. It is well known that there always exists
at least one such policy for a given MDP (Puterman, 1994). When there is more than one
optimal policy, they all share the same value function V ∗.

When both the state and action spaces are finite, an MDP can be represented in matrix
form: each function P a becomes a matrix Pa ∈ R|S|×|S|, with paij = P a(sj |si), and each

function ra becomes a vector ra ∈ R|S|, where rai = ra(si). Similarly, V π can be represented
as a vector vπ ∈ R|S| and Qπ can be seen as a matrix Qπ ∈ R|S|×|A|. 1

When the MDP is finite, dynamic programming can be used to find an optimal decision-
policy π∗ ∈ A|S| in time polynomial in the number of states |S| and actions |A| (Ye, 2011).

1. Throughout the paper we will use the conventional and matrix notations interchangeably, depending on
the context. When using the latter, vectors will be denoted by small boldface letters and matrices will
be denoted by capital boldface letters. We will also use the same notation for all MDPs and associated
components, distinguishing between them through the use of math accents. So, for example, if M̄ is an
MDP, its transition functions and matrices will be referred to as P̄ a and P̄a, its expect-reward functions
and vectors will be denoted by r̄a and r̄a, its optimal decision policy will be π̄∗, and so on (see Table 2).
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Let v ∈ R|S| and let Q ∈ R|S|×|A|. Define the operator Γ : R|S|×|A| 7→ R|S| such that ΓQ = v
if and only if vi = maxj qij for all i. Also, given an MDP M , define ∆ : R|S| 7→ R|S|×|A| such

that ∆v = Q if and only if qia = rai +γ
∑|S|

j=1 p
a
ijvj for all i and all a. The Bellman operator

of the MDP M is given by T ≡ Γ∆. A fundamental result in dynamic programming states
that, starting from v(0) = 0, the expression v(t) = Tv(t−1) = ΓQ(t) gives the optimal t-step
value function, and as t → ∞ the vector v(t) approaches v∗. At any point, the optimal

t-step policy can be obtained by selecting π
(t)
i ∈ argmaxj q

(t)
ij (Puterman, 1994).

In contrast with dynamic programming, in reinforcement learning it is assumed that
the MDP is unknown, and the agent must learn a policy based on transitions sampled from
the environment. If the process of learning a decision policy is based on a fixed set of
sample transitions, we call it batch reinforcement learning. On the other hand, in on-line
reinforcement learning the computation of a decision policy takes place concomitantly with
the collection of data (Sutton and Barto, 1998).

2.2 Kernel-Based Reinforcement Learning

Kernel-based reinforcement learning (KBRL) is a batch algorithm that uses a finite model
approximation to solve a continuous MDP M ≡ (S, A, P a, Ra, γ), where S ⊆ [0, 1]dS and dS ∈
N+
∗ is the dimension of the state space (Ormoneit and Sen, 2002). Let Sa ≡ {(sak, rak, ŝak)|k =

1, 2, ..., na} be sample transitions associated with action a ∈ A, where sak, ŝ
a
k ∈ S and rak ∈ R.

Let φ : R+ 7→ R+ be a Lipschitz continuous function satisfying
∫ 1

0 φ(x)dx = 1. Let kτ (s, s′)
be a kernel function defined as

kτ (s, s′) = φ

(
‖s− s′‖

τ

)
, (2)

where τ ∈ R and ‖ · ‖ is a norm in RdS (for concreteness, the reader may think of kτ (s, s′)
as the Gaussian kernel, although the definition also encompasses other functions). Finally,
define the normalized kernel function associated with action a as

κaτ (s, sai ) =
kτ (s, sai )∑na
j=1 kτ (s, saj )

. (3)

KBRL uses (3) to build a finite MDP whose state space Ŝ is composed solely of the n =∑
a na states ŝai . We assume without loss of generality that the action space A is ordered and

the sampled states are ordered lexicographically as ŝai < ŝbj ⇐⇒ a < b or (a = b and i < j);
if a given state s ∈ S occurs more than once in the set of sample transitions, each occurrence
will be treated as a distinct state in the finite MDP. The transition functions of KBRL’s
model, P̂ a : Ŝ × Ŝ 7→ [0, 1], are given by:

P̂ a
(
ŝbi |s

)
=

{
κaτ (s, sbi), if a = b,
0, otherwise,

(4)

where a, b ∈ A. Similarly, the reward functions of the MDP constructed by KBRL, R̂a :
Ŝ × Ŝ 7→ R, are

R̂a(s, ŝbi) =

{
rai , if a = b,
0, otherwise.

(5)
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Based on (4) and (5) we can define the transition matrices and expected-reward vectors
of KBRL’s MDP. The matrices P̂a are derived directly from the definition of P̂ a(ŝbi |s),
replacing s with the sampled states ŝai (see Figure 2a). The vectors r̂a are computed as
follows. Let r ≡ [(r1)ᵀ, (r2)ᵀ, ..., (r|A|)ᵀ]ᵀ ∈ Rn, where ra ∈ Rna are the vectors composed
of the sample rewards, that is, the ith element of ra is rai ∈ Sa. Since Ra(s, ŝbi) does not
depend on the start state s, we can write

r̂a = P̂ar. (6)

KBRL’s MDP is thus given by M̂ ≡ (Ŝ, A, P̂a, r̂a, γ).
Once M̂ has been defined, one can use dynamic programming to compute its optimal

value function V̂ ∗. Then, the value of any state-action pair of the continuous MDP can be
determined as:

Q̂(s, a) =

na∑
i=1

κaτ (s, sai )
[
rai + γV̂ ∗(ŝai )

]
, (7)

where s ∈ S and a ∈ A. Ormoneit and Sen (2002) have shown that, if na → ∞ for all
a ∈ A and the kernel’s width τ shrink at an “admissible” rate, the probability of choosing
a suboptimal action based on Q̂(s, a) converges to zero (see their Theorem 4).

As discussed, using dynamic programming one can compute the optimal value function
of M̂ in time polynomial in the number of sample transitions n (which is also the number of
states in M̂). However, since each application of the Bellman operator T̂ is O(n2|A|), the
computational cost of such a procedure can easily become prohibitive in practice. Thus, the
use of KBRL leads to a dilemma: on the one hand one wants as much data as possible to
describe the dynamics of the task, but on the other hand the number of transitions should
be small enough to allow for the numerical solution of the resulting model. In the following
sections we describe a practical approach to weigh the relative importance of these two
conflicting objectives.

3. Stochastic Factorization

A stochastic matrix has only nonnegative elements and each of its rows sums to 1. That
said, we can introduce the concept that will serve as a cornerstone for the rest of the paper:

Definition 1 Given a stochastic matrix P ∈ Rn×p, the relation P = DK is called a
stochastic factorization of P if D ∈ Rn×m and K ∈ Rm×p are also stochastic matrices.
The integer m > 0 is the order of the factorization.

This mathematical construct has been explored before. For example, Cohen and Roth-
blum (1991) briefly discuss it as a special case of nonnegative matrix factorization, while Cut-
ler and Breiman (1994) study slightly modified versions of stochastic factorization for sta-
tistical data analysis. However, in this paper we will focus on a useful property of this type
of factorization that has only recently been noted (Barreto and Fragoso, 2011).

3.1 Stochastic-Factorization Trick

Let P ∈ Rn×n be a transition matrix, that is, a square stochastic matrix, and let P =
DK be an order m stochastic factorization. In this case, one can see the elements of
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P =

 × × 0
× × ×
× 0 ×

 D =

 × 0
× ×
0 ×

 K =

[
× × 0
× 0 ×

]
P̄ =

[
× ×
× ×

]

Figure 1: Reducing the dimension of a transition model from n = 3 states to m = 2 artificial
states. Original states si are represented as big white circles; small black circles
depict artificial states s̄h. The symbol ‘×’ is used to represent nonzero elements.
These figures have appeared before in the article by Barreto and Fragoso (2011).

D and K as probabilities of transitions between the states si and a set of m artificial
states s̄h. Specifically, the elements in each row of D can be interpreted as probabilities
of transitions from the original states to the artificial states, while the rows of K can be
seen as probabilities of transitions in the opposite direction. Under this interpretation,
each element pij =

∑m
h=1 dihkhj is the sum of the probabilities associated with m two-step

transitions: from state si to each artificial state s̄h and from these back to state sj . In other
words, pij is the accumulated probability of all possible paths from si to sj with a stopover
in one of the artificial states s̄h. Following similar reasoning, it is not difficult to see that by
swapping the factors of a stochastic factorization, that is, by switching from DK to KD,
one obtains the transition probabilities between the artificial states s̄h, P̄ = KD. If m < n,
P̄ ∈ Rm×m will be a compact version of P. Figure 1 illustrates this idea for the case in
which n = 3 and m = 2.

The stochasticity of P̄ follows immediately from the same property of D and K. What is
perhaps more surprising is the fact that this matrix shares some fundamental characteristics
with the original matrix P. Specifically, it is possible to show that: (i) for each recurrent
class in P there is a corresponding class in P̄ with the same period and, given some simple
assumptions about the factorization, (ii) P is irreducible if and only if P̄ is irreducible and
(iii) P is regular if and only if P̄ is regular (for details, see the article by Barreto and
Fragoso, 2011). We will refer to this insight as the “stochastic-factorization trick”:

Given a stochastic factorization of a transition matrix, P = DK, swapping the factors of
the factorization yields another transition matrix P̄ = KD, potentially much smaller than
the original, which retains the basic topology and properties of P.

Given the strong connection between P ∈ Rn×n and P̄ ∈ Rm×m, the idea of replacing
the former by the latter comes almost inevitably. The motivation for this would be, of
course, to save computational resources when m < n. For example, Barreto and Fragoso
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(2011) have shown that it is possible to recover the stationary distribution of P through a
linear transformation of the corresponding distribution of P̄. In this paper we will use the
stochastic-factorization trick to reduce the computational cost of KBRL. The strategy will
be to summarize the information contained in KBRL’s MDP in a model of fixed size.

3.2 Reducing a Markov Decision Process

The idea of using stochastic factorization to reduce dynamic programming’s computational
requirements is straightforward: given factorizations of the transition matrices Pa, we can
apply our trick to obtain a reduced MDP that will be solved in place of the original one.
In the most general scenario, we would have one independent factorization Pa = DaKa for
each action a ∈ A and then use P̄a = KaDa instead of Pa. However, in the current work
we will focus on the particular case in which there is a single matrix D, which will prove to
be convenient both mathematically and computationally.

Obviously, in order to apply the stochastic-factorization trick to an MDP, we have to first
compute the matrices involved in the factorization. Unfortunately, such a procedure can
be computationally demanding, exceeding the number of operations necessary to calculate
v∗ (Vavasis, 2009; Barreto et al., 2014). Thus, in practice we may have to replace the exact
factorizations Pa = DKa with approximations Pa ≈ DKa. The following proposition
bounds the error in the value-function approximation resulting from the application of our
trick to approximate stochastic factorizations:

Proposition 2 Let M ≡ (S,A,Pa, ra, γ) be a finite MDP with |S| = n and 0 ≤ γ < 1. Let
D ∈ Rn×m be a stochastic matrix and, for each a ∈ A, let Ka ∈ Rm×n be stochastic and let
r̄a be a vector in Rm. Define the MDP M̄ ≡ (S̄, A, P̄a, r̄a, γ), with |S̄| = m and P̄a = KaD.
Then,

∥∥v∗ − ΓDQ̄∗
∥∥
∞ ≤ ξv ≡

1

1− γ
max
a
‖ra −Dr̄a‖∞ +

R̄dif

(1− γ)2

(γ
2

max
a
‖Pa −DKa‖∞ + σ(D)

)
, (8)

where

σ(D) = max
i

(1−max
j

dij), (9)

‖·‖∞ is the maximum norm, and R̄dif = max
a,i

r̄ai −min
a,i

r̄ai .
2

The proofs of most of our theoretical results are in Appendix A.1. We note that Propo-
sition 2 is only valid for the maximum norm; in Appendix A.2 we derive another bound for
the distance between v∗ and ΓDQ̄∗ which is valid for any norm.

Our bound depends on two factors: the quality of the MDP’s factorization, given by
maxa ‖Pa −DKa‖∞ and maxa ‖ra −Dr̄a‖∞, and the “level of stochasticity” of D, mea-
sured by σ(D). When the MDP factorization is exact, we recover a computable version
of Sorg and Singh’s (2009) bound for soft homomorphisms (see (32)). On the other hand,
when D is deterministic—that is, when all its nonzero elements are 1—expression (8) reduces
to Whitt’s (1978) classical result regarding state aggregation in dynamic programming. Fi-
nally, if we have exact deterministic factorizations, the right-hand side of (8) reduces to

2. We recall that ‖·‖∞ induces the following norm over the space of matrices: ‖A‖∞ = maxi
∑
j |aij |.
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zero. This also makes sense, since in this case the stochastic-factorization trick gives rise to
an exact homomorphism (Ravindran, 2004).

Proposition 2 elucidates the basic mechanism through which one can use the stochastic-
factorization trick to reduce the number of states in an MDP (and hence the computational
cost of finding a policy using dynamic programming). One possible way to exploit this
result is to see the computation of D, Ka, and r̄a as an optimization problem in which the
objective is to minimize some function of maxa ‖Pa −DKa‖∞, maxa ‖ra −Dr̄a‖∞, and
possibly also σ(D) (Barreto et al., 2014). Note though that addressing the factorization
problem as an optimization may be computationally infeasible when the dimension of the
matrices Pa is large—which is exactly the case we are interested in here. To illustrate this
point, we will draw a connection between the stochastic factorization and a popular problem
known in the literature as nonnegative matrix factorization (Paatero and Tapper, 1994; Lee
and Seung, 1999).

In a nonnegative matrix factorization the elements of D and Ka are greater or equal
to zero, but in general no stochasticity constraint is imposed. Cohen and Rothblum (1991)
have shown that it is always possible to derive a stochastic factorization from a nonnegative
factorization of a stochastic matrix, which formally characterizes the former as a particular
case of the latter. Unfortunately, nonnegative factorization is hard: Vavasis (2009) has
shown that a particular version of the problem is in fact NP-hard.

Instead of solving the problem exactly, one can resort instead to an approximate nonneg-
ative matrix factorization. However, since the number of states n in an MDP determines
both the number of rows and the number of columns of the matrices Pa, even the fast
“linear” approximate methods run in O(n2) time, which is infeasible for large n (Barreto
et al., 2014). One can circumvent this computational obstacle by exploiting structure in
the optimization problem or by resorting to heuristics. In another article on the subject we
explore both these alternatives at length (Barreto et al., 2014). However, in this paper we
adopt a different approach. Since the model M̂ built by KBRL is itself an approximation,
instead of insisting in finding a near-optimal factorization for M̂ we apply our trick to avoid
the construction of Pa and ra. As will be seen, this is done by applying KBRL’s own
approximation scheme to M̂ .

4. Kernel-Based Stochastic Factorization

In Section 2 we presented KBRL, an approximation framework for reinforcement learning
whose main drawback is its high computational complexity. In Section 3 we discussed how
the stochastic-factorization trick can in principle be useful to reduce an MDP, as long as one
circumvents the computational burden imposed by the calculation of the matrices involved
in the process. We now show that by combining these two approaches we get an algorithm
that overcomes the computational limitations of its components. We call it kernel-based
stochastic factorization, or KBSF for short.

KBSF emerges from the application of the stochastic-factorization trick to KBRL’s
MDP M̂ (Barreto et al., 2011). Similarly to Ormoneit and Sen (2002), we start by defining
a “mother kernel” φ̄(x) : R+ 7→ R+. In Section 4.1 we list our assumptions regarding
φ̄. Here, it suffices to note that, since our assumptions and Ormoneit and Sen’s (2002)
are not mutually exclusive, we can have φ ≡ φ̄ (by using the Gaussian function in both
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cases, for example). Let S̄ ≡ {s̄1, s̄2, ..., s̄m} be a set of representative states. Analogously
to (2) and (3), we define the kernel k̄τ̄ (s, s′) = φ̄ (‖s− s′‖/τ̄) and its normalized version
κ̄τ̄ (s, s̄i) = k̄τ̄ (s, s̄i)/

∑m
j=1 k̄τ̄ (s, s̄j). We will use κaτ to build matrices Ka and κ̄τ̄ to build

matrix D.

As shown in Figure 2a, KBRL’s matrices P̂a have a very specific structure, since only
transitions ending in states ŝai ∈ Sa have a nonzero probability of occurrence. Suppose
that we want to apply the stochastic-factorization trick to KBRL’s MDP. Assuming that
the matrices Ka have the same structure as P̂a, when computing P̄a = KaD we only have
to look at the sub-matrices of Ka and D corresponding to the na nonzero columns of Ka.
We call these matrices K̇a ∈ Rm×na and Ḋa ∈ Rna×m. The strategy of KBSF is to fill out
matrices K̇a and Ḋa with elements

k̇aij = κaτ (s̄i, s
a
j ) and ḋaij = κ̄τ̄ (ŝai , s̄j). (10)

Note that, based on Ḋa, one can easily recover D as Dᵀ ≡ [(Ḋ1)ᵀ, (Ḋ2)ᵀ, ...(Ḋ|A|)ᵀ] ∈ Rn×m.
Similarly, if we let K ≡ [K̇1, K̇2, ...K̇|A|] ∈ Rm×n, then Ka ∈ Rm×n is matrix K with all
elements replaced by zeros except for those corresponding to matrix K̇a(see Figures 2b
and 2c for an illustration). It should be thus obvious that P̄a = KaD = K̇aḊa.

In order to conclude the construction of KBSF’s MDP, we have to define the vectors of
expected rewards r̄a. As shown in expression (5), the reward functions of KBRL’s MDP,
R̂a(s, s′), only depend on the ending state s′ . Recalling the interpretation of the rows of
Ka as transition probabilities from the representative states to the original ones, illustrated
in Figure 1, it is clear that

r̄a = K̇ara = Kar. (11)

Therefore, the formal specification of KBSF’s MDP is given by M̄ ≡ (S̄, A, K̇aḊa, K̇ara, γ) =
(S̄, A,KaDa,Kar, γ) = (S̄, A, P̄a, r̄a, γ).

As discussed in Section 2.2, KBRL’s approximation scheme can be interpreted as the
derivation of a finite MDP. In this case, the sample transitions define both the finite state
space Ŝ and the model’s transition and reward functions. This means that the state space
and the dynamics of KBRL’s model are inexorably linked: except maybe for degenerate
cases, changing one also changes the other. By defining a set of representative states,
KBSF decouples the MDP’s structure from its particular instantiation. To see why this
is so, note that, if we fix the representative states, different sets of sample transitions will
give rise to different models. Conversely, the same set of transitions can generate different
MDPs, depending on how the representative states are defined.

A step by step description of KBSF is given in Algorithm 1. As one can see, KBSF
is very simple to understand and to implement. It works as follows: first, the MDP M̄
is built as described above. Then, its action-value function Q̄∗ is determined through any
dynamic programming algorithm. Finally, KBSF returns an approximation of v̂∗—the
optimal value function of KBRL’s MDP—computed as ṽ = ΓDQ̄∗. Based on ṽ, one can
compute an approximation of KBRL’s action-value function Q̂(s, a) by simply replacing Ṽ
for V̂ ∗ in (7), that is,

Q̃(s, a) =

na∑
i=1

κaτ (s, sai )
[
rai + γṼ (ŝai )

]
, (12)
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P̂a =

ŝa1
ŝa2
ŝa3
ŝb1
ŝb2

ŝa1 ŝa2 ŝa3 ŝb1 ŝb2


κaτ (ŝa1 , s
a
1) κaτ (ŝa1 , s

a
2) κaτ (ŝa1 , s

a
3) 0 0

κaτ (ŝa2 , s
a
1) κaτ (ŝa2 , s

a
2) κaτ (ŝa2 , s

a
3) 0 0

κaτ (ŝa3 , s
a
1) κaτ (ŝa3 , s

a
2) κaτ (ŝa3 , s

a
3) 0 0

κaτ (ŝb1, s
a
1) κaτ (ŝb1, s

a
2) κaτ (ŝb1, s

a
3) 0 0

κaτ (ŝb2, s
a
1) κaτ (ŝb2, s

a
2) κaτ (ŝb2, s

a
3) 0 0

,

P̂b =

ŝa1
ŝa2
ŝa3
ŝb1
ŝb2

ŝa1 ŝa2 ŝa3 ŝb1 ŝb2


0 0 0 κaτ (ŝa1 , s
b
1) κaτ (ŝa1 , s

b
2)

0 0 0 κaτ (ŝa2 , s
b
1) κaτ (ŝa2 , s

b
2)

0 0 0 κaτ (ŝa3 , s
b
1) κaτ (ŝa3 , s

b
2)

0 0 0 κaτ (ŝb1, s
b
1) κaτ (ŝb1, s

b
2)

0 0 0 κaτ (ŝb2, s
b
1) κaτ (ŝb2, s

b
2)

(a) KBRL’s matrices

D =

ŝa1
ŝa2
ŝa3
ŝb1
ŝb2

s̄1 s̄2


κ̄τ̄ (ŝa1 , s̄1) κ̄τ̄ (ŝa1 , s̄2)
κ̄τ̄ (ŝa2 , s̄1) κ̄τ̄ (ŝa2 , s̄2)
κ̄τ̄ (ŝa3 , s̄1) κ̄τ̄ (ŝa3 , s̄2)
κ̄τ̄ (ŝb1, s̄1) κ̄τ̄ (ŝb1, s̄2)
κ̄τ̄ (ŝb2, s̄1) κ̄τ̄ (ŝb2, s̄2)

,

Ka =
s̄1

s̄2

ŝa1 ŝa2 ŝa3 ŝb1 ŝb2[ ]
κaτ (s̄1, s

a
1) κaτ (s̄1, s

a
2) κaτ (s̄1, s

a
3) 0 0

κaτ (s̄2, s
a
1) κaτ (s̄2, s

a
2) κaτ (s̄2, s

a
3) 0 0

,

Kb =
s̄1

s̄2

ŝa1 ŝa2 ŝa3 ŝb1 ŝb2[ ]
0 0 0 κaτ (s̄1, s

b
1) κaτ (s̄1, s

b
2)

0 0 0 κaτ (s̄2, s
b
1) κaτ (s̄2, s

b
2)

.

(b) KBSF’s sparse matrices

Ḋa =
ŝa1
ŝa2
ŝa3

s̄1 s̄2[ ]κ̄τ̄ (ŝa1 , s̄1) κ̄τ̄ (ŝa1 , s̄2)
κ̄τ̄ (ŝa2 , s̄1) κ̄τ̄ (ŝa2 , s̄2)
κ̄τ̄ (ŝa3 , s̄1) κ̄τ̄ (ŝa3 , s̄2)

,

Ḋb =
ŝb1
ŝb2

s̄1 s̄2[ ]
κ̄τ̄ (ŝb1, s̄1) κ̄τ̄ (ŝb1, s̄2)
κ̄τ̄ (ŝb2, s̄1) κ̄τ̄ (ŝb2, s̄2)

,

K̇a =
s̄1

s̄2

ŝa1 ŝa2 ŝa3[ ]
κaτ (s̄1, s

a
1) κaτ (s̄1, s

a
2) κaτ (s̄1, s

a
3)

κaτ (s̄2, s
a
1) κaτ (s̄2, s

a
2) κaτ (s̄2, s

a
3)

,

K̇b =
s̄1

s̄2

ŝb1 ŝb2[ ]
κaτ (s̄1, s

b
1) κaτ (s̄1, s

b
2)

κaτ (s̄2, s
b
1) κaτ (s̄2, s

b
2)

.

(c) KBSF’s dense matrices

Figure 2: Matrices built by KBRL and KBSF for the case in which the original MDP has
two actions, a and b, and na = 3, nb = 2, and m = 2.
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where s ∈ S and a ∈ A. Note that Ṽ (ŝai ) corresponds to one specific entry of vector ṽ,
whose index is given by

∑a−1
b=0 nb + i, where we assume that n0 = 0.

Algorithm 1 Batch KBSF

Input:
Sa = {(sak, rak, ŝak)|k = 1, 2, ..., na} for all a ∈ A . Sample transitions
S̄ = {s̄1, s̄2, ..., s̄m} . Set of representative states

Output: ṽ ≈ v̂∗

for each a ∈ A do
Compute matrix Ḋa: ḋaij = κ̄τ̄ (ŝai , s̄j)

Compute matrix K̇a: k̇aij = κaτ (s̄i, s
a
j )

Compute vector r̄a: r̄ai =
∑

j k̇
a
ijr

a
j

Compute matrix P̄a = K̇aḊa

Solve M̄ ≡ (S̄, A, P̄a, r̄a, γ) . i.e., compute Q̄∗

Return ṽ = ΓDQ̄∗, where Dᵀ =
[
(Ḋ1)ᵀ, (Ḋ2)ᵀ, ...(Ḋ|A|)ᵀ

]

As shown in Algorithm 1, the key point of KBSF’s mechanics is the fact that the ma-
trices P̌a = DKa are never actually computed, but instead we directly solve the MDP
M̄ containing m states only. This results in an efficient algorithm that requires only
O(nm|A|dS + n̂m2|A|) operations and O(n̂m) bits to build a reduced version of KBRL’s
MDP, where n̂ = maxa na. After the reduced model M̄ has been constructed, KBSF’s com-
putational cost becomes a function of m only. In particular, the cost of solving M̄ through
dynamic programming becomes polynomial in m instead of n: while one application of T̂ ,
the Bellman operator of M̂ , is O(nn̂|A|), the computation of T̄ is O(m2|A|). Therefore,
KBSF’s time and memory complexities are only linear in n.

We note that, in practice, KBSF’s computational requirements can be reduced even
further if one enforces the kernels κaτ and κ̄τ̄ to be sparse. In particular, given a fixed s̄i,
instead of computing k̄τ̄ (s̄i, s

a
j ) for j = 1, 2, ..., na, one can evaluate the kernel on a pre-

specified neighborhood of s̄i only. Assuming that k̄τ̄ (s̄i, s
a
j ) is zero for all saj outside this

region, one can avoid not only computing the kernel but also storing the resulting values
(the same reasoning applies to the computation of kτ (ŝai , s̄j) for a fixed ŝai ).

4.1 Theoretical results

Since KBSF comes down to the solution of a finite MDP, it always converges to the same ap-
proximation ṽ, whose distance to KBRL’s optimal value function v̂∗ is bounded by Proposi-
tion 2. Once ṽ is available, the value of any state-action pair can be determined through (12).
The following result generalizes Proposition 2 to the entire continuous state space S:

Proposition 3 Let Q̂ be the value function computed by KBRL through (7) and let Q̃ be
the value function computed by KBSF through (12). Then, for any s ∈ S and any a ∈ A,
|Q̂(s, a)− Q̃(s, a)| ≤ γξv, with ξv defined in (8).

12
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Proof

|Q̂(s, a)− Q̃(s, a)| =

∣∣∣∣∣
na∑
i=1

κaτ (s, sai )
[
rai + γV̂ ∗(ŝai )

]
−

na∑
i=1

κaτ (s, sai )
[
rai + γṼ (ŝai )

]∣∣∣∣∣
≤ γ

na∑
i=1

κaτ (s, sai )
∣∣∣V̂ ∗(ŝai )− Ṽ (ŝai )

∣∣∣ ≤ γ na∑
i=1

κaτ (s, sai )ξv ≤ γξv,

where the second inequality results from the application of Proposition 2 and the third
inequality is a consequence of the fact that

∑na
i=1 κ

a
τ (s, sai ) defines a convex combination.

Proposition 3 makes it clear that the approximation computed by KBSF depends cru-
cially on ξv. In the remainder of this section we will show that, if the distances between
sampled states and the respective nearest representative states are small enough, then we
can make ξv as small as desired by setting τ̄ to a sufficiently small value.

4.1.1 General results

We assume that KBSF’s kernel φ̄(x) : R+ 7→ R+ has the following properties:

(i) φ̄(x) ≥ φ̄(y) if x < y,

(ii) ∃ Aφ̄ > 0, λφ̄ ≥ 1, Bφ̄ ≥ 0 such that Aφ̄ exp(−x) ≤ φ̄(x) ≤ λφ̄Aφ̄ exp(−x) if x ≥ Bφ̄.

Assumption (ii) implies that the function φ̄ is positive and will eventually decay exponen-
tially. Note that we assume that φ̄ is greater than zero everywhere in order to guarantee
that κ̄τ̄ is well defined for any value of τ̄ . It should be straightforward to generalize our
results for the case in which φ̄ has finite support by ensuring that, given sets of sample
transitions Sa and a set of representative states S̄, τ̄ is such that, for any ŝai ∈ Sa, with
a ∈ A, there is a s̄j ∈ S̄ for which k̄τ̄ (ŝai , s̄j) > 0 (note that this assumption is naturally
satisfied by the “sparse kernels” used in some of the experiments—see Appendix B).

Let rs : S×{1, 2, ...,m} 7→ S̄ be a function that orders the representative states according
to their distance to a given state s, that is,

rs(s, i) = s̄k ⇐⇒ s̄k is the ith nearest representative state to s. (13)

Define

dist : S× {1, 2, ...,m} 7→ R
dist(s, i) = ‖s− rs(s, i)‖. (14)

We will show that, for any ε > 0 and any w ∈ {1, 2, ...,m}, there is a δ > 0 such that, if
maxa,i dist(ŝ

a
i , w) < δ, then we can set τ̄ in order to guarantee that ξv < ε. To show that,

we will need the following two lemmas:

Lemma 4 For any sai ∈ Sa and any ε > 0, there is a δ > 0 such that |κaτ (s, sai )−κaτ (s′ , sai )| <
ε if ‖s− s′‖ < δ.
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Lemma 5 Let s ∈ S, let m > 1, and assume there is a w ∈ {1, 2, ...,m − 1} such that
dist(s, w) < dist(s, w + 1). Define

Ww(s) ≡ {k | ‖s − s̄k‖ ≤ dist(s, w)} and W̄w(s) ≡ {1, 2, ...,m} −Ww(s). (15)

Then, for any α > 0,
∑

k∈Ww(s) κ̄τ̄ (s, s̄k) < α
∑

k∈W̄w(s) κ̄τ̄ (s, s̄k) for τ̄ sufficiently small.

Lemma 4 is basically a continuity argument: it shows that, for any fixed sai , |κaτ (s, sai )−
κaτ (s′ , sai )| → 0 as ‖s− s′‖ → 0. Lemma 5 states that, if we order the representative states
according to their distance to a fixed state s, and then partition them in two subsets, we
can control the relative magnitude of the corresponding kernels’s sums by adjusting the
parameter τ̄ (we redirect the reader to Appendix A.1 for details on how to set τ̄). Based
on these two lemmas, we present the main result of this section:

Proposition 6 Let w ∈ {1, 2, ...,m}. For any ε > 0, there is a δ > 0 such that, if
maxa,i dist(ŝ

a
i , w) < δ, then we can guarantee that ξv < ε by making τ̄ sufficiently small.

Proposition 6 tells us that, regardless of the specific reinforcement learning problem
at hand, if the distances between sampled states ŝai and the respective w nearest repre-
sentative states are small enough, then we can make KBSF’s approximation of KBRL’s
value function as accurate as desired by setting τ̄ to a sufficiently small value (one can see
how exactly to set τ̄ in the proof of the proposition). How small the maximum distance
maxa,i dist(ŝ

a
i , w) should be depends on the particular choice of kernel kτ and on the sets

of sample transitions Sa.
Note that a fixed number of representative states m imposes a minimum possible value

for maxa,i dist(ŝ
a
i , w), and if this value is not small enough decreasing τ̄ may actually hurt

the approximation (this is easier to see if we consider that w = 1). The optimal value
for τ̄ in this case is again context-dependent. As a positive flip side of this statement, we
note that, even if maxa,i dist(ŝ

a
i , w) > δ, it might be possible to make ξv < ε by setting

τ̄ appropriately. Therefore, rather than as a practical guide on how to configure KBSF,
Proposition 6 should be seen as a theoretical argument showing that KBSF is a sound
algorithm, in the sense that in the limit it recovers KBRL’s solution.

4.1.2 Error rate

In the previous section we deliberately refrained from making assumptions on the kernel κ̄τ̄
used by KBSF in order to make Proposition 6 as general as possible. In what follows we
show that, by restricting the class of kernels used by our algorithm, we can derive stronger
results regarding its behavior. In particular, we derive an upper bound for ξv that shows
how this approximation error depends on the variables of a given reinforcement learning
problem. Our strategy will be to define an “admissible kernel” whose width is determined
based on data.

We will need the following assumption:

(iii) |φ(x)− φ(y)| ≤ Cφ|x− y|, with Cφ ≥ 0.

Assumption (iii) simply states that the function φ used to construct the kernel κaτ is Lip-
schitz continuous with constant Cφ. This is actually part of Ormoneit and Sen’s (2002)
Assumption 4, and is explicitly listed here for convenience only.
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We will now define an auxiliary function which will be used in the definition of our
admissible kernel. To simplify the notation, let

ςa,i,jk ≡ |κaτ (ŝai , s
a
j )− κaτ (s̄k, s

a
j )|. (16)

Based on (15) and (16), we define the following function:

F(τ̄ , w|Sa, S̄, κaτ , k̄τ̄ ) =
Rmax

(1− γ)2

max
a,i

∑
k∈W̄w(ŝai )

κ̄τ̄ (ŝai , s̄k)

na∑
j=1

ςa,i,jk +
1

2
max
a,i

(1− κ̄τ̄ (ŝai , rs(ŝ
a
i , 1)))

 ,
(17)

where τ̄ > 0, w ∈ {1, 2, ...,m}, Rmax = maxa,i |rai |, and rs and W̄w are defined in (13)
and (15), respectively. Note that the definition of F makes it clear its dependency on the
representative states, sets of sample transitions, and kernels adopted.

Lemma 5 implies that, as τ̄ → 0, κ̄τ̄ (ŝai , rs(ŝ
a
i , 1)) → 1 and

∑
k∈W̄w(ŝai ) κ̄τ̄ (ŝai , s̄k) → 0

for all a, i, and w (see equation (35) in Appendix A.1 for a clear picture). Thus, for any w,
F(τ̄ , w)→ 0 as τ̄ → 0. This leads to the following definition:

Definition 7 Given ε > 0 and w ∈ {1, 2, ...,m}, an admissible kernel κ̄ε,wτ̄ is any kernel
whose parameter τ̄ is such that F(τ̄ , w) < ε.

The definition above allows us to enunciate the following proposition:

Proposition 8 Let kmin = φ
(√
dS/τ

)
, where τ is the parameter used by KBRL’s kernel

κaτ . Given ε > 0 and w ∈ {1, 2, ...,m}, suppose that KBSF is adopted with an admissible
kernel κ̄ε,wτ̄ . Then,

ξv ≤
2wCφRmax

τkmin(1− γ)2
max
a,i

dist(ŝai , w) + ε, (18)

where Cφ is the Lipschitz constant of function φ appearing in Assumption (iii), Rmax =
maxa,i |rai |, and γ ∈ [0, 1) is the discount factor of the underlying MDP.

Proposition 8 shows that ξv is bounded by the maximum distance between a sampled state
and the wth closest representative state scaled by constants characterizing the MDP and
the kernels used by KBSF.

Assuming that ε and w are fixed, among the quantities appearing in (18) we only have
control over τ and maxa,i dist(ŝ

a
i , w)—the latter through the definition of the representative

states. Regarding maxa,i dist(ŝ
a
i , w), the same observation made above applies here: given

sample transitions Sa, a fixed value for m < n imposes a lower bound on this term, and
thus on the right-hand side of (18). As m → n, this lower bound approaches some value
ε′, with 0 ≤ ε′ < ε. The fact that (18) is generally greater than zero even when m = n
reflects the fact that ξv depends on σ(D), the level of stochasticity of D (see (8) and (9)).
Since Assumption (ii) implies that k̄τ̄ (s, s′) > 0 for all s, s′ ∈ S, matrix D will never become
deterministic, no matter how small τ̄ is (see Figure 2b). If we replace k̄τ̄ by a kernel with
finite support, then we can set ε = 0 in Definition 7, and therefore in the right-hand side
of (18). Needless to say, this does not mean that using a kernel with finite support will lead
to better performance in practice.
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As for the definition of τ , we see that the right-hand side of (18) decreases as τ → ∞.
This means that we can make the value function computed by KBSF arbitrarily close
to the one computed by KBRL. Note though that increasing τ also changes the model
constructed by KBRL, and an excessively large value for this parameter makes the resulting
approximation meaningless (see (4) and (5)). Similarly, we might be tempted to always set
w to 1 in order to minimize the right-hand side of (18). Note however that a kernel κ̄ε,wτ̄
that is admissible for w > 1 may not be so for w = 1, and in this case the bound would no
longer be valid.

4.2 Empirical results

We now present a series of computational experiments designed to illustrate the behavior
of KBSF in a variety of challenging domains. We start with a simple problem, the “puddle
world”, to show that KBSF is indeed capable of compressing the information contained
in KBRL’s model. We then move to more difficult tasks, and compare KBSF with other
state-of-the-art reinforcement-learning algorithms. We start with two classical control tasks,
single and double pole-balancing. Next we study two medically-related problems based on
real data: HIV drug schedule and epilepsy-suppression domains.

All problems considered in this paper have a continuous state space and a finite number
of actions, and were modeled as discounted tasks. The algorithms’s results correspond to the
performance of the greedy decision policy derived from the final value function computed.
In all cases, the decision policies were evaluated on challenging test states from which the
tasks cannot be easily solved. The details of the experiments are given in Appendix B.

4.2.1 Puddle world (proof of concept)

In order to show that KBSF is indeed capable of summarizing the information contained in
KBRL’s model, we use the puddle world task (Sutton, 1996). The puddle world is a simple
two-dimensional problem in which the objective is to reach a goal region avoiding two
“puddles” along the way. We implemented the task exactly as described by Sutton (1996),
except that we used a discount factor of γ = 0.99 and evaluated the decision policies on a
set of pre-defined test states surrounding the puddles (see Appendix B).

The experiment was carried out as follows: first, we collected a set of n sample transitions
(sak, r

a
k, ŝ

a
k) using a random exploration policy (that is, a policy that selects actions uniformly

at random). In the case of KBRL, this set of sample transitions defined the model used
to approximate the value function. In order to define KBSF’s model, the states ŝak were
grouped by the k-means algorithm into m clusters and a representative state s̄j was placed
at the center of each resulting cluster (Kaufman and Rousseeuw, 1990). As for the kernels’s
widths, we varied both τ and τ̄ in the set {0.01, 0.1, 1} (see Table 1). The results reported
represent the best performance of the algorithms over 50 runs; that is, for each n and
each m we picked the combination of parameters that generated the maximum average
return. We use the following convention to refer to specific instances of each method: the
first number enclosed in parentheses after an algorithm’s name is n, the number of sample
transitions used in the approximation, and the second one is m, the size of the model used
to approximate the value function. Note that for KBRL n and m coincide.
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In Figure 3a and 3b we observe the effect of fixing the number of transitions n and varying
the number of representative states m. As expected, KBSF’s results improve as m → n.
More surprising is the fact that KBSF has essentially the same performance as KBRL
using models one order of magnitude smaller. This indicates that KBSF is summarizing
well the information contained in the data. Depending on the values of n and m, such
a compression may represent a significant reduction on the consumption of computational
resources. For example, by replacing KBRL(8000) with KBSF(8000, 100), we obtain a
decrease of approximately 99.58% on the number of operations performed to find a policy,
as shown in Figure 3b (the cost of constructing KBSF’s MDP is included in all reported
run times).

In Figures 3c and 3d we fix m and vary n. Observe in Figure 3c how KBRL and KBSF
have similar performances, and both improve as n increases. However, since KBSF is using
a model of fixed size, its computational cost depends only linearly on n, whereas KBRL’s
cost grows with n2n̂, roughly. This explains the huge difference in the algorithms’s run
times shown in Figure 3d.

4.2.2 Single and double pole-balancing (comparison with LSPI)

We now evaluate how KBSF compares to other modern reinforcement learning algorithms
on more difficult tasks. We first contrast our method with Lagoudakis and Parr’s (2003)
least-squares policy iteration algorithm (LSPI). Besides its popularity, LSPI is a natural
candidate for such a comparison for three reasons: it also builds an approximator of fixed
size out of a batch of sample transitions, it has good theoretical guarantees, and it has been
successfully applied to several reinforcement learning tasks.

We compare the performance of LSPI and KBSF on the pole balancing task. Pole
balancing has a long history as a benchmark problem because it represents a rich class of
unstable systems (Michie and Chambers, 1968; Anderson, 1986; Barto et al., 1983). The
objective in this problem is to apply forces to a wheeled cart moving along a limited track
in order to keep one or more poles hinged to the cart from falling over. There are several
variations of the task with different levels of difficulty; among them, balancing two poles
side by side is particularly hard (Wieland, 1991). In this paper we compare LSPI and KBSF
on both the single- and two-poles versions of the problem. We implemented the tasks using
a realistic simulator described by Gomez (2003). We refer the reader to Appendix B for
details on the problems’s configuration.

The experiments were carried out as described in the previous section, with sample
transitions collected by a random policy and then clustered by the k-means algorithm.
In both versions of the pole-balancing task LSPI used the same data and approximation
architectures as KBSF. To make the comparison with LSPI as fair as possible, we fixed the
width of KBSF’s kernel κaτ at τ = 1 and varied τ̄ in {0.01, 0.1, 1} for both algorithms. Also,
policy iteration was used to find a decision policy for the MDPs constructed by KBSF, and
this algorithm was run for a maximum of 30 iterations, the same limit used for LSPI.

Figure 4 shows the results of LSPI and KBSF on the single and double pole-balancing
tasks. We call attention to the fact that the version of the problems used here is significantly
harder than the more commonly-used variants in which the decision policies are evaluated
on a single state close to the origin. This is probably the reason why LSPI achieves a
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Figure 3: Results on the puddle-world task averaged over 50 runs. The algorithms were
evaluated on a set of test states distributed over a region of the state space sur-
rounding the “puddles” (details in Appendix B). The shadowed regions represent
99% confidence intervals.
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success rate of no more than 60% on the single pole-balancing task, as shown in Figure 4a.
In contrast, KBSF’s decision policies are able to balance the pole in 90% of the attempts,
on average, using as few as m = 30 representative states.

The results of KBSF on the double pole-balancing task are still more impressive. As
Wieland (1991) rightly points out, this version of the problem is considerably more dif-
ficult than its single pole variant, and previous attempts to apply reinforcement-learning
techniques to this domain resulted in disappointing performance (Gomez et al., 2006). As
shown in Figure 4c, KBSF(106, 200) is able to achieve a success rate of more than 80%.
To put this number in perspective, recall that some of the test states are quite challenging,
with the two poles inclined and falling in opposite directions.

The good performance of KBSF comes at a relatively low computational cost. A con-
servative estimate reveals that, were KBRL(106) run on the same computer used for these
experiments, we would have to wait for more than 6 months to see the results. KBSF(106,
200) delivers a decision policy in less than 7 minutes. KBSF’s computational cost also
compares well with that of LSPI, as shown in Figures 4b and 4d. LSPI’s policy evaluation
step involves the update and solution of a linear system of equations, which take O(nm2)
and O(m3|A|3), respectively. In addition, the policy-update stage requires the definition of
π(ŝak) for all n states in the set of sample transitions. In contrast, at each iteration KBSF
only performs O(m3) operations to evaluate a decision policy and O(m2|A|) operations to
update it.

4.2.3 HIV drug schedule domain (comparison with fitted Q-iteration)

We now compare KBSF with the fitted Q-iteration algorithm (Ernst et al., 2005; Antos
et al., 2007; Munos and Szepesvári, 2008). Fitted Q-iteration is a conceptually simple
method that also builds its approximation based solely on sample transitions. Here we
adopt this algorithm with an ensemble of trees generated by Geurts et al.’s (2006) extra-
trees algorithm. This combination, which we call FQIT, generated the best results on the
extensive empirical evaluation performed by Ernst et al. (2005).

We chose FQIT for our comparisons because it has shown excellent performance on
both benchmark and real-world reinforcement-learning tasks (Ernst et al., 2005, 2006). In
all experiments reported in this paper we used FQIT with ensembles of 30 trees. As detailed
in Appendix B, besides the number of trees, FQIT has three main parameters. Among them,
the minimum number of elements required to split a node in the construction of the trees,
denoted here by ηmin, has a particularly strong effect on both the algorithm’s performance
and computational cost. Thus, in our experiments we fixed FQIT’s parameters at reasonable
values—selected based on preliminary experiments—and only varied ηmin. The respective
instances of the tree-based approach are referred to as FQIT(ηmin).

We compare FQIT and KBSF on an important medical problem which we will refer to
as the HIV drug schedule domain (Adams et al., 2004; Ernst et al., 2006). Typical HIV
treatments use drug cocktails containing two types of medication: reverse transcriptase
inhibitors (RTI) and protease inhibitors (PI). Despite the success of drug cocktails in main-
taining low viral loads, there are several complications associated with their long-term use.
This has attracted the interest of the scientific community to the problem of optimizing
drug-scheduling strategies. One strategy that has been receiving a lot of attention recently
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Figure 4: Results on the pole-balancing tasks, as a function of the number of representative
states m, averaged over 50 runs. The values correspond to the fraction of episodes
initiated from the test states in which the pole(s) could be balanced for 3000 steps
(one minute of simulated time). The test sets were regular grids defined over the
hypercube centered at the origin and covering 50% of the state-space axes in
each dimension (see Appendix B). Shadowed regions represent 99% confidence
intervals.
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is structured treatment interruption (STI), in which patients undergo alternate cycles with
and without the drugs. Although many successful STI treatments have been reported in
the literature, as of now there is no consensus regarding the exact protocol that should be
followed (Bajaria et al., 2004).

The scheduling of STI treatments can be seen as a sequential decision problem in
which the actions correspond to the types of cocktail that should be administered to a
patient (Ernst et al., 2006). To simplify the problem’s formulation, it is assumed that RTI
and PI drugs are administered at fixed amounts, reducing the actions to the four possible
combinations of drugs: none, RTI only, PI only, or both. The goal is to minimize the
viral load using as little drugs as possible. Following Ernst et al. (2006), we performed our
experiments using a model that describes the interaction of the immune system with HIV.
This model was developed by Adams et al. (2004) and has been identified and validated
based on real clinical data. The resulting reinforcement learning task has a 6-dimensional
continuous state space whose variables describe the overall patient’s condition.

We formulated the problem exactly as proposed by Ernst et al. (2006, see Appendix B for
details). The strategy used to generate the data also followed the protocol proposed by these
authors, which we now briefly explain. Starting from a batch of 6000 sample transitions
generated by a random policy, each algorithm first computed an initial approximation of
the problem’s optimal value function. Based on this approximation, a 0.15-greedy policy
was used to collect a second batch of 6000 transitions, which was merged with the first.3

This process was repeated for 10 rounds, resulting in a total of 60000 sample transitions.

We varied FQIT’s parameter ηmin in the set {50, 100, 200}. For the experiments with
KBSF, we fixed τ = τ̄ = 1 and varied m in {2000, 4000, ..., 10000} (in the rounds in which
m ≥ n we simply used all states ŝai as representative states). As discussed in the beginning
of this section, it is possible to reduce KBSF’s computational cost with the use of sparse
kernels. In our experiments with the HIV drug schedule task, we only computed the µ = 2
largest values of kτ (s̄i, ·) and the µ̄ = 3 largest values of k̄τ̄ (ŝai , ·) (see Appendix B.2). The
representative states s̄i were selected at random from the set of sampled states ŝai (the
reason for this will become clear shortly). Since in the current experiments the number of
sample transitions n was fixed, we will refer to the particular instances of our algorithm
simply as KBSF(m).

Before discussing the results, we point out that FQIT’s performance on the HIV drug
schedule task is very good, comparable to that of Adams et al.’s (2004) approach, which
uses a model of the task. FQIT’s results, along with KBSF’s, are shown in Figure 5. As
shown in Figure 5a, the performance of FQTI improves when ηmin is decreased, as expected.
In contrast, increasing the number of representative states m does not have a strong impact
on the quality of KBSF’s solutions (in fact, in some cases the average return obtained by
the resulting policies decreases slightly when m grows). Overall, the performance of KBSF
on the HIV drug schedule task is not nearly as impressive as on the previous problems.
For example, even when using m = 10000 representative states, which corresponds to one
sixth of the sampled states, KBSF is unable to reproduce the performance of FQIT with
ηmin = 50.

3. As explained by Sutton and Barto (1998), an ε-greedy policy selects the action with maximum value
with probability 1− ε, and with probability ε it picks an action uniformly at random.
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Figure 5: Results on the HIV drug schedule task averaged over 50 runs. The STI policies
were evaluated for 5000 days starting from a state representing a patient’s un-
healthy state (see Appendix B). The shadowed regions represent 99% confidence
intervals.
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On the other hand, when we look at Figure 5b, it is clear that the difference on the
algorithms’s performance is counterbalanced by a substantial difference on the associated
computational costs. As an illustration, note that KBSF(10000) is 15 times faster than
FQTI(100) and 20 times faster than FQTI(50). This difference on the algorithms’s run
times is expected, since each iteration of FQIT involves the construction (or update) of
an ensemble of trees, each one requiring at least O(n log(n/ηmin)) operations, and the
improvement of the current decision policy, which is O(n|A|) (Geurts et al., 2006). As
discussed before, KBSF’s efficiency comes from the fact that its computational cost per
iteration is independent of the number of sample transitions n.

Note that the fact that FQIT uses an ensemble of trees is both a blessing and a curse.
If on the one hand this reduces the variance of the approximation, on the other hand it
also increases the algorithm’s computational cost (Geurts et al., 2006). Given the big gap
between FQIT’s and KBSF’s time complexities, one may wonder if the latter can also benefit
from averaging over several models. In order to verify this hypothesis, we implemented a
very simple model-averaging strategy with KBSF: we trained several agents independently,
using Algorithm 1 on the same set of sample transitions, and then put them together on
a single “committee”. In order to increase the variability within the committee of agents,
instead of using k-means to determine the representative states s̄j we simply selected them
uniformly at random from the set of sampled states ŝai (note that this has the extra benefit of
reducing the method’s overall computational cost). The actions selected by the committee
of agents were determined through “voting”—that is, we simply picked the action chosen
by the majority of agents, with ties broken randomly.

We do not claim that the approach described above is the best model-averaging strategy
to be used with KBSF. However, it seems to be sufficient to boost the algorithm’s perfor-
mance considerably, as shown in Figure 5c. Note how KBSF already performs comparably
to FQTI(50) when using only 5 agents in the committee. When this number is increased
to 15, the expected return of KBSF’s agents is considerably larger than that of the best
FQIT’s agent, with only a small overlap between the 99% confidence intervals associated
with the algorithms’s results. The good performance of KBSF is still more impressive when
we look at Figure 5d, which shows that even when using a committee of 30 agents this
algorithm is faster than FQIT(200).

4.2.4 Epilepsy-suppression domain (comparison with LSPI and fitted
Q-iteration)

We conclude our empirical evaluation of KBSF by using it to learn a neuro-stimulation
policy for the treatment of epilepsy. It has been shown that the electrical stimulation of
specific structures in the neural system at fixed frequencies can effectively suppress the oc-
currence of seizures (Durand and Bikson, 2001). Unfortunately, in vitro neuro-stimulation
experiments suggest that fixed-frequency pulses are not equally effective across epileptic
systems. Moreover, the long term use of this treatment may potentially damage the pa-
tients’s neural tissues. Therefore, it is desirable to develop neuro-stimulation policies that
replace the fixed-stimulation regime with an adaptive scheme.

The search for efficient neuro-stimulation strategies can be seen as a reinforcement learn-
ing problem. Here we study this problem using a generative model developed by Bush et al.
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(2009) based on real data collected from epileptic rat hippocampus slices. Bush et al.’s
model was shown to reproduce the seizure pattern of the original dynamical system and
was later validated through the deployment of a learned treatment policy on a real brain
slice (Bush and Pineau, 2009). The associated decision problem has a five-dimensional
continuous state space and highly non-linear dynamics. At each time step the agent must
choose whether or not to apply an electrical pulse. The goal is to suppress seizures as much
as possible while minimizing the total amount of stimulation needed to do so.

The experiments were performed as described in Section 4.2.1, with a single batch of
sample transitions collected by a policy that selects actions uniformly at random. Specif-
ically, the random policy was used to collect 50 trajectories of length 10000, resulting in
a total of 500000 sample transitions. We use as a baseline for our comparisons the al-
ready mentioned fixed-frequency stimulation policies usually adopted in in vitro clinical
studies (Bush and Pineau, 2009). In particular, we considered policies that apply electrical
pulses at frequencies of 0 Hz, 0.5 Hz, 1 Hz, and 1.5 Hz.

We compare KBSF with LSPI and FQIT. For this task we ran both LSPI and KBSF
with sparse kernels, that is, we only computed the kernels at the 6-nearest neighbors of a
given state (µ = µ̄ = 6; see Appendix B.2 for details). This modification made it possible
to use m = 50000 representative states with KBSF. Since for LSPI the reduction on the
computational cost was not very significant, we fixed m = 50 to keep its run time within
reasonable bounds. Again, KBSF and LSPI used the same approximation architectures,
with representative states defined by the k-means algorithm. We fixed τ = 1 and varied
τ̄ in {0.01, 0.1, 1}. FQIT was configured as described in the previous section, with the
parameter ηmin varying in {20, 30, ..., 200}. In general, we observed that the performance
of the tree-based method improved with smaller values for ηmin, with an expected increase
in the computational cost. Thus, in order to give an overall characterization of FQIT’s
performance, we only report the results obtained with the extreme values of ηmin.

Figure 6 shows the results on the epilepsy-suppression task. In order to obtain different
compromises between the problem’s two conflicting objectives, we varied the relative mag-
nitude of the penalties associated with the occurrence of seizures and with the application
of an electrical pulse (Bush et al., 2009; Bush and Pineau, 2009). Specifically, we fixed the
latter at −1 and varied the former with values in {−10,−20,−40}. This appears in the
plots as subscripts next to the algorithms’s names. As shown in Figure 6a, LSPI’s poli-
cies seem to prioritize reduction of stimulation at the expense of higher seizure occurrence,
which is clearly sub-optimal from a clinical point of view. FQIT(200) also performs poorly,
with solutions representing no advance over the fixed-frequency stimulation strategies. In
contrast, FQTI(20) and KBSF are both able to generate decision policies that are superior
to the 1 Hz policy, which is the most efficient stimulation regime known to date in the
clinical literature (Jerger and Schiff, 1995). However, as shown in Figure 6b, KBSF is able
to do it at least 100 times faster than the tree-based method.

5. Incremental KBSF

As clear in the previous section, one characteristic of KBSF that sets it apart from other
methods is its low demand in terms of computational resources. Specifically, both time and
memory complexities of our algorithm are linear in the number of sample transitions n. In
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terms of the number of operations performed by the algorithm, this is the best one can
do without discarding transitions. However, in terms of memory usage, it is possible to do
even better. In this section we show how to build KBSF’s approximation incrementally,
without ever having access to the entire set of sample transitions at once. Besides reducing
the memory complexity of the algorithm, this modification has the additional advantage of
making KBSF suitable for on-line reinforcement learning.

In the batch version of KBSF, described in Section 4, the matrices P̄a and vectors r̄a are
determined using all the transitions in the corresponding sets Sa. This has two undesirable
consequences. First, the construction of the MDP M̄ requires an amount of memory of
O(n̂m), where n̂ = maxa na. Although this is a significant improvement over KBRL’s
memory usage, which is lower bounded by (mina na)

2|A|, in more challenging domains even
a linear dependence on n̂ may be impractical. Second, in the batch version of KBSF the
only way to incorporate new data into the model M̄ is to recompute the multiplication
P̄a = K̇aḊa for all actions a for which there are new sample transitions available. Even if
we ignore the issue with memory usage, this is clearly inefficient in terms of computation. In
what follows we present an incremental version of KBSF that circumvents these important
limitations (Barreto et al., 2012).

We assume the same scenario considered in Section 4: there is a set of sample transitions
Sa = {(sak, rak, ŝak)|k = 1, 2, ..., na} associated with each action a ∈ A, where sak, ŝ

a
k ∈ S and

rak ∈ R, and a set of representative states S̄ = {s̄1, s̄2, ..., s̄m}, with s̄i ∈ S. Suppose
now that we split the set of sample transitions Sa in two subsets S1 and S2 such that
S1∩S2 = ∅ and S1∪S2 = Sa (we drop the “a” superscript in the sets S1 and S2 to improve
clarity). Without loss of generality, suppose that the sample transitions are indexed so that
S1 ≡ {(sak, rak, ŝak)|k = 1, 2, ..., n1} and S2 ≡ {(sak, rak, ŝak)|k = n1 +1, n1 +2, ..., n1 +n2 = na}.
Let P̄S1 and r̄S1 be matrix P̄a and vector r̄a computed by KBSF using only the n1 transitions
in S1 (if n1 = 0, we define P̄S1 = 0 ∈ Rm×m and r̄S1 = 0 ∈ Rm for all a ∈ A). We want
to compute P̄S1∪S2 and r̄S1∪S2 from P̄S1 , r̄S1 , and S2, without using the set of sample
transitions S1.

We start with the transition matrices P̄a. We know that

p̄
S1
ij =

∑n1
t=1 k̇

a
itḋ

a
tj =

∑n1
t=1

kτ (s̄i, s
a
t )∑n1

l=1 kτ (s̄i, sal )

k̄τ̄ (ŝat , s̄j)∑m
l=1 k̄τ̄ (ŝat , s̄l)

=
1∑n1

l=1 kτ (s̄i, sal )

∑n1
t=1

kτ (s̄i, s
a
t )k̄τ̄ (ŝat , s̄j)∑m

l=1 k̄τ̄ (ŝat , s̄l)
.

To simplify the notation, define

z
S1
i =

n1∑
l=1

kτ (s̄i, s
a
l ), z

S2
i =

n1+n2∑
l=n1+1

kτ (s̄i, s
a
l ), and btij =

kτ (s̄i, s
a
t )k̄τ̄ (ŝat , s̄j)∑m

l=1 k̄τ̄ (ŝat , s̄l)
,

with t ∈ {1, 2, ..., n1 + n2}. Then, we can write

p̄
S1∪S2
ij =

1

z
S1
i + z

S2
i

(∑n1
t=1 b

t
ij +

∑n1+n2
t=n1+1 b

t
ij

)
=

1

z
S1
i + z

S2
i

(
p̄
S1
ij z

S1
i +

∑n1+n2
t=n1+1 b

t
ij

)
.
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Now, defining b
S2
ij =

∑n1+n2
t=n1+1 b

t
ij , we have the simple update rule:

p̄
S1∪S2
ij =

1

z
S1
i + z

S2
i

(
b
S2
ij + p̄

S1
ij z

S1
i

)
. (19)

We can apply similar reasoning to derive an update rule for the rewards r̄ai . We know
that

r̄
S1
i =

1∑n1
l=1 kτ (s̄i, sal )

n1∑
t=1

kτ (s̄i, s
a
t )r

a
t =

1

z
S1
i

n1∑
t=1

kτ (s̄i, s
a
t )r

a
t .

Let eti = kτ (s̄i, s
a
t )r

a
t , with t ∈ {1, 2, ..., n1 + n2}. Then,

r̄
S1∪S2
i =

1

z
S1
i + z

S2
i

(∑n1
t=1 e

t
i +
∑n1+n2

t=n1+1 e
t
i

)
=

1

z
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i + z

S2
i
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i +
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t=n1+1 e
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)
.

Defining e
S2
i =

∑n1+n2
t=n1+1 e

t
i, we have the following update rule:

r̄
S1∪S2
i =

1

z
S1
i + z

S2
i

(
e
S2
i + r̄

S1
i z

S1
i

)
. (20)

Since b
S2
ij , e

S2
i , and z

S2
i can be computed based on S2 only, we can discard the sample

transitions in S1 after computing P̄S1 and r̄S1 . In order to do that, we only have to keep
the variables z

S1
i . These variables can be stored in |A| vectors za ∈ Rm, resulting in a

modest memory overhead. Note that we can apply the ideas above recursively, further
splitting the sets S1 and S2 in subsets of smaller size. Thus, we have a fully incremental
way of computing KBSF’s MDP which requires almost no extra memory.

Algorithm 2 shows a step-by-step description of how to update M̄ based on a set of
sample transitions. Using this method to update its model, KBSF’s space complexity drops
from O(n̂m) to O(m2). Since the amount of memory used by KBSF is now independent of
n, it can process an arbitrary number of sample transitions (or, more precisely, the limit on
the amount of data it can process is dictated by time only, not space).

Instead of assuming that S1 and S2 are a partition of a fixed data set Sa, we can consider
that S2 was generated based on the policy learned by KBSF using the transitions in S1.
Thus, Algorithm 2 provides a flexible framework for integrating learning and planning within
KBSF. Specifically, our algorithm can cycle between learning a model of the problem based
on sample transitions, using such a model to derive a policy, and resorting to this policy
to collect more data. Algorithm 3 shows a possible implementation of this framework. In
order to distinguish it from its batch counterpart, we will call the incremental version of our
algorithm iKBSF. iKBSF updates the model M̄ and the value function Q̄ at fixed intervals
tm and tv, respectively. When tm = tv = n, we recover the batch version of KBSF; when
tm = tv = 1, we have a fully on-line method which stores no sample transitions.

Algorithm 3 allows for the inclusion of new representative states to the model M̄ . Using
Algorithm 2 this is easy to do: given a new representative state s̄m+1, it suffices to set
zam+1 = 0, r̄am+1 = 0, and p̄m+1,j = p̄j,m+1 = 0 for j = 1, 2, ...,m+ 1 and all a ∈ A. Then, in
the following applications of update rules (19) and (20), the dynamics of M̄ will naturally
reflect the existence of state s̄m+1. Note that the inclusion of new representative states
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Algorithm 2 Update KBSF’s MDP

Input:
P̄a, r̄a, za for all a ∈ A . Current model
Sa = {(sak, rak, ŝak)|k = 1, 2, ..., na} for all a ∈ A . Sample transitions

Output: Updated M̄ and za

for a ∈ A do
for t = 1, ..., na do z̄t ←

∑m
l=1 k̄τ̄ (ŝat , s̄l)

na ← |Sa|
for i = 1, 2, ...,m do

z′ ←
∑na

t=1 kτ (s̄i, s
a
t )

for j = 1, 2, ...,m do
b←

∑na
t=1 kτ (s̄i, s

a
t )k̄τ̄ (ŝat , s̄j)/z̄t

p̄ij ←
1

zai + z′
(b+ p̄ijz

a
i ) . Update transition probabilities

e←
∑na

t=1 kτ (s̄i, s
a
t )r

a
t

r̄i ←
1

zai + z′
(e+ r̄iz

a
i ) . Update rewards

zai ← zai + z′ . Update normalization factor

Algorithm 3 Incremental KBSF (iKBSF)

Input:
S̄ = {s̄1, s̄2, ..., s̄m} . Set of representative states
tm . Interval to update model
tv . Interval to update value function

Output: Approximate value function Q̃(s, a)

P̄a ← 0 ∈ Rm×m, r̄a ← 0 ∈ Rm, za ← 0 ∈ Rm, for all a ∈ A
Q̄← arbitrary matrix in Rm×|A|
s← initial state
a← random action
for t← 1, 2, ... do

Execute a in s and observe r and ŝ
Sa ← Sa

⋃
{(s, r, ŝ)}

if (t mod tm = 0) then . Update model
Add new representative states to M̄ using Sa . This step is optional
Update M̄ and za using Algorithm 2 and Sa

Sa ← ∅ for all a ∈ A . Discard transitions

if (t mod tv = 0) update Q̄ . Update value function
s← ŝ
Select a based on Q̃(s, a) =

∑m
i=1 κ̄τ̄ (s, s̄i)q̄ia
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does not destroy the information already in the model. This allows iKBSF to refine its
approximation on the fly, as needed. One can think of several ways of detecting the need
for new representative states. A simple strategy, based on Proposition 6, is to impose a
maximum distance allowed between a sampled state ŝai and the nearest representative state,
dist(ŝai , 1). So, anytime the agent encounters a new state ŝai for which dist(ŝai , 1) is above
a given threshold, ŝai is added to the model as s̄m+1. In Section 5.2 we report experiments
with iKBSF using this approach. Before that, though, we discuss the theoretical properties
of the incremental version of our algorithm.

5.1 Theoretical results

As discussed, iKBSF does not need to store sample transitions to build its approximation.
However, the computation of Q̃(s, a) through (12) requires all the tuples (sai , r

a
i , ŝ

a
i ) to be

available. In some situations, it may be feasible to keep the transitions in order to compute
Q̃(s, a). However, if we want to use iKBSF to its full extend, we need a way of computing
Q̃(s, a) without using the sample transitions. This is why upon reaching state s at time
step t iKBSF selects the action to be performed based on

Q̃t(s, a) =

m∑
i=1

κ̄τ̄ (s, s̄i)Q̄t(s̄i, a), (21)

where Q̄t(s̄i, a) is the action-value function available to iKBSF at the tth iteration (see
Algorithm 3). Note that we do not assume that iKBSF has computed the optimal value
function of its current model M̄t—that is, it may be the case that Q̄t(s̄i, a) 6= Q̄∗t (s̄i, a).

Unfortunately, when we replace (12) with (21) Proposition 3 no longer applies. In this
section we address this issue by deriving an upper bound for the difference between Q̃t(s, a)
and Q̂t(s, a), the action-value function that would be computed by KBRL using all the
transitions processed by iKBSF up to time step t. In order to derive our bound, we assume
that iKBSF uses a fixed set S̄—meaning that no representative states are added to the
model M̄—and that it never stops refining its model, doing so at every iteration t (i.e.,
tm = 1 in Algorithm 3). We start by showing the following lemma:

Lemma 9 Let M ≡ (S,A,Pa, ra, γ) and M̃ ≡ (S,A, P̃a, r̃a, γ) be two finite MDPs. Then,
for any s ∈ S and any a ∈ A,

|Q∗(s, a)− Q̃∗(s, a)| ≤ 1

1− γ
max
a
‖ra − r̃a‖∞ +

γ

2(1− γ)2
Rdifmax

a
‖Pa − P̃a‖∞,

where Rdif = maxa,i r
a
i −mina,i r

a
i .

Lemma 9 provides an upper bound for the difference in the action-value functions of
any two MDPs having the same state space S, action space A, and discount factor γ.4 Our
strategy will be to use this result to bound the error introduced by the application of the
stochastic-factorization trick in the context of iKBSF.

4. Strehl and Littman’s (2008) Lemma 1 is similar to our result. Their bound is more general than ours,
as it applies to any Qπ, but it is also slightly looser.
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When tm = 1, at any time step t iKBSF has a model M̄t built based on the t transitions
observed thus far. As shown in the beginning of this section, M̄t exactly matches the
model that would be computed by batch KBSF using the same data and the same set of
representative states. Thus, we can think of matrices P̄a

t and vectors r̄at available at the tth

iteration of iKBSF as the result of the stochastic-factorization trick applied with matrices
Dt and Ka

t . Although iKBSF does not explicitly compute such matrices, they serve as a
theoretical foundation to build our result on.

Proposition 10 Suppose iKBSF is executed with a fixed set of representative states S̄ using
tm = 1. Let Dt, Ka

t and r̄at be the matrices and the vector (implicitly) computed by this
algorithm at iteration t. Then, if s is the state encountered by iKBSF at time step t,

|Q̂t(s, a)− Q̃t(s, a)| ≤ 1

1− γmax
a
‖r̂at −Dtr̄

a
t ‖∞ +

R̄dif,t

(1− γ)2

(γ
2

max
a
‖P̂a

t −DtK
a
t ‖∞ + σ(Dt)

)
+ εQ̄t , (22)

for any a ∈ A, where Q̃t is the value function computed by iKBSF at time step t through (21),
Q̂t is the value function computed by KBRL through (7) based on the same data, R̄dif,t =
maxa,i r̄

a
i,t−mina,i r̄

a
i,t, σ(Dt) = maxi (1−maxj dij,t), and εQ̄t = maxi,a |Q̄∗t (s̄i, a)−Q̄t(s̄i, a)|.

Proposition 10 shows that, at any time step t, the error in the action-value function
computed by iKBSF is bounded above by the quality and the level of stochasticity of the
stochastic factorization implicitly computed by the algorithm. The term εQ̄t accounts for
the possibility that iKBSF has not computed the optimal value function of its model at
step t, either because tm 6= tv or because the update of Q̄ in Algorithm 3 is not done to
completion (for example, one can apply the Bellman operator T̄ a fixed number of times,
stopping short of convergence). The restriction tm = 1 is not strictly necessary if we are
willing to compare Q̃t(s, a) with Q̂t′(s, a), where t′ = b(t + tm)/tc (the next time step
scheduled for a model update). However, such a result would be somewhat circular, since
the sample transitions used to build Q̂t′(s, a) may depend on Q̃t(s, a). Finally, we note
that, given the similarity between the right-hand sides of (8) and (22), it should be trivial
to derive results analogous to Propositions 6 and 8 that also apply to iKBSF.

5.2 Empirical results

We now look at the empirical performance of the incremental version of KBSF. Following
the structure of Section 4.2, we start with the puddle world task to show that iKBSF is
indeed able to match the performance of batch KBSF without storing all sample transitions.
Next we exploit the scalability of iKBSF to solve two difficult control tasks, triple pole-
balancing and helicopter hovering. We also compare iKBSF’s performance with that of
other reinforcement learning algorithms.

5.2.1 Puddle world (proof of concept)

We use the puddle world problem as a proof of concept (Sutton, 1996). In this first ex-
periment we show that iKBSF is able to recover the model that would be computed by
its batch counterpart. In order to do so, we applied Algorithm 3 to the puddle-world task
using a random policy to select actions.
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Figure 7: Results on the puddle-world task averaged over 50 runs. KBSF used 100 rep-
resentative states evenly distributed over the state space and tm = tv = ι (see
legends). Sample transitions were collected by a random policy. The agents were
tested on two sets of states surrounding the “puddles” (see Appendix B).

Figure 7 shows the result of the experiment when we vary the parameters tm and tv. Note
that the case in which tm = tv = 8000 corresponds to the batch version of KBSF, whose
results on the puddle world are shown in Figure 3. As expected, the performance of KBSF
policies improves gradually as the algorithm goes through more sample transitions, and in
general the intensity of the improvement is proportional to the amount of data processed.
More important, the performance of the decision policies after all sample transitions have
been processed is essentially the same for all values of tm and tv, which confirms that iKBSF
can be used as an instrument to circumvent KBSF’s memory demand. Thus, if one has a
batch of sample transitions that does not fit in the available memory, it is possible to split
the data in chunks of smaller sizes and still get the same value-function approximation that
would be computed if the entire data set were processed at once. As shown in Figure 7b,
there is only a small computational overhead associated with such a strategy (this results
from unnormalizing and normalizing the elements of P̄a and r̄a multiple times through
update rules (19) and (20)).

5.2.2 Triple pole-balancing (comparison with fitted Q-iteration)

As discussed in Section 4.2.2, the pole balancing task has been addressed in several differ-
ent versions, and among them simultaneously balancing two poles is particularly challeng-
ing (Wieland, 1991). Figures 4c and 4d show that the batch version of KBSF was able to
satisfactorily solve the double pole-balancing task. In order to show the scalability of the
incremental version of our algorithm, in this section we raise the bar, adding a third pole
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to the problem. We perform our simulations using the parameters usually adopted with
the two-pole problem, with the extra pole having the same length and mass as the longer
pole (Gomez, 2003, see Appendix B). This results in a difficult control problem with an
8-dimensional state space S.

In our experiments with KBSF on the two-pole task we used 200 representative states
and 106 sample transitions collected by a random policy. Here we start our experiment with
triple pole-balancing using exactly the same configuration, and then we let iKBSF refine its
model M̄ by incorporating more sample transitions through update rules (19) and (20). We
also let iKBSF grow its model if necessary. Specifically, a new representative state is added
to M̄ on-line every time the agent encounters a sample state ŝai for which k̄τ̄ (ŝai , s̄j) < 0.01
for all j ∈ 1, 2, ...,m. This corresponds to setting a maximum allowed distance from a
sampled state to the closest representative state, maxa,i dist(ŝ

a
i , 1).

Given the poor performance of LSPI on the double pole-balancing task, shown in Fig-
ures 4c and 4d, on the three-pole version of the problem we only compare KBSF with
FQIT. We used FQIT with the same configuration adopted in Sections 4.2.3 and 4.2.4, with
the parameter ηmin varying in the set {10000, 1000, 100}. As for KBSF, the widths of the
kernels were fixed at τ = 100 and τ̄ = 1 and sparse kernels were used (µ = 50 and µ̄ = 10).

In order to show the benefits provided by the incremental version of our algorithm, we
assumed that both KBSF and FQIT could store at most 106 sample transitions in memory.
In the case of iKBSF, this is not a problem, since we can always split the data in subsets of
smaller size and process them incrementally. Here, we used Algorithm 3 with a 0.3-greedy
policy, tm = tv = 106, and n = 107. In the case of FQIT, we have two options to circumvent
the limited amount of memory available. The first one is to use a single batch of 106

sample transitions. The other option is to use the initial batch of transitions to compute
an approximation of the problem’s value function, then use an 0.3-greedy policy induced
by this approximation to collect a second batch, and so on. Here we show the performance
of FQIT using both strategies.

We first compare the performance of iKBSF with that of FQIT using a single batch of
sample transitions. This is shown in Figure 8a and 8b. For reference, we also show the results
of batch KBSF—that is, we show the performance of the policy that would be computed by
our algorithm if we did not have a way of computing its approximation incrementally. As
shown in Figure 8a, both FQIT and batch KBSF perform poorly in the triple pole-balancing
task, with average success rates below 55%. These results suggest that the amount of data
used by these algorithms is insufficient to describe the dynamics of the control task. Of
course, we could give more sample transitions to FQIT and batch KBSF. Note however that,
since they are batch learning methods, there is an inherent limit on the amount of data
that these algorithms can use to construct their approximation. In contrast, the amount
of memory required by iKBSF is independent of the number of sample transitions n. This
fact together with the fact that KBSF’s computational complexity is only linear in n allow
our algorithm to process a large amount of data in reasonable time. This can be clearly
observed in Figure 8b, which shows that iKBSF can build an approximation using 107

sample transitions in under 20 minutes. As a reference for comparison, FQIT(1000) took
an average of 1 hour and 18 minutes to process 10 times less data.

As shown in Figure 8a, iKBSF’s ability to process a large number of sample transitions
allows our algorithm to achieve a success rate of approximately 80%. This is similar to the
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Figure 8: Results on the triple pole-balancing task, as a function of the number of sample
transitions n, averaged over 50 runs. Figures 8a and 8b show results of FQIT
when using a single batch of 106 transitions; in Figures 8c and 8d ten sets of
106 transitions were used in sequence by the algorithm (see text for details).
The values correspond to the fraction of episodes initiated from the test states in
which the 3 poles could be balanced for 3000 steps (one minute of simulated time).
The test sets were regular grids of 256 cells defined over the hypercube centered
at the origin and covering 50% of the state-space axes in each dimension (see
Appendix B for details). Shadowed regions represent 99% confidence intervals.
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Figure 9: Number of representative states used by iKBSF on the triple pole-balancing task.
Results were averaged over 50 runs (99% confidence intervals are almost imper-
ceptible in the figure).

performance of batch KBSF on the two-pole version of the problem (cf. Figure 4). The
good performance of iKBSF on the triple pole-balancing task is especially impressive when
we recall that the decision policies were evaluated on a set of test states representing all
possible directions of inclination of the three poles. In order to achieve the same level of
performance with KBSF, approximately 2 Gb of memory would be necessary, even using
sparse kernels, whereas iKBSF used less than 0.03 Gb of memory.

One may argue that the above comparison between FQIT and KBSF is not fair, since
the latter used ten times the amount of data used by the former. Thus, in Figures 8c
and 8d we show the results of FQIT using 10 batches of 106 transitions—exactly the same
number of transitions processed by iKBSF. Here we cannot compare iKBSF with FQIT(100)
because the computational cost of the tree-based approach is prohibitively large (it would
take over 4 days only to train a single agent, not counting the test phase). When we look
at the other instances of the algorithm, we see two opposite trends. Surprisingly, the extra
sample transitions actually made the performance of FQIT(10000) worse. On the other
hand, FQIT(1000) performs significantly better using more data, though still not as well as
iKBSF (both in terms of performance and computing time).

To conclude, observe in Figure 9 how the number of representative states m grows
as a function of the number of sample transitions processed by KBSF. As expected, in the
beginning of the learning process m grows fast, reflecting the fact that some relevant regions
of the state space have not been visited yet. As more and more data come in, the number
of representative states starts to stabilize.

5.2.3 Helicopter hovering task (comparison with SARSA)

In the previous two sections we showed how iKBSF can be used to circumvent the inherent
memory limitations of batch learning. We now show how our algorithm performs in a fully
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on-line regime. For that, we focus on a challenging reinforcement learning task in which
the goal is to control an autonomous helicopter.

Helicopters have unique control capabilities, such as low speed flight and in-place hov-
ering, that make them indispensable instruments in many contexts. Such flexibility comes
at a price, though: it is widely recognized that a helicopter is significantly harder to control
than a fixed-wing aircraft (Ng et al., 2003; Abbeel et al., 2007). Part of this difficulty is
due to the complex dynamics of the helicopter, which is not only non-linear, noisy, and
asymmetric, but also counterintuitive in some aspects (Ng et al., 2003).

An additional complication of controlling an autonomous helicopter is the fact that a
wrong action can easily lead to a crash, which is both dangerous and expensive. Thus,
the usual practice is to first develop a model of the helicopter’s dynamics and then use the
model to design a controller (Ng et al., 2003). Here we use the model constructed by Abbeel
et al. (2005) based on data collected on actual flights of an XCell Tempest helicopter (see
Appendix B). The resulting reinforcement learning problem has a 12-dimensional state
space whose variables represent the aircraft’s position, orientation, and the corresponding
velocities and angular velocities along each axis.

In the version of the task considered here the goal is to keep the helicopter hovering as
close as possible to a fixed position. All episodes start at the target location, and at each
time step the agent receives a negative reward proportional to the distance from the current
state to the desired position. Because the tail rotor’s thrust exerts a sideways force on the
helicopter, the aircraft cannot be held stationary in the zero-cost state even in the absence
of wind. The episode ends when the helicopter leaves the hover regime, that is, when any
of the state’s variables exceeds pre-specified thresholds.

The helicopter is controlled via a 4-dimensional continuous vector whose variables rep-
resent the longitudinal cyclic pitch, the latitudinal cyclic pitch, the tail rotor collective
pitch, and the main rotor collective pitch. By adjusting the value of these variables the
pilot can rotate the helicopter around its axes and control the thrust generated by the main
rotor. Since KBSF was designed to deal with a finite number of actions, we discretized the
set A using 4 values per dimension, resulting in 256 possible actions. The details of the
discretization process are given below.

Here we compare iKBSF with the SARSA(λ) algorithm using tile coding for value
function approximation (Rummery and Niranjan, 1994, Sutton, 1996—see Appendix B).
We applied SARSA with λ = 0.05, a learning rate of 0.001, and 24 tilings containing 412

tiles each. Except for λ, all the parameters were adjusted in a set of preliminary experiments
in order to improve the performance of the SARSA agent. We also defined the action-space
discretization based on SARSA’s performance. In particular, instead of partitioning each
dimension in equally-sized intervals, we spread the break points unevenly along each axis in
order to maximize the return obtained by the SARSA agent. The result of this process is
described in Appendix B. The interaction of the SARSA agent with the helicopter hovering
task was dictated by an ε-greedy policy. Initially we set ε = 1, and at every 50000 transitions
the value of ε was decreased in 30%.

The iKBSF agent collected sample transitions using the same exploration regime. Based
on the first batch of 50000 transitions, m = 500 representative states were determined by
the k-means algorithm. No representative states were added to iKBSF’s model after that.
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Both the value function and the model were updated at fixed intervals of tv = tm = 50000
transitions. We fixed τ = τ̄ = 1 and µ = µ̄ = 4.

Figure 10 shows the results obtained by SARSA and KBSF on the helicopter hovering
task. Note in Figure 10a how the average episode length increases abruptly at the points
in which the value of ε is decreased. This is true for both SARSA and KBSF. Also, since
the number of steps executed per episode increases over time, the interval in between such
abrupt changes decreases in length, as expected. Finally, observe how the performance of
both agents stabilizes after around 70000 episodes, probably because at this point there is
almost no exploration taking place anymore.

When we compare KBSF and SARSA, it is clear that the former significantly outper-
forms the latter. Specifically, after the cut-point of 70000 episodes, the KBSF agent executes
approximately 2.25 times the number of steps performed by the SARSA agent before crash-
ing. Looking at Figures 10a and 10b, one may argue at first that there is nothing surprising
here: being a model-based algorithm, KBSF is more sample efficient than SARSA, but it is
also considerably slower (Atkeson and Santamaria, 1997). Notice though that the difference
between the run times of SARSA and KBSF shown in Figure 10b is in part a consequence
of the good performance of the latter: since KBSF is able to control the helicopter for a
larger number of steps, the corresponding episodes will obviously take longer. A better
measure of the algorithms’s computational cost can be seen in Figure 10c, which shows
the average time taken by each method to perform one transition. Observe how KBSF’s
computing time peaks at the points in which the model and the value function are updated.
In the beginning KBSF’s MDP changes considerably, and as a result the value function
updates take longer. As more data come in, the model starts to stabilize, accelerating the
computation of Q̄∗ (we “warm start” policy iteration with the value function computed in
the previous round). At this point, KBSF’s computational cost per step is only slightly
higher than SARSA’s, even though the former computes a model of the environment while
the latter directly updates the value function approximation.

To conclude, we note that our objective in this section was exclusively to show that
KBSF can outperform a well-known on-line algorithm with compatible computational cost.
Therefore, we focused on the comparison of the algorithms rather than on obtaining the
best possible performance on the task. Also, it is important to mention that more difficult
versions of the helicopter task have been addressed in the literature, usually using domain
knowledge in the configuration of the algorithms or to guide the collection of data (Ng et al.,
2003; Abbeel et al., 2007). Since our focus here was on evaluating the on-line performance of
KBSF, we addressed the problem in its purest form, without using any prior information to
help the algorithms solve the task (see Asbah et al.’s paper for experiments on the helicopter
hovering task with a more specialized version of KBSF, 2013).

6. Discussion

In this section we deepen our discussion about KBSF. We start with an analysis of the
approximation computed by our algorithm, in which we draw interesting connections with
KBRL, and then we proceed to discuss some issues that come up when one uses KBSF in
practice.
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Figure 10: Results on the helicopter hovering task averaged over 50 runs. The learned
controllers were tested from a fixed state (see text for details). The shadowed
regions represent 99% confidence intervals.
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6.1 A closer look at KBSF’s approximation

As outlined in Section 2, KBRL defines the probability of a transition from state ŝbi to state
ŝak as being κaτ (ŝbi , s

a
k), where a, b ∈ A (see Figure 2a). Note that the kernel κaτ is computed

with the initial state sak, and not ŝak itself. The intuition behind this is simple: since we

know the transition sak
a−→ ŝak has occurred before, the more “similar” ŝbi is to sak, the more

likely the transition ŝbi
a−→ ŝak becomes (Ormoneit and Sen, 2002).

From (10), it is clear that the computation of matrices Ka performed by KBSF follows
the same reasoning underlying the computation of KBRL’s matrices P̂a; in particular,
κaτ (s̄j , s

a
k) gives the probability of a transition from s̄j to ŝak. However, when we look at

matrix D things are slightly different: here, the probability of a “transition” from ŝbi to
representative state s̄j is given by κ̄τ̄ (ŝbi , s̄j)—a computation that involves s̄j itself. If we
were to strictly adhere to KBRL’s logic when computing the transition probabilities to the
representative states s̄j , the probability of transitioning from ŝbi to s̄j upon executing action

a should be a function of ŝbi and a state s′ from which we knew a transition s′
a−→ s̄j had

occurred. In this case we would end up with one matrix Da for each action a ∈ A. Note
though that this formulation of the method is not practical, because the computation of the
matrices Da would require a transition (·) a−→ s̄j for each a ∈ A and each s̄j ∈ S̄. Clearly,
such a requirement is hard to fulfill even if we have a generative model available to generate
sample transitions.

In this section we take a closer look at KBSF’s approximation, and provide two interpre-
tations that support the way the matrices involved are built. We argue that KBSF can be
seen as a kernel-based approximation of both the model and the value function computed
by KBRL. Based on these interpretations we later discuss how KBSF can potentially be
beneficial from a statistical point of view.

6.1.1 Approximating the model

We start by looking at how KBRL constructs its model. As shown in Figure 2a, for each
action a ∈ A the state ŝbi has an associated stochastic vector p̂aj ∈ R1×n whose nonzero

entries correspond to the kernel κaτ (ŝbi , ·) evaluated at sak, k = 1, 2, . . . , na. Since we are
dealing with a continuous state space, it is possible to compute an analogous vector for any
s ∈ S and any a ∈ A. Focusing on the nonzero entries of p̂aj , we define the function

P̂Sa : S 7→ R1×na

P̂Sa(s) = p̂a ⇐⇒ p̂ai = κaτ (s, sai ) for i = 1, 2, ..., na.
(23)

Clearly, full knowledge of the function P̂Sa allows for an exact computation of KBRL’s
transition matrix P̂a. Now suppose we do not know P̂Sa and we want to compute an ap-
proximation of this function in the points ŝai ∈ Sa, for all a ∈ A. Suppose further that
we are only given a “training set” composed of m pairs (s̄j , P̂Sa(s̄j)). One possible way of
approaching this problem is to resort to kernel smoothing techniques. In this case, a partic-
ularly common choice is the so-called Nadaraya-Watson kernel-weighted estimator (Hastie
et al., 2002, Chapter 6):

P̄Sa(s) =

∑m
j=1 k̄τ̄ (s, s̄j)P̂Sa(s̄j)∑m

j=1 k̄τ̄ (s, s̄j)
=

m∑
j=1

κ̄τ̄ (s, s̄j)P̂Sa(s̄j). (24)

38



Practical Kernel-Based Reinforcement Learning

Contrasting the expression above with (10), we see that this is exactly how KBSF computes
its approximation DKa ≈ P̂a, with P̄Sa evaluated at the points ŝbi ∈ Sb, b = 1, 2, ..., |A|. In
this case, κ̄τ̄ (ŝbi , s̄j) are the elements of matrix D, and P̂Sa(s̄j) is the jth row of matrix K̇a.
Thus, in some sense, KBSF uses KBRL’s own kernel approximation principle to compute a
stochastic factorization of M̂ . One can easily extend the reasoning above to also include re-
wards by defining a function M̂Sa : S 7→ R1×na+1 such that M̂Sa(s) = [P̂Sa(s), P̂Sa(s)>ra].

The exposition above also makes it clear that it is possible to build the matrices Ḋa

using different sets of representative states S̄a (this corresponds to having |A| training sets
composed of pairs (s̄aj , P̂Sa(s̄aj ))). As long as all the sets S̄a have the same cardinality m, the
stochastic-factorization trick can still be applied. However, in order for the approximation
computed by KBSF to make sense, we would have to have one matrix Da for each action
a ∈ A (see in Figure 2b how matrix D is computed). Unfortunately, when different matrices
Da are used, our “core” theoretical result, Proposition 2, no longer applies. Although
alternative error bounds are possible, as shown by Barreto (2014), they are in general
significantly looser than (8). In any case, the extension of KBSF to use different sets of
representative states S̄a may be an interesting topic for future research.

6.1.2 Approximating the value function

We now turn our attention to the way KBRL computes its value function, and show an
intuitive way to derive KBSF’s update equations. Based on (4) and (5), we see that value
iteration’s update rule for KBRL’s MDP, ∆̂Γ, is

Q̂t+1(ŝci , a) =

na∑
j=1

κaτ (ŝci , s
a
j )

[
raj + γmax

b
Q̂t(ŝ

a
j , b)

]
, (25)

where a, b, c ∈ A. Note that at any time step t the equation above can be used to compute
an approximation of the t-step value function over the entire state space S; after convergence
to Q̂∗ equation (25) gives rise to (7).

From a computational point of view, the potential problem with rule (25) is the fact that
updating Q̂ takes O(nn̂|A|) operations (recall that n =

∑
a na and n̂ = maxa na). KBRL

makes it possible to compute an approximate solution for an MDP with continuous state
space S by only updating the value of a finite subset Ŝ ⊂ S. It is reasonable to ask whether
similar strategy can come to the rescue when Ŝ is itself too large. Specifically, if the values
of the states ŝai ∈ Ŝ can be approximated based on the values of a small set of states S̄ ⊂ S,
with |S̄| = m, then only the latter must be updated during dynamic programming’s iterative
process. Following this reasoning, we can replace Q̂t(ŝ

a
j , b) with

∑m
l=1 κ̄τ̄ (ŝaj , s̄l)Q̂t(s̄l, b) and

rewrite (25) as

Q̂′t+1(s̄i, a) =

na∑
j=1

κaτ (s̄i, s
a
j )

[
raj + γmax

b

m∑
l=1

κ̄τ̄ (ŝaj , s̄l)Q̂
′
t(s̄l, b)

]

=

na∑
j=1

κaτ (s̄i, s
a
j )r

a
j + γ

na∑
j=1

κaτ (s̄i, s
a
j ) max

b

m∑
l=1

κ̄τ̄ (ŝaj , s̄l)Q̂
′
t(s̄l, b). (26)

Updating Q̂′ through (26) is O(mn̂|A|). This is already an improvement over the com-
putational complexity of (25), but the dependence on n̂ still precludes the use of (26) in
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scenarios involving many sample transitions, such as on-line problems, for example. Now,
if we swap the positions of the ‘max’ operator and the kernel κ̄τ̄ in (26), we can get rid of
the dependence on the number of transitions, in the following way:

Q̄t+1(s̄i, a) =

na∑
j=1

κaτ (s̄i, s
a
j )r

a
j + γ

na∑
j=1

κaτ (s̄i, s
a
j )

m∑
l=1

κ̄τ̄ (ŝaj , s̄l) max
b
Q̄t(s̄l, b)

=

na∑
j=1

κaτ (s̄i, s
a
j )r

a
j + γ

m∑
l=1

na∑
j=1

κaτ (s̄i, s
a
j )κ̄τ̄ (ŝaj , s̄l) max

b
Q̄t(s̄l, b)

= r̄ai + γ

m∑
l=1

p̄ail max
b
Q̄t(s̄l, b). (27)

Updating Q̄ through (27) takes only O(m2|A|) operations. It is not difficult to see that (27)
is value iteration’s update rule for the MDP M̄ defined by KBSF, ∆̄Γ (see Algorithm 1).

Summarizing, if we use a local kernel approximation in the update rule of KBRL’s MDP,
potentially introducing some error, we get (26), which is faster to compute than (25). If in
addition we change the order in which the operations are applied, we get KBSF’s update
rule (27), which is in some sense a greater deviation from (25) than (26), but is even faster
to compute. Therefore, KBSF can be interpreted as a computationally efficient way of
applying kernel approximation, the basic principle behind KBRL, to KBRL itself.

6.1.3 Curse of dimensionality

In this paper we emphasized the role of KBSF as a technique to reduce KBRL’s computa-
tional cost. However, it is equally important to ask whether our algorithm provides benefits
from a statistical point of view. In particular, instead of trying to approximate KBRL’s
solution, it may be possible to compute better solutions using the same amount of data.

Ormoneit and Sen (2002) showed that, in general, the number of sample transitions
needed by KBRL to achieve a certain approximation accuracy grows exponentially with
the dimension of the state space—a phenomenon usually referred to as the “curse of di-
mensionality” (Bellman, 1961). As with other methods, the only way to avoid such an
exponential dependency is to exploit some sort of regularity in the problem’s structure—
paraphrasing Ormoneit and Sen (2002), one can only “break” the curse of dimensionality
by incorporating prior knowledge into the approximation. In this section we argue that
KBSF can be seen as a strategy to do so. In particular, the definition of the representative
states can be seen as a practical mechanism to incorporate additional assumptions about
the continuous MDP besides the sample transitions.

The fact that KBRL’s sample complexity is exponential in dS is not surprising. As noted
by Ernst et al. (2005), KBRL can be seen as a particular case of the fitted Q-iteration al-
gorithm, which solves a reinforcement learning problem by breaking it into a succession
of supervised learning problems. If the MDP defined by KBRL is solved through value
iteration, for example, each iteration of this algorithm can be seen as a non-parametric
kernel-based regression (Barreto, 2014). It is well known that non-parametric kernel meth-
ods suffer from the curse of dimensionality (Stone, 1982; Györfi et al., 2002).

As mentioned above, one can circumvent the curse of dimensionality associated with
non-parametric methods by exploiting regularities of the learning problem (Györfi et al.,
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2002). For example, Kveton and Theocharous (2013) showed that, when the dynamics of the
underlying MDP are factored, incorporating this knowledge into KBRL leads to a dramatic
reduction on the number of sample transitions needed for learning a good decision policy.
Another type of regularity arises when the “intrinsic dimension” of the state space is much
smaller than dS—that is, when the data lies close to a low-dimensional manifold. Farahmand
et al. (2007) have shown that simple k-nearest neighborhood regression is manifold-adaptive,
meaning that it naturally exploits this type of regularity in the approximation problem.
Since KBRL’s approximation scheme is very similar to k-nearest neighborhood regression,
it is likely that this algorithm also has such a property.

Another way to avoid the curse of dimensionality is to resort to parametric methods.
Parametric methods circumvent the exponential growth of the number of samples by re-
stricting the space of functions spanned by the approximator—which corresponds to making
assumptions about the target function (Györfi et al., 2002). Since in KBRL the structure
of the approximator is defined by the sampled states ŝai , one has little flexibility in con-
trolling the induced function space (see (25)). Based on the discussions in Sections 6.1.1
and 6.1.2, one can see that KBSF can be cast as a kernel-based approximation in which
the structure of the approximator is defined by the representative states—that is, the rep-
resentative states play the role of basis functions or “features”(this architecture is similar
to that of radial basis function networks, see Chapter 7 of Györfi et al.’s book, 2002). It
should be clear, then, that when the representative states are fixed KBSF can be seen as a
parametric model—and thus as a potential tool for helping KBRL circumvent the curse of
dimensionality.

Parametric regression methods have a serious drawback, though: if the target function
cannot be well approximated by any function in the space induced by the parametric model,
the approximation error will be large regardless of the data. A popular strategy to overcome
this issue without incurring in unacceptable sample complexity is to resort to adaptive
methods that use the available data to adjust the complexity of the approximator to the
problem at hand (Farahmand and Szepesvári, 2011). In the case of KBRL, the complexity
of the induced function space can be controlled via the kernel’s width τ (Györfi et al., 2002).
KBSF provides an alternative way of controlling the complexity of the approximator through
the parameter m (this is akin to limiting the depth of a regression tree, for example—
see Barreto’s paper for a detailed discussion, 2014). If we think in terms of the classical bias-
variance analysis of statistical estimators, intuitively we are decreasing bias and increasing
variance as m → n—assuming that the representative states are systematically defined by
a reasonable method; see Section 6.2.2 (Hastie et al., 2002). Note that, unlike τ , m has a
clear effect on the method’s computational cost.

Therefore, KBSF provides both a way of determining the structure of the approximator
and extra flexibility in controlling the complexity of the resulting model. Of course, this
does not automatically translate into reduced sample complexity. Even if the structural
assumptions induced by KBSF arise in problems of interest, we must develop methods to
configure the parameters of the algorithm appropriately (see Section 6.2.2). New theoreti-
cal results regarding the approximation properties of KBSF would probably be needed as
well, since the current results were derived under the interpretation of our algorithm as a
computational device to accelerate KBRL (and thus use its solution as a reference point).
These might be interesting directions for future investigations.
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6.2 Practical issues

During the execution of our experiments we observed several interesting facts about KBSF
which are not immediate from its conceptual definition. In this section we share some of the
lessons learned with the reader. We start by discussing the impact of deviating from the
theoretical assumptions over the performance of our algorithm. We then present general
guidelines on how to configure KBSF to solve reinforcement learning problems.

6.2.1 KBSF’s applicability

The theoretical guarantees regarding KBRL’s solution assume that the initial states sai
in the transitions (sai , r

a
i , ŝ

a
i ) are uniformly sampled from S (Ormoneit and Sen, 2002, see

Assumption 3). This is somewhat restrictive because it precludes the collection of data
through direct interaction with the environment. Ormoneit and Sen conjectured that sam-
pling the states sai from an uniform distribution is not strictly necessary, and indeed later
Ormoneit and Glynn (2002) relaxed this assumption for the case in which KBRL is applied
to an average-reward MDP. In this case, it is only required that the exploration policy used
to collect data chooses all actions with positive probability. As described in Sections 4.2
and 5.2, in our computational experiments we collected data through an ε-greedy policy
(in many cases with ε = 1). The good performance of KBSF corroborates Ormoneit and
Sen’s conjecture and suggests that Ormoneit and Glynn’s results can be generalized to the
discounted reward case, but more theoretical analysis is needed.

Ormoneit and Sen (2002) also make some assumptions regarding the smoothness of the
reward function and the transition kernel of the continuous MDP (Assumptions 1 and 2).
Unfortunately, such assumptions are usually not verifiable in practice. Empirically, we
observed that KBSF indeed performs better in problems with “smooth dynamics”—loosely
speaking, problems in which a small perturbation in sai results in a small perturbation in ŝai ,
such as the pole balancing task. In problems with “rougher” dynamics, like the epilepsy-
suppression task, it is still possible to get good results with KBSF, but in this case it is
necessary to use more representative states and narrower kernels (that is, smaller values
for τ̄). As a result, in problems of this type KBSF is less effective in reducing KBRL’s
computational cost.

6.2.2 KBSF’s configuration

KBSF depends on two basic definitions: the set of representative states and the widths of
the kernels. As discussed in Section 6.1, the former can be seen as the definition of the
“structure” of the approximator, while the latter are parameters of the approximation. In
what follows we discuss the impact of each of them on KBSF’s performance.

Definition of Representative States In order to define the representative states we
must determine their number, m, and their “position” in the state space. Both theory and
practice indicate that KBSF’s performance gets closer to KBRL’s as m increases. Thus,
a “rule of thumb” to define the number of representative states is to simply set m to the
largest value allowed by the available computational resources (but see Section 6.1.3 for an
alternative view).
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As for the position of the representative states, looking at expression (24) we see that
ideally s̄j would be such that the rows of the matrices Ka would form a convex hull contain-
ing the rows of the corresponding P̂a. However, it is easy to see that when m < n such a
set of states may not exist. Besides, even when it does exist, finding this set is not a trivial
problem.

Instead of insisting on finding representative states that allow for an exact representation
of the matrices P̂a, it sounds more realistic to content oneself with an approximate solution
for this problem. Assuming the dynamics of the underlying MDP are reasonably smooth,
one strategy is to guarantee that every sampled state ŝai is close to at least one representative
state s̄j . Since covering the entire state space is generally impractical, we want s̄j to reflect
the distribution of the data, that is, we want the representative states to be in the regions
of the state space where the data lies. This is why in our experiments we clustered the
states ŝai and used the clusters’s centers as our representative states (this method is also
used in the configuration of radial basis function networks, as discussed by Györfi et al.,
2002). Despite its simplicity, this strategy usually results in good performance, as shown in
Sections 4.2 and 5.2.

In our experiments we clustered the data using the popular k-means algorithm, which
minimizes the average square distance from a given point to the center of the corresponding
cluster. However, Proposition 6 states that KBSF’s approximation error can be controlled
by maxa,i dist(ŝ

a
i , w), the maximum distance from a sampled state ŝai to the wth nearest

representative state. It is reasonable to ask whether KBSF’s performance would improve if
we used a clustering method that directly minimizes this quantity.

In the k-center clustering problem one seeks a set of k clusters that minimize the max-
imum distance from a point to the corresponding cluster center (Gonzales, 1985). Thus, in
this case we would be minimizing maxa,i dist(ŝ

a
i , 1). Although finding an exact solution for

this problem is NP hard, there exist fast algorithms that compute good approximations in
time linear in the number of points (Feder and Greene, 1988). In order to provide some
intuition on how k-center clustering compares to k-means, we implemented an algorithm
by Gonzales (1985) which is extremely simple: at each iteration one selects a new cluster
center by simply picking the point whose distance to the closest cluster center is maximal.
Although simple, this method provides a solution for the k-center problem whose cost is
within a factor of two from the optimal solution, which is the best one can hope for in
polynomial time (Feder and Greene, 1988).

Figure 11 shows the performance of KBSF on the puddle-world task using different
strategies to define the representative states. The experiment was carried out exactly as
the one described in Section 4.2.1. In addition to the results provided by k-means and
k-centers, we also show KBSF’s performance when using representative states sampled
uniformly at random and evenly distributed over the state space. As expected, the worst
results correspond to the case in which representative states are picked at random. On
the opposite extreme, representative states evenly distributed over S result in the best
performance. Unfortunately, in more realistic scenarios it is impractical to cover the entire
state space with representative states, and this is precisely why one may have to resort
to strategies like k-means and k-centers. The results shown in Figure 11 suggest that k-
centers clustering may indeed be a better choice than k-means, although the difference in the
resulting performance is not very significant. One advantage of k-center clustering is that
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Figure 11: Comparison of different strategies to define the representative states. Results
on the puddle-world task averaged over 50 runs. The errors around the mean
correspond to the 99% confidence intervals. See Figure 3 for details.

it is very simple to implement and is also very fast. Besides, there are algorithms available
that compute an approximation on-line, which allows their use with iKBSF (Charikar et al.,
1997; Beygelzimer et al., 2006).

Clustering methods are a natural choice for defining the representative states because
they summarize the distribution of the data, but of course they are not the only way to solve
the problem. Ideally, we want a set of representative states that summarize the dynamics
of the underlying dynamical system, and this may not reflect the spatial distribution of the
data, regardless of the strategy used to collect transitions. As discussed in Section 6.1, the
problem of defining representative states is in some sense akin to the problem of defining
features in supervised learning (Guyon and Elisseeff, 2003). Such a connection emphasizes
the difficulty of the problem and suggests that the best solution may be domain-dependent.
On the other hand, as with the definition of features, the definition of representative states
can be seen as an opportunity to incorporate prior knowledge about the domain of interest
into the approximation model. For example, if one knows that some regions of the state
space are more important than others, this information can be used to allocate more rep-
resentative states to those regions. Similar reasoning applies to tasks in which the level of
accuracy required from the decision policy varies across the state space.

Definition of Kernels’s Widths Given a well-defined strategy to select representative
states, the use of KBSF requires the definition of two parameters, τ and τ̄ . The kernels’s
widths τ and τ̄ may have a strong effect on KBSF’s performance. To illustrate this point,
we show in Figure 12 the results of this algorithm on the puddle world task when τ and τ̄
are varied in the set {0.01, 0.1, 1} (these were the results used to generate Figure 3).
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Figure 12: The impact of the kernels’s widths on the performance of KBSF and KBRL.
Results on the puddle-world task averaged over 50 runs. See Figure 3 for details.

Of course, the best combination of values for τ and τ̄ depends on the specific problem
at hand and on the particular choice of kernels. Here we give some general advice as
to how to set these parameters, based on both theory in practice. Since τ is the same
parameter used by KBRL, it should decrease with the number of sample transitions n at
an “admissible rate” (see Ormoneit and Sen’s Lemma 2, 2002). Analogously, Proposition 6
suggests that τ̄ should get smaller as m → n (details in the proof of the proposition in
Appendix A). Empirically, we found out that a simple strategy that usually facilitates the
configuration of KBSF is to rescale the data so that all the variables have approximately the
same magnitude—which corresponds to using a weighted norm in the computation of the
kernels. Using this strategy we were able to obtain good results with KBSF on all problems
by performing a coarse search in the space of parameters in which we only varied the order
of magnitude of τ and τ̄ (see Table 1).

Alternatively, one can fix τ and τ̄ and define the neighborhood used to compute kτ (s̄j , ·)
and k̄τ̄ (ŝai , ·). As explained in Appendix B.2, in some of our experiments we only computed
kτ (s̄j , ·) for the µ closest sampled states sai from s̄j , and only computed k̄τ̄ (ŝai , ·) for the µ̄
closest representative states from ŝai . When using this approach, a possible way of configur-
ing KBSF is to set τ and τ̄ to sufficiently large values (so as to guarantee a minimum level
of overlap between the kernels) and then adjust µ and µ̄. The advantage is that adjusting
µ and µ̄ may be more intuitive than directly configuring τ and τ̄ (cf. Table 1).
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7. Previous work

In our experiments we compared KBSF with KBRL, LSPI, fitted Q-iteration, and SARSA,
both in terms of computational cost and in terms of the quality of the resulting decision
policies. In this section we situate our algorithm in the broader context of approximate
reinforcement learning. Approximation in reinforcement learning is an important topic
that has generated a huge body of literature. For a broad overview of the subject, we
refer the reader to the books by Sutton and Barto (1998), Bertsekas and Tsitsiklis (1996),
and Szepesvári (2010). Here we will narrow our attention to kernel-based approximation
techniques.

We start by noting that the label “kernel based” is used with two different meanings
in the literature. On one side we have kernel smoothing techniques like KBRL and KBSF,
which use local kernels essentially as a device to implement smooth instance-based ap-
proximation (Hastie et al., 2002). On the other side we have methods that use reproducing
kernels to implicitly represent an inner product in a high-dimensional state space (Schölkopf
and Smola, 2002). Although these two frameworks can give rise to approximators with sim-
ilar structures, they rest on different theoretical foundations. Since reproducing-kernels
methods are less directly related to KBSF, we will only describe them briefly. We will then
discuss the kernel smoothing approaches in more detail.

The basic idea of reproducing-kernel methods is to apply the “kernel trick” in the context
of reinforcement learning (Schölkopf and Smola, 2002). Roughly speaking, the approxima-
tion problem is rewritten in terms of inner products only, which are then replaced by a
properly-defined kernel. This modification corresponds to mapping the problem to a high-
dimensional feature space, resulting in more expressiveness of the function approximator.
Perhaps the most natural way of applying the kernel trick in the context of reinforcement
learning is to “kernelize” some formulation of the value-function approximation problem (Xu
et al., 2005; Engel et al., 2005; Farahmand, 2011). Another alternative is to approximate
the dynamics of an MDP using a kernel-based regression method (Rasmussen and Kuss,
2004; Taylor and Parr, 2009). Following a slightly different line of work, Bhat et al. (2012)
propose to kernelize the linear programming formulation of dynamic programming. How-
ever, this method is not directly applicable to reinforcement learning, since it is based on
the assumption that one has full knowledge of the MDP. A weaker assumption is to suppose
that only the reward function is known and focus on the approximation of the transition
function. This is the approach taken by Grunewalder et al. (2012), who propose to em-
bed the conditional distributions defining the transitions of an MDP into a Hilbert space
induced by a reproducing kernel.

We now turn our attention to kernel-smoothing techniques, which are more closely
related to KBRL and KBSF. Kroemer and Peters (2011) propose to apply kernel density
estimation to the problem of policy evaluation. They call their method non-parametric
dynamic programming (NPDP). If we use KBRL to compute the value function of a fixed
policy, we see many similarities with NPDP, but also some important differences. Like
KBRL, NPDP is statistically consistent. Unlike KBRL, which assumes a finite action space
A and directly approximates the conditional density functions P a(s′ |s), NPDP assumes
that A is continuous and models the joint density P (s, a, s′). Kroemer and Peters (2011)
showed that the value function of NPDP has a Nadaraya-Watson kernel regression form. Not
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surprisingly, this is also the form of KBRL’s solution if we fix the policy being evaluated
(cf. equation (7)). In both cases, the coefficients of the kernel-based approximation are
derived from the value function of the approximate MDP. The key difference is the way
the transition matrices are computed in each algorithm. As shown in (4), the transition
probabilities of KBRL’s model are given by the kernel values themselves. In contrast, the
computation of each element of NDPD’s transition matrix requires an integration over the
continuous state space S. In practice, this is done by numerical integration techniques
that may be very computationally demanding (see for example the experiments performed
by Grunewalder et al., 2012).

We directly compared NPDP with KBRL because both algorithms build a model whose
number of states is dictated by the number of sample transitions n, and neither method
explicitly attempts to keep n small. Since in this case each application of the Bellman
operator is O(n2), these methods are not suitable for problems in which a large number of
transitions is required, nor are they applicable to on-line reinforcement learning.5 There
are however kernel-smoothing methods that try to avoid this computational issue by either
keeping n small or by executing a number of operations that grows only linearly with n.
These algorithms are directly comparable with KBSF.

One of the first attempts to adapt KBRL to the on-line scenario was that of Jong and
Stone (2006). Instead of collecting a batch of sample transitions before the learning process
starts, the authors propose to grow such a set incrementally, based on an exploration policy
derived from KBRL’s current model. To avoid running a dynamic-programming algorithm
to completion in between two transitions, which may not be computationally feasible, Jong
and Stone (2006) resort to Moore and Atkeson’s (1993) “prioritized sweeping” method to
propagate the changes in the value function every time the model is modified. The idea
of exploiting the interpretation of KBRL as the derivation of a finite MDP in order to use
tabular exploration methods is insightful. However, it is not clear whether smart exploration
is sufficient to overcome the computational difficulties arising from the fact that the size of
the underlying model is inexorably linked to the number of sample transitions. For example,
even using sparse kernels in their experiments, Jong and Stone (2006) had to fix an upper
limit for the size of KBRL’s model. In this case, once the number of sample transitions has
reached the upper limit, all subsequent data must be ignored.

Following the same line of work, Jong and Stone (2009) later proposed to guide KBRL’s
exploration of the state space using Brafman and Tennenholtz’s (2003) R-MAX algorithm.
In this new paper the authors address the issue with KBRL’s scalability more aggressively.
First, they show how to combine their approach with Dietterich’s (2000) MAX-Q algorithm,
allowing the decomposition of KBRL’s MDP into a hierarchy of simpler models. While this
can potentially reduce the computational burden of finding a policy, such a strategy transfer
to the user the responsibility of identifying a useful decomposition of the task. A more prac-
tical approach is to combine KBRL with some stable form of value-function approximation.
For that, Jong and Stone (2009) suggest the use of Gordon’s (1995) averagers. As shown in
Appendix A.2, this setting corresponds to a particular case of KBSF in which representative
states are selected among the set of sampled states ŝai . It should be noted that, even when
using temporal abstraction and function approximation, Jong and Stone’s (2009) approach

5. We note that, incidentally, all the reproducing-kernel methods discussed in this section also have a
computational complexity super-linear in n.
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requires recomputing KBRL’s transition probabilities at each new sample, which can be
infeasible in reasonably large problems.

Kveton and Theocharous (2012) propose a more practical algorithm to reduce KBRL’s
computational cost. Their method closely resembles the batch version of KBSF. As with
our algorithm, Kveton and Theocharous’s method defines a set of representative states s̄i
that give rise to a reduced MDP. The main difference in the construction of the models
is that, instead of computing a similarity measure between each sampled state ŝai and all
representative states s̄j , their algorithm associates each ŝai with a single s̄j—which comes
down to computing a hard aggregation of the state space Ŝ. Such an aggregation corre-
sponds to having a matrix D with a single nonzero element per row. In fact, it is possible
to rewrite Kveton and Theocharous’s (2012) algorithm using KBSF’s formalism. In this
case, the elements of Ḋa and K̇a would be defined as:

k̇aij = κaτ (s̄i, rs(s
a
j , 1)), and ḋaij = κ̄0(rs(ŝai , 1), s̄j) (28)

where κ̄0 is the normalized kernel induced by an infinitely “narrow kernel k̄0(s, s′) whose
value is greater than zero if and only if s = s′ (recall from Section 4.1 that rs(s, 1) gives
the closest representative state from s). It is easy to see that we can make matrix D
computed by KBSF as close as desired to a hard aggregation by setting τ̄ to a sufficiently
small value (see Lemma 5). More practically, we can simply plug (28) in place of (10)
in Algorithm 1 to exactly recover Kveton and Theocharous’s method. Note though that,
by replacing κaτ (s̄i, s

a
j ) with κaτ (s̄i, rs(s

a
j , 1)) in the computation of K̇a, we would be in

some sense deviating from KBRL’s framework. To see why this is so, observe that if
the representative states s̄i are sampled from the set of states ŝai , the rows of matrix Ka

computed by KBSF would coincide with a subset of the rows of the corresponding KBRL’s
matrix P̂a (cf. (23)). However, this property is lost if one uses (28) instead of (10).6

8. Conclusion

This paper presented KBSF, a reinforcement learning algorithm that results from the ap-
plication of the stochastic-factorization trick to KBRL. KBSF summarizes the information
contained in KBRL’s MDP in a model of fixed size. By doing so, our algorithm decouples
the structure of the model from its configuration. This makes it possible to build an ap-
proximation which accounts for both the difficulty of the problem and the computational
resources available.

One of the main strengths of KBSF is its simplicity. As shown in the paper, its uncom-
plicated mechanics can be unfolded into two update rules that allow for a fully incremental
version of the algorithm. This makes the amount of memory used by KBSF indepen-
dent of the number of sample transitions. Therefore, with a few lines of code one has
a reinforcement-learning algorithm that can be applied to large-scale problems, in both
off-line and on-line regimes.

KBSF is also a sound method from a theoretical point of view. As discussed, the distance
between the value function computed by this algorithm and the one computed by KBRL

6. Note that this observation only means that KBSF is closer to KBRL in this strict sense; in particular, it
does not imply that Kveton and Theocharous’s algorithm is not a principled method, nor does it mean
that it will perform worse than KBSF.
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is bounded by two factors: the quality and the level of stochasticity of the underlying
stochastic factorization. We showed that both factors can be made arbitrarily small, which
implies that, in theory, we can make KBSF’s solution as close to KBRL’s solution as desired.

Theoretical guarantees do not always translate into good performance in practice, though,
either because they are built upon unrealistic assumptions or because they do not account
for procedural difficulties that arise in practical situations. To ensure that this is not the
case with our algorithm, we presented an extensive empirical study in which KBSF was suc-
cessfully applied to different problems, some of them quite challenging. We also presented
general guidelines on how to configure KBSF to solve a reinforcement learning problem.

For all the reasons listed above, we believe that KBSF has the potential of becoming
a valuable resource for the solution of reinforcement learning problems. This is not to say
that the subject has been exhausted. There are several possibilities for future research,
some of which we now briefly discuss.

From an algorithmic point of view, perhaps the most pressing demand is for more
principled methods to define the representative states. Incidentally, this also opens up
the possibility of an automated procedure to set the kernel’s widths τ̄ based solely on
data. Taking the idea one step further, one can think of having one distinct τ̄i associated
with each kernel κ̄τ̄ (·, s̄i) (which would make the similarity between KBSF’s approximation
and radial basis function networks even stronger). Another important advance would be
to endow iKBSF with more elaborate exploration strategies, maybe following the line of
research initiated by Jong and Stone (2006, 2009).

From a theoretical perspective, it may be desirable to “detach” KBSF from KBRL and
analyze the former on its own. In this paper we emphasized the view of our algorithm as
a tool to apply KBRL in practice. This view is clearly reflected in our theoretical results,
which show how KBSF’s solution deviates from KBRL’s and how we can control such a
deviation. But KBRL is itself an approximation, so perhaps it makes sense to analyze
KBSF independently from its precursor. This possibility is particularly appealing when we
look at KBSF as an intermediate approach between fully nonparametric and parametric
models, as discussed in Section 6.1.3.

Looking at KBSF against a broader context, a subject that deserves further investi-
gation is the possibility of building an approximation based on multiple models. Model
averaging is not inherently linked to KBSF, and in principle it can be used with virtually
any reinforcement learning algorithm. However, KBSF’s low computational cost makes it
particularly amenable to this technique. Since our algorithm is significantly faster than any
method whose complexity per iteration is a function of the number of sample transitions,
we can afford to compute several approximations and still have a solution in comparable
time (see Section 4.2.3 and Barreto’s paper, 2014). Understanding how we can randomize
the construction of the individual models and to what extend this can improve the quality
of the resulting decision policy is a matter of interest.

We conclude by noting that KBSF represents one particular way in which the stochastic-
factorization trick can be exploited in the context of reinforcement learning. In principle,
any algorithm that builds a model based on sample transitions can resort to the same trick
to leverage the use of the data. The basic idea remains the same: instead of estimating
the transition probabilities between every pair of states, one focuses on a small set of
representative states whose values are propagated throughout the state space based on some
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notion of similarity. We believe that this general framework can potentially be materialized
into a multitude of useful reinforcement learning algorithms.
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Appendix A. Theoretical Results

A.1 Proofs

Proposition 2

Proof Let M̌ ≡ (S,A, P̌a, řa, γ), with P̌a = DKa and řa = Dr̄a. From the triangle
inequality, we know that∥∥v∗ − ΓDQ̄∗

∥∥
∞ ≤ ‖v

∗ − v̌∗‖∞ +
∥∥v̌∗ − ΓDQ̄∗

∥∥
∞ , (29)

where v̌∗ is the optimal value function of M̌ . Our strategy will be to bound ‖v∗ − v̌∗‖∞ and∥∥v̌∗ − ΓDQ̄∗
∥∥
∞. In order to find an upper bound for ‖v∗ − v̌∗‖∞, we apply Whitt’s (1978)

Theorem 3.1 and Corollary (b) of his Theorem 6.1, with all mappings between M and M̌
taken to be identities, to obtain

‖v∗ − v̌∗‖∞ ≤
1

1− γ

(
max
a
‖ra −Dr̄a‖∞ +

γR̄dif

2(1− γ)
max
a
‖Pa −DKa‖∞

)
, (30)

where we used the fact that maxa,i ř
a
i−mina,i ř

a
i ≤ R̄dif . It remains to bound

∥∥v̌∗ − ΓDQ̄∗
∥∥
∞.

Since řa = Dr̄a and DP̄a = DKaD = P̌aD for all a ∈ A, the stochastic matrix D sat-
isfies Sorg and Singh’s (2009) definition of a soft homomorphism between M̌ and M̄ (see
equations (25)–(28) in their paper). Applying Theorem 1 by the same authors, we know
that ∥∥Γ(Q̌∗ −DQ̄∗)

∥∥
∞ ≤

1

1− γ
sup
i,t

(1−max
j
dij) δ̄

(t)
i , (31)

where δ̄
(t)
i = maxj:dij>0,k q̄

(t)
jk −minj:dij>0,k q̄

(t)
jk and q̄

(t)
jk are elements of Q̄(t), the optimal

t-step action-value function of M̄ . Since ‖ΓQ̌∗−ΓDQ̄∗‖∞ ≤ ‖Γ(Q̌∗−DQ̄∗)‖∞ and, for all
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t > 0, δ̄
(t)
i ≤ (1− γ)−1(maxa,k r̄

a
k −mina,k r̄

a
k), we can write

∥∥v̌∗ − ΓDQ̄∗
∥∥
∞ ≤

R̄dif

(1− γ)2
max
i

(1−max
j

dij) =
R̄dif

(1− γ)2
σ(D). (32)

Substituting (30) and (32) back into (29), we obtain (8).

Lemma 4
Proof Define the function

ψa,iτ,s(s
′) =

∣∣∣∣∣ kτ (s, sai )∑na
j=1 kτ (s, saj )

− kτ (s′ , sai )∑na
j=1 kτ (s′ , saj )

∣∣∣∣∣ =

∣∣∣∣∣ φ (‖s− sai ‖/τ)∑na
j=1 φ

(
‖s− saj ‖/τ

) − φ (‖s′ − sai ‖/τ)∑na
j=1 φ

(
‖s′ − saj ‖/τ

) ∣∣∣∣∣ .
Since φ is continuous, it is obvious that ψa,iτ,s(s′) is also continuous in s′ . The property
follows from the fact that lims′→s ψ

a,i
τ,s(s′) = 0.

Lemma 5† Let s ∈ S, let m > 1, and assume there is a w ∈ {1, 2, ...,m − 1} such that
dist(s, w) < dist(s, w + 1). Define Ww(s) ≡ {k | ‖s − s̄k‖ ≤ dist(s, w)} and W̄w(s) ≡
{1, 2, ...,m} −Ww(s). Then, for any α > 0, we can guarantee that∑

k∈W̄w(s)

κ̄τ̄ (s, s̄k) < α
∑

k∈Ww(s)

κ̄τ̄ (s, s̄k) (33)

by making τ̄ < ϕ(s, w,m, α), where

ϕ(s, w,m, α) = min(ϕ1(s, w), ϕ2(s, w,m, α)) (34)

and

ϕ1(s, w) =


dist(s, w)

Bφ̄
, if Bφ̄ > 0,

∞, otherwise,
ϕ2(s, w,m, α) =


dist(s, w)− dist(s, w + 1)

ln(αw/(m− w)λφ̄)
, if

αw

(m− w)λφ̄
< 1,

∞, otherwise.

Proof Expression (33) can be rewritten as∑
k∈W̄w(s) k̄τ̄ (s, s̄k)∑m

i=1 k̄τ̄ (s, s̄i)
< α

∑
k∈Ww(s) k̄τ̄ (s, s̄k)∑m

i=1 k̄τ̄ (s, s̄i)
⇐⇒

∑
k∈W̄w(s)

k̄τ̄ (s, s̄k) < α
∑

k∈Ww(s)

k̄τ̄ (s, s̄k),

(35)
which is equivalent to ∑

k∈W̄w(s)

φ̄

(
‖s− s̄k‖

τ̄

)
< α

∑
k∈Ww(s)

φ̄

(
‖s− s̄k‖

τ̄

)
. (36)

†. We restate the lemma here showing explicitly how to define τ̄ . This detail was omitted in the main body
of the text to improve clarity.
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Based on Assumption (i), we know that a sufficient condition for (36) to hold is

φ̄

(
dist(s, w + 1)

τ̄

)
<

αw

m− w
φ̄

(
dist(s, w)

τ̄

)
. (37)

Let β = αw/(m− w). If β > 1, then (37) is always true, regardless of the value of τ̄ . We
now show that, when β ≤ 1, it is always possible to set τ̄ in order to guarantee that (37)
holds. Let z = dist(s, w) and let δ = dist(s, w + 1) − z. From Assumption (ii), we know
that, if Bφ̄ = 0 or τ̄ < z/Bφ̄,

φ̄((z + δ)/τ̄)

φ̄(z/τ̄)
≤
λφ̄Aφ̄ exp(−(z + δ)/τ̄)

Aφ̄ exp(−z/τ̄)
=
λφ̄ exp(−(z + δ)/τ̄)

exp(−z/τ̄)
.

Thus, in order for the result to follow, it suffices to show that

exp(−(z + δ)/τ̄)

exp(−z/τ̄)
<

β

λφ̄
. (38)

We know that, since δ > 0, if β/λφ̄ = 1 inequality (38) is true. Otherwise,

exp(−(z + δ)/τ̄)

exp(−z/τ̄)
<

β

λφ̄
⇐⇒ ln

(
exp(−(z + δ)/τ̄)

exp(−z/τ̄)

)
< ln

(
β

λφ̄

)

⇐⇒ − δ
τ̄
< ln

(
β

λφ̄

)
⇐⇒ τ̄ < − δ

ln(β/λφ̄)
.

Thus, by taking τ̄ < −δ/ ln(β/λφ̄) if Bφ̄ > 0, or τ̄ < min(−δ/ ln(β/λφ̄), z/Bφ̄) otherwise,
the result follows.

Proposition 6
Proof From (6) and (11), we know that

‖r̂a −Dr̄a‖∞ = ‖P̂ar−DKar‖∞ = ‖(P̂a −DKa)r‖∞ ≤ ‖P̂a −DKa‖∞‖r‖∞. (39)

Thus, plugging (39) back into (8), it is clear that there is a ν > 0 such that ξv < ε if

max
a
‖P̂a −DKa‖∞ < ν (40)

and
max
i

(1−max
j
dij) < ν. (41)

We start by showing that there is a δ > 0 and a θ > 0 such that expression (40) is true if
maxa,i dist(ŝ

a
i , w) < δ and τ̄ < θ. Let P̌a = DKa and let p̂ai ∈ R1×n and p̌ai ∈ R1×n be the

ith rows of P̂a and P̌a, respectively. Then,

‖p̂ai − p̌ai ‖∞ =
∑na

j=1 |p̂aij −
∑m

k=1 ḋ
a
ikk̇

a
kj |

=
∑na

j=1 |κaτ (ŝai , s
a
j )−

∑m
k=1 κ̄τ̄ (ŝai , s̄k)κ

a
τ (s̄k, s

a
j )|

=
∑na

j=1 |
∑m

k=1 κ̄τ̄ (ŝai , s̄k)κ
a
τ (ŝai , s

a
j )−

∑m
k=1 κ̄τ̄ (ŝai , s̄k)κ

a
τ (s̄k, s

a
j )|

=
∑na

j=1 |
∑m

k=1 κ̄τ̄ (ŝai , s̄k)[κ
a
τ (ŝai , s

a
j )− κaτ (s̄k, s

a
j )]|

≤
∑na

j=1

∑m
k=1 κ̄τ̄ (ŝai , s̄k)

∣∣∣κaτ (ŝai , s
a
j )− κaτ (s̄k, s

a
j )
∣∣∣ .

(42)
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Our strategy will be to show that, for any a, i, and j, there is a δa,i,j > 0 and a θa,i,j > 0
such that

m∑
k=1

κ̄τ̄ (ŝai , s̄k)|κaτ (ŝai , s
a
j )− κaτ (s̄k, s

a
j )| =

m∑
k=1

κ̄τ̄ (ŝai , s̄k)ς
a,i,j
k <

ν

na
(43)

if dist(ŝai , w) < δa,i,j and τ̄ < θa,i,j (recall that ςa,i,jk had already been defined in (16)). To
simplify the notation, we will use the superscript ‘z’ meaning ‘a, i, j’. From Lemma 4 we
know that there is a δz > 0 such that ςzk < ν/na if ‖ŝai −s̄k‖ < δz. Let W z ≡ {k | ‖ŝai −s̄k‖ <
δz} and W̄ z ≡ {1, 2, ...,m} −W z. Since we are assuming that dist(ŝai , w) < δz, we know
that W z 6= ∅. In this case, we can write:

m∑
k=1

κ̄τ̄ (ŝai , s̄k)ς
z
k =

∑
k∈W z

κ̄τ̄ (ŝai , s̄k)ς
z
k +

∑
k∈W̄ z

κ̄τ̄ (ŝai , s̄k)ς
z
k .

Let

ςzmin =

{
min
k∈W z

{ςzk |ςzk > 0} if max
k∈W z

ςzk > 0,

0 otherwise
and ς̄zmax =

{
max
k∈W̄ z

ςzk if |W z| < m,

0 otherwise.

If ς̄zmax = 0, inequality (43) is necessarily true, since
∑

k∈W z κ̄τ̄ (ŝai , s̄k)ς
z
k ≤ max

k∈W z
ςzk < ν/na.

We now turn to the case in which ς̄zmax > 0. Suppose first that ςzmin = 0. In this case, we
have to show that there is a τ̄ that yields∑

k∈W̄ z κ̄τ̄ (ŝai , s̄k)ς
z
k <

ν

na
. (44)

A sufficient condition for (44) to be true is∑
k∈W̄ z

κ̄τ̄ (ŝai , s̄k) <
ν

naς̄zmax

⇐⇒ 1∑m
j=1 k̄τ̄ (ŝai , s̄j)

∑
k∈W̄ z

k̄τ̄ (ŝai , s̄k) <
ν

naς̄zmax

. (45)

Obviously, if ς̄zmax ≤ ν/na inequality (45) is always true, regardless of the value of τ̄ .
Otherwise, we can rewrite (45) as

∑
k∈W̄ z

k̄τ̄ (ŝai , s̄k) <
ν

naς̄zmax

∑
j∈W z

k̄τ̄ (ŝai , s̄j) +
∑
k∈W̄ z

k̄τ̄ (ŝai , s̄k)

 ,

and, after a few algebraic manipulations, we obtain∑
k∈W̄ z

k̄τ̄ (ŝai , s̄k) <
ν

naς̄zmax − ν
∑
k∈W z

k̄τ̄ (ŝai , s̄k) ⇐⇒
∑
k∈W̄ z

κ̄τ̄ (ŝai , s̄k) <
ν

naς̄zmax − ν
∑
k∈W z

κ̄τ̄ (ŝai , s̄k).

(46)

We can guarantee that (46) is true by applying Lemma 5. Before doing so, though, lets
analyze the case in which ςzmin > 0. Define

βz =
ν

na
∑

k∈W z κ̄τ̄ (ŝai , s̄k)ς
z
k

− 1 (47)
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(note that βz > 0 because
∑

k∈W z κ̄τ̄ (ŝai , s̄k)ς
z
k < v/na). In order for (43) to hold, we must

show that there is a τ̄ that guarantees that∑
k∈W̄ z κ̄τ̄ (ŝai , s̄k)ς

z
k − βz

∑
k∈W z κ̄τ̄ (ŝai , s̄k)ς

z
k < 0. (48)

A sufficient condition for (48) to hold is

∑
k∈W̄ z κ̄τ̄ (ŝai , s̄k) <

βzςzmin

ς̄zmax

∑
k∈W z κ̄τ̄ (ŝai , s̄k). (49)

Observe that expressions (46) and (49) only differ in the coefficient multiplying the right-
hand side of the inequalities. Let

αz1 =

{
ν/(ς̄zmaxna − ν), if ς̄zmax > ν/na
∞, otherwise,

and

αz2 =

{
βzςzmin/ς̄

z
max, if ς̄zmax > 0 and ςzmin > 0,

∞, otherwise.

Let αz < min(αz1, α
z
2). Then, if we make θz = ϕ(ŝai , |W |,m, αz), with ϕ defined in (34),

we can apply Lemma 5 to guarantee that (43) holds. Finally, if we let δ = minz δ
z =

mina,i,j δ
a,i,j and θ = minz θ

z = mina,i,j θ
a,i,j , we can guarantee that (43) is true for all a, i,

and j, which implies that (40) is also true (see (42)).
It remains to show that there is a ω > 0 such that (41) is true if τ̄ < ω. Recalling that,

for any i and any a,
max
j
ḋaij = κ̄τ̄ (ŝai , rs(ŝ

a
i , 1)),

we want to show that

k̄τ̄ (ŝai , rs(ŝ
a
i , 1)) > (1− ν)

[
k̄τ̄ (ŝai , rs(ŝ

a
i , 1)) +

m∑
k=2

k̄τ̄ (ŝai , rs(ŝ
a
i , k))

]
,

which is equivalent to

(1− ν)
m∑
k=2

k̄τ̄ (ŝai , rs(ŝ
a
i , k)) < νk̄τ̄ (ŝai , rs(ŝ

a
i , 1)). (50)

If ν ≥ 1, inequality (50) is true regardless of the particular choice of τ̄ . Otherwise, we can
rewrite (50) as

m∑
k=2

k̄τ̄ (ŝai , rs(ŝ
a
i , k)) <

ν

1− ν
k̄τ̄ (ŝai , rs(ŝ

a
i , 1)) ⇐⇒

m∑
k=2

κ̄τ̄ (ŝai , rs(ŝ
a
i , k)) <

ν

1− ν
κ̄τ̄ (ŝai , rs(ŝ

a
i , 1)).

(51)

Let

α =

{
ν/(1− ν), if ν < 1,
∞, otherwise.

Then, if we make ωa,i = ϕ(ŝai , 1,m, α), with ϕ defined in (34), we can resort to Lemma 5 to
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guarantee that (51) holds. As before, if we let ω = mina,i ω
a,i, we can guarantee that (41)

is true. Finally, by making τ̄ = min(θ, ω), the result follows.

Proposition 8

Proof

We start by plugging (39) into the definition of ξv, given in (8), to get:

ξv ≤
1

1− γ
max
a
‖P̂a −DKa‖∞‖r‖∞ +

R̄dif

(1− γ)2

(γ
2

max
a
‖Pa −DKa‖∞ + σ(D)

)
= max

a
‖Pa −DKa‖∞

(
‖r‖∞
1− γ

+
γR̄dif

2(1− γ)2

)
+ σ(D)

R̄dif

(1− γ)2
.

≤ max
a
‖Pa −DKa‖∞

(
Rmax

1− γ
+

γRmax

(1− γ)2

)
+ σ(D)

Rmax

2(1− γ)2

= max
a
‖Pa −DKa‖∞

Rmax

(1− γ)2
+ σ(D)

Rmax

2(1− γ)2
, (52)

where we used the fact that R̄dif ≤ Rmax/2, which follows trivially from the observation
that mina,i r̄

a
i ≥ mina,i r

a
i and maxa,i r̄

a
i ≤ maxa,i r

a
i . To simplify the notation, let R =

Rmax/(1− γ)2. Then, from (42), the definition of ςa,i,jk in (16), and the definition of σ(D)
in (9), we can rewrite (52) as

ξv ≤ max
a,i

 na∑
j=1

m∑
k=1

κ̄τ̄ (ŝai , s̄k)ς
a,i,j
k

R+ max
a,i

[1− κ̄τ̄ (ŝai , rs(ŝ
a
i , 1))]

R
2

= max
a,i

 m∑
k=1

κ̄τ̄ (ŝai , s̄k)

na∑
j=1

ςa,i,jk

R+ max
a,i

[1− κ̄τ̄ (ŝai , rs(ŝ
a
i , 1))]

R
2

Let Ww(ŝai ) and W̄w(ŝai ) be defined as in (15). Then,

ξv ≤ max
a,i

 ∑
k∈Ww(ŝai )

κ̄τ̄ (ŝai , s̄k)

na∑
j=1

ςa,i,jk +
∑

k∈W̄w(ŝai )

κ̄τ̄ (ŝai , s̄k)

na∑
j=1

ςa,i,jk

R+ max
a,i

(1− κ̄τ̄ (ŝai , rs(ŝ
a
i , 1))]

R
2

≤ max
a,i

 ∑
k∈Ww(ŝai )

κ̄τ̄ (ŝai , s̄k)

na∑
j=1

ςa,i,jk

R
+ max

a,i

 ∑
k∈W̄w(ŝai )

κ̄τ̄ (ŝai , s̄k)

na∑
j=1

ςa,i,jk

R+ max
a,i

(1− κ̄τ̄ (ŝai , rs(ŝ
a
i , 1))]

R
2︸ ︷︷ ︸

F(τ̄ ,w)

. (53)

We see that the two last terms of (53) coincide with the definition of F(τ̄ , w), given in (17).
Thus, if we make sure that κ̄τ̄ is an admissible kernel κ̄ε,wτ̄ (see Definition 7), we can
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rewrite (53) as

ξv ≤ max
a,i

 ∑
k∈Ww(ŝai )

κ̄ε,wτ̄ (ŝai , s̄k)

na∑
j=1

ςa,i,jk

R+ ε

≤ max
a,i

w max
k∈Ww(ŝai )

na∑
j=1

ςa,i,jk

R+ ε

= wmax
a,i

 max
k∈Ww(ŝai )

na∑
j=1

|κaτ (ŝai , s
a
j )− κaτ (s̄k, s

a
j )|

R+ ε. (54)

Let zai =
∑

l kτ (ŝai , s
a
l ) and z̄ak =

∑
l kτ (s̄k, s

a
l ). Then, for fixed a, i, j, and k:

|κaτ (ŝai , s
a
j )− κaτ (s̄k, s

a
j )| =

∣∣∣∣ kτ (ŝai , s
a
j )∑

l kτ (ŝai , s
a
l )
−

kτ (s̄k, s
a
j )∑

l kτ (s̄k, s
a
l )

∣∣∣∣
=

∣∣∣∣kτ (ŝai , s
a
j )

zai
−

kτ (s̄k, s
a
j )

z̄ak

∣∣∣∣
=

∣∣∣∣ z̄akkτ (ŝai , s
a
j )− zai kτ (s̄k, s

a
j )

zai z̄
a
k

∣∣∣∣
=

∣∣∣∣ z̄akkτ (ŝai , s
a
j )− zai kτ (s̄k, s

a
j ) + zai kτ (ŝai , s

a
j )− zai kτ (ŝai , s

a
j )

zai z̄
a
k

∣∣∣∣
=

∣∣∣∣kτ (ŝai , s
a
j )− kτ (s̄k, s

a
j )

z̄ak
+

kτ (ŝai , s
a
j )(z̄

a
k − zai )

zai z̄
a
k

∣∣∣∣
≤

∣∣∣kτ (ŝai , s
a
j )− kτ (s̄k, s

a
j )
∣∣∣

z̄ak
+

kτ (ŝai , s
a
j )|z̄ak − zai |
zai z̄

a
k

.

Thus,

na∑
j=1

|κaτ (ŝai , s
a
j )− κaτ (s̄k, s

a
j )| ≤

na∑
j=1

∣∣kτ (ŝai , s
a
j )− kτ (s̄k, s

a
j )
∣∣

z̄ak
+

na∑
j=1

kτ (ŝai , s
a
j )|z̄ak − zai |
zai z̄

a
k

=

na∑
j=1

∣∣kτ (ŝai , s
a
j )− kτ (s̄k, s

a
j )
∣∣

z̄ak
+

na∑
j=1

κaτ (ŝai , s
a
j )
|z̄ak − zai |

z̄ak

=

na∑
j=1

∣∣kτ (ŝai , s
a
j )− kτ (s̄k, s

a
j )
∣∣

z̄ak
+
|z̄ak − zai |

z̄ak

=
1∑na

l=1 kτ (s̄k, sal )

 na∑
j=1

∣∣kτ (ŝai , s
a
j )− kτ (s̄k, s

a
j )
∣∣+

∣∣∣∣∣∣
na∑
j=1

kτ (s̄k, s
a
j )−

na∑
j=1

kτ (ŝai , s
a
j )

∣∣∣∣∣∣


≤ 1∑na
l=1 kτ (s̄k, sal )

 na∑
j=1

∣∣kτ (ŝai , s
a
j )− kτ (s̄k, s

a
j )
∣∣+

na∑
j=1

∣∣kτ (s̄k, s
a
j )− kτ (ŝai , s

a
j )
∣∣

=
2∑na

l=1 kτ (s̄k, sal )

na∑
j=1

∣∣kτ (ŝai , s
a
j )− kτ (s̄k, s

a
j )
∣∣ . (55)
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In order to derive our result, it suffices to replace (55) in (54). Before doing so, though,
note that Assumption (iii) implies that

∣∣kτ (s, s′)− kτ (s, s′′)
∣∣ =

∣∣∣∣φ(‖s− s′‖τ

)
− φ

(
‖s− s′′‖

τ

)∣∣∣∣
≤
Cφ
τ

∣∣‖s− s′‖ − ‖s− s′′‖∣∣
≤
Cφ
τ

∣∣‖s− s′′‖+ ‖s′′ − s′‖ − ‖s− s′′‖
∣∣

=
Cφ
τ
‖s′′ − s′‖. (56)

Proceeding with the substitution mentioned above, we have

ξv ≤ 2wmax
a,i

 max
k∈Ww(ŝai )

1∑na
l=1 kτ (s̄k, s

a
l )

na∑
j=1

∣∣kτ (ŝai , s
a
j )− kτ (s̄k, s

a
j )
∣∣R+ ε

≤ 2wmax
a,i

(
max

k∈Ww(ŝai )

1∑na
l=1 kτ (s̄k, s

a
l )

Cφ
τ
na‖ŝai − s̄k‖

)
R+ ε

=
2wCφ
τ

max
a,i

(
max

k∈Ww(ŝai )

na‖ŝai − s̄k‖∑na
l=1 kτ (s̄k, s

a
l )

)
R+ ε

≤
2wCφ
τ

max
a,i

(
max

k∈Ww(ŝai )

na‖ŝai − s̄k‖
nakmin

)
R+ ε

=
2wCφ
τkmin

max
a,i

max
k∈Ww(ŝai )

‖ŝai − s̄k‖R+ ε.

Lemma 9

Proof Let qa∗, q̃
a
∗ ∈ R|S| be the ath columns of Q∗ and Q̃∗, respectively. Then,

‖qa∗ − q̃a∗‖∞ =
∥∥∥ra + γPav∗ − r̃a − γP̃aṽ∗

∥∥∥
∞

≤ ‖ra − r̃a‖∞ + γ
∥∥∥Pav∗ − P̃aṽ∗

∥∥∥
∞

= ‖ra − r̃a‖∞ + γ
∥∥∥Pav∗ − P̃av∗ + P̃av∗ − P̃aṽ∗

∥∥∥
∞

≤ ‖ra − r̃a‖∞ + γ
∥∥∥(Pa − P̃a)v∗

∥∥∥
∞

+ γ
∥∥∥P̃a(v∗ − ṽ∗)

∥∥∥
∞

≤ ‖ra − r̃a‖∞ + γ
∥∥∥(Pa − P̃a)v∗

∥∥∥
∞

+ γ ‖v∗ − ṽ∗‖∞ , (57)

where in the last step we used the fact that P̃a is stochastic, and thus ‖P̃av‖∞ ≤ ‖v‖∞ for
any v. We now provide a bound for ‖(Pa − P̃a)v∗‖∞. Let A = Pa − P̃a. Then, for any i,∑

j aij =
∑

j(p
a
ij − p̃aij) =

∑
j p

a
ij −

∑
j p̃

a
ij = 0, that is, the elements in each row of A sum

to zero. Let a+
i be the sum of positive elements in the ith row of A and let a+

max = maxi a
+
i .
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It should be clear that ‖A‖∞ = 2a+
max. Then, for any i,

|
∑
j

aijv
∗
j | ≤

∑
(j:aij>0)

aijv
∗
max +

∑
(j:aij<0)

aijv
∗
min = a+

i v
∗
max − a+

i v
∗
min ≤ a+

max(v∗max − v∗min)

≤ a+
max

1− γ
(ramax − ramin) ≤ a+

maxRdif

1− γ
=

Rdif

2(1− γ)
‖Pa − P̃a‖∞, (58)

where we used the convention vmax = maxi vi (analogously for vmin). As done in (30), we
can resort to Whitt’s (1978) Theorem 3.1 and Corollary (b) of his Theorem 6.1 to obtain a
bound for ‖v∗ − ṽ∗‖∞. Substituting such a bound and expression (58) in (57), we obtain

‖qa∗ − q̃a∗‖∞ ≤ ‖r
a − r̃a‖∞ +

γRdif

2(1− γ)
‖Pa − P̃a‖∞ +

γ

1− γ

(
max
a
‖ra − r̃a‖∞ +

γRdif

2(1− γ)
max
a
‖Pa − P̃a‖∞

)
≤ max

a
‖ra − r̃a‖∞ +

γRdif

2(1− γ)
max
a
‖Pa − P̃a‖∞ +

γ

1− γ

(
max
a
‖ra − r̃a‖∞ +

γRdif

2(1− γ)
max
a
‖Pa − P̃a‖∞

)
.

Proposition 10

Proof Let M̌t ≡ (Ŝt, A, P̌
a
t , ř

a
t , γ), with P̌a

t = DtK
a
t and řat = Dtr̄

a
t . From the triangle

inequality, we know that

|Q̂t(s, a)−Q̃t(s, a)| ≤ |Q̂t(s, a)−Q̌∗t (s, a)|+ |Q̌∗t (s, a)−Q̃∗t (s, a)|+ |Q̃∗t (s, a)−Q̃t(s, a)|, (59)

where Q̂t and Q̃t are defined in the proposition’s statement, Q̌∗t is the optimal action-
value function of M̌t, and Q̃∗t (s, a) =

∑m
i=1 κ̄τ̄ (s, s̄i)Q̄

∗
t (s̄i, a) (the reader will forgive a slight

abuse of notation here, since in general Q̃∗t is not the optimal value function of any MDP).
Our strategy will be to bound each term on the right-hand side of (59). Since M̂t is
the model constructed by KBRL using all the data seen by iKBSF up to time step t,
state s will correspond to one of the states ŝbi in this MDP. Thus, from (7), we see that
Q̂t(s, a) = Q̂∗t (ŝ

b
i , a) for some i and some b. Therefore, applying Lemma 9 to M̂t and M̌t,

we can write

|Q̂t(s, a)−Q̌∗t (s, a)| ≤ 1

1− γ
max
a
‖r̂at −Dtr̄

a
t ‖∞+

γ

2(1− γ)2
R̄dif,tmax

a
‖P̂a

t −DtK
a
t ‖∞. (60)

In order to bound |Q̌∗t (s, a) − Q̃∗t (s, a)|, we note that, since the information contained in
the transition to state s has been incorporated to iKBSF’s model M̄ at time t, Q̃∗t (s, a) =∑m

i=1 dti,tQ̄
∗
t (s̄i, a), for any a ∈ A, where dti,t is the element in the tth row and ith column of

Dt (see Figure 2b). In matrix form, we have Q̃∗t = DtQ̄
∗
t . As Dt is a soft homomorphism

between M̌t and M̄t, we can resort to Sorg and Singh’s (2009) Theorem 1, as done in
Proposition 2, to write:

|Q̌∗t (s, a)− Q̃∗t (s, a)| ≤
R̄dif,t

(1− γ)2
σ(Dt) (61)
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(see (31) and (32)). Finally,

|Q̃∗t (s, a)− Q̃t(s, a)| =

∣∣∣∣∣
m∑
i=1

κ̄τ̄ (s, s̄i)Q̄
∗
t (s̄i, a)−

m∑
i=1

κ̄τ̄ (s, s̄i)Q̄t(s̄i, a)

∣∣∣∣∣
≤

m∑
i=1

κ̄τ̄ (s, s̄i)
∣∣Q̄∗t (s̄i, a)− Q̄t(s̄i, a)

∣∣ ≤ εQ̄t , (62)

where the last step follows from the fact that
∑m

i=1 κ̄τ̄ (s, s̄i) is a convex combination. Sub-
stituting (60), (61), and (62) in (59), we obtain the desired bound.

A.2 Alternative error bound

In Section 3 we derived an upper bound for the approximation error introduced by the
application of the stochastic-factorization trick. In this section we introduce another bound
that has different properties. First, the bound is less applicable, because it depends on
quantities that are usually unavailable in a practical situation (the fixed points of two
contraction mappings). On the bright side, unlike the bound presented in Proposition 2,
the new bound is valid for any norm. Also, it draws an interesting connection with an
important class of approximators known as averagers (Gordon, 1995).

We start by deriving a theoretical result that only applies to stochastic factorizations of
order n. We then generalize this result to the case in which the factorizations are of order
m < n.

Lemma 11 Let M ≡ (S,A,Pa, ra, γ) be a finite MDP with |S| = n and 0 ≤ γ < 1. Let
ELa = Pa be |A| stochastic factorizations of order n and let ¯̄ra be vectors in Rn such that

E¯̄ra = ra for all a ∈ A. Define the MDPs M̌ ≡ (S,A,La, ¯̄ra, γ) and ¯̄M ≡ (S,A, ¯̄Pa, ¯̄ra, γ),

with ¯̄Pa = LaE. Then,

‖v∗ − TE¯̄v∗‖ ≤ ξ′v ≡
2γ

1− γ
‖v∗ − u‖+

γ(1 + γ)

1− γ
‖v∗ − v̌∗‖, (63)

where ‖ · ‖ is a norm in Rn and u is a vector in Rn such that Eu = u.

Proof The Bellman operators of M , M̌ , and ¯̄M are given by T = Γ∆, Ť = Γ∆̌, and
¯̄T = Γ ¯̄∆. Note that qa = ra + γPav = E¯̄ra + γELav = E(¯̄ra + γLav), where qa is the
ath column of Q. Thus, ∆ = E∆̌. Since E is stochastic, we can think of it as one of
Gordon’s (1995) averagers given by A(v) = Ev, and then resort to Theorem 4.1 by the
same author to conclude that ¯̄T = EŤ . Therefore,7

Tv = ΓE∆̌v and ¯̄Tv = EΓ∆̌v. (64)

7. Interestingly, the effect of swapping matrices E and La is to also swap the operators Γ and E.
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Using (64), it is easy to obtain the desired upper bound by resorting to the triangle inequal-
ity, the definition of a contraction map, and Denardo’s (1967) Theorem 1:

‖v∗ − TE¯̄v∗‖ ≤ γ‖v∗ −E¯̄v∗‖ ≤ γ(‖v∗ − u‖+ ‖u−E¯̄v∗‖) ≤ γ(‖v∗ − u‖+ ‖u− ¯̄v∗‖)

≤ γ
(
‖v∗ − u‖+

1

1− γ
‖u−EΓ∆̌u‖

)
≤ γ

(
‖v∗ − u‖+

1

1− γ
‖u− Γ∆̌u‖

)
≤ γ

[
‖v∗ − u‖+

1

1− γ
(
‖u− v̌∗‖+ ‖v̌∗ − Γ∆̌u‖

)]
≤ γ

[
‖v∗ − u‖+

1

1− γ
(‖u− v̌∗‖+ γ‖v̌∗ − u‖)

]
= γ

[
‖v∗ − u‖+

1 + γ

1− γ
‖u− v̌∗‖

]
≤ γ

[
‖v∗ − u‖+

1 + γ

1− γ
(‖u− v∗‖+ ‖v∗ − v̌∗‖)

]
= γ‖v∗ − u‖+

γ(1 + γ)

1− γ
‖v∗ − u‖+

γ(1 + γ)

1− γ
‖v∗ − v̌∗‖

=
γ − γ2 + γ + γ2

1− γ
‖v∗ − u‖+

γ(1 + γ)

1− γ
‖v∗ − v̌∗‖.

The derived upper bound depends on two fixed points: u, a fixed point of E, and v̌∗,
the unique fixed point of Ť = Γ∆̌. Since the latter is defined by r̄a and La, the bound is
essentially a function of the factorization terms, as expected. Notice that the bound is valid
for any norm and any fixed point of E (we may think of u as the closest vector to v∗ in Rn
which satisfies this property). Notice also that the first term on the right-hand side of (63)
is exactly the error bound derived in Gordon’s (1995) Theorem 6.2. When La = Pa and
ra = ¯̄ra for all a ∈ A, the operators T and Ť coincide, and hence the second term of (63)
vanishes. This makes sense, since in this case ¯̄T = ET , that is, the stochastic-factorization
trick reduces to the averager A(v) = Ev.

As mentioned above, one of the assumptions of Lemma 11 is that the factorizations
ELa = Pa are of order n. This is unfortunate, since the whole motivation behind the
stochastic-factorization trick is to create an MDP with m < n states. One way to obtain
such a reduction is to suppose that matrix E has n −m columns with zeros only. Define
E ⊂ {1, 2, ..., n} as the set of columns of E with at least one nonzero element and let H be a
matrix in Rm×n such that hij = 1 if j is the ith smallest element in E and hij = 0 otherwise.
The following proposition generalizes the previous result to a stochastic factorization of
order m:

Proposition 12 Suppose the assumptions of Lemma 11 hold. Let D = EHᵀ, Ka = HLa,
and r̄a = H¯̄ra, with H defined as described above. Define the MDP M̄ ≡ (S̄, A, P̄a, r̄a, γ),
with |S̄| = m and P̄a = KaD. Then, ‖v∗ − ΓDQ̄∗‖ ≤ ξ′v, with ξ′v defined in (63).

Proof Let q̄a∗ ∈ Rm be the ath column of Q̄∗. Then,

Dq̄a∗ = D
(
r̄a + γP̄av̄∗

)
= Dr̄a + γDKaDv̄∗ = EHᵀH¯̄ra + γEHᵀHLaEHᵀv̄∗

= E¯̄ra + γE ¯̄PaHᵀv̄∗ = E¯̄ra + γE ¯̄Pa ¯̄v∗ = E
(

¯̄ra + γ ¯̄Pa ¯̄v∗
)

= E¯̄qa∗, (65)
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where the equality EHᵀH = E follows from the definition of H. The identity ¯̄PaHᵀv̄∗ =
¯̄Pa ¯̄v∗ is a consequence of the fact that the ith column of ¯̄Pa only contains zeros if i /∈ E .
Since the ith state of ¯̄M is transient, the values of the recurrent states of ¯̄M , which effectively
define the multiplication ¯̄Pa ¯̄v∗, will coincide with the values of the states of M̄ . Expres-
sion (65) then leads to DQ̄∗ = E ¯̄Q∗. Also, since E¯̄qa∗ = E¯̄ra + γELaE¯̄v∗ = ra + γPaE¯̄v∗,
we know that E ¯̄Q∗ = ∆E¯̄v∗. Putting these results together, we obtain ‖v∗ − ΓDQ̄∗‖ =
‖v∗ − Γ∆E¯̄v∗‖ = ‖v∗ − TE¯̄v∗‖, and Lemma 11 applies.

The derived bound can be generalized to the case of approximate stochastic factoriza-
tions through the triangle inequality, as done in (29). However, if one resorts to Whitt’s (1978)
results to bound the distance between v∗ and v̌∗—where v̌∗ is the optimal value function
of M̌ ≡ (S,A,DKa,Dr̄a, γ)—the compounded bound will no longer be valid for all norms,
since (30) only holds for the infinity norm.

Appendix B. Details of the experiments

This appendix describes the details of the experiments omitted in the paper.

B.1 Tasks

Puddle World: The puddle-world task was implemented as described by Sutton (1996),
but here the task was modeled as a discounted problem with γ = 0.99. All the transitions
were associated with a zero reward, except those leading to the goal, which resulted in
a reward of +5, and those ending inside one of the puddles, which lead to a penalty of
−10 times the distance to the puddle’s nearest edge. If the agent did not reach the goal
after 300 steps the episode was interrupted and considered as a failure. The algorithms
were evaluated on two sets of states distributed over disjoint regions of the state space
surrounding the puddles. The first set was a 3× 3 grid defined over [0.1, 0.3]× [0.3, 0.5] and
the second one was composed of four states: {0.1, 0.3} × {0.9, 1.0}.

Pole Balancing: We implemented the simulator of the three versions of the pole-
balancing task using the equations of motion and parameters given in the appendix of
Gomez’s (2003) PhD thesis. For the integration we used the 4th order Runge-Kutta method
with a time step of 0.01 seconds and actions chosen every 2 time steps. The problem was
modeled as a discounted task with γ = 0.99. We considered the version of the task in
which the angle between the pole and the vertical plane must be kept within [−36o, 36o].
In this formulation, an episode is interrupted and the agent gets a reward of −1 if the
pole falls past a 36-degree angle or the cart reaches the boundaries of the track, located at
2.4m from its center. At all other steps the agent receives a reward of 0. In all versions
of the problem an episode was considered a success if the pole(s) could be balanced for
3000 steps (one minute of simulated time). The test set was comprised of 81 states equally
spaced in the region defined by ±[1.2m, 1.2/5m, 18o, 75o/s], for the single pole case, and by
±[1.2m, 1.2/5m, 18o, 75o/s, 18o, 150o/s] for the double-pole version of the problem. These
values correspond to a hypercube centered at the origin and covering 50% of the state-space
axes in each dimension (since the velocity of the cart and the angular velocity of the poles
are theoretically not bounded, we defined the limits of these variables based on samples gen-
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erated in simple preliminary experiments). For the triple pole-balancing task we performed
our simulations using the parameters usually adopted with the two pole version of the prob-
lem, but we added a third pole with the same length and mass as the longer pole (Gomez,
2003). In this case the decision policies were evaluated on a test set containing 256 states
equally distributed in the region ±[1.2m, 1.2/5m, 18o, 75o/s, 18o, 150o/s, 18o, 75o/s].

HIV drug schedule: The HIV drug schedule task was implemented using the system
of ordinary differential equations (ODEs) given by Adams et al. (2004). Integration was
carried out by the Euler method using a step size of 0.001 with actions selected at each 5000
steps (corresponding to 5 days of simulated time). As suggested by Ernst et al. (2006), the
problem was modeled as a discounted task with γ = 0.98. All other parameters of the task,
as well as the protocol used for the numerical simulations, also followed the suggestions
of the same authors. In particular, we assumed the existence of 30 patients who were
monitored for 1000 days. During the monitoring period, the content of the drug cocktail
administered to each patient could be changed at fixed intervals of 5 days. Thus, in a
sample transition (sai , r

a
i , ŝ

a
i ): s

a
i is the initial patient condition, a is one of the four types

of cocktails to be administered for the next 5 days, ŝai is the patient condition 5 days later,
and rai is a reward computed based on the amount of drug in the selected cocktail a and on
the difference between the patient’s condition from sai to ŝai (Ernst et al., 2006). The results
reported in Section 4.2.3 correspond to the performance of the greedy policy induced by
the value function computed by the algorithms using all available sample transitions. The
decision policies (in this case STI treatments) were evaluated for 5000 days starting from
an “unhealthy” state corresponding to a basin of attraction of the ODEs describing the
problem’s dynamics (see the papers by Adams et al. and Ernst et al.).

Epilepsy suppression: We used a generative model developed by Bush et al. (2009)
to perform our experiments with the epilepsy suppression task. The model was generated
based on labeled field potential recordings of five rat brain slices electrically stimulated
at frequencies of 0.0 Hz, 0.5 Hz, 1.0 Hz, and 2.0 Hz. The data was used to construct a
manifold embedding which in turn gave rise to the problem’s state space. The objective is
to minimize the occurrence of seizures using as little stimulation as possible, therefore there
is a negative reward associated with both events (see Section 4.2.4). Bush et al.’s generative
model is public available as an environment for the RL-Glue package (Tanner and White,
2009). In our experiments the problem was modeled as a discounted task with γ = 0.99.
The decision policies were evaluated on episodes of 105 transitions starting from a fixed set
of 10 test states drawn uniformly at random from the problem’s state space.

Helicopter hovering: In the experiments with the helicopter hovering task we used
the simulator developed by Abbeel et al. (2005), which is available as an environment for
the RL-Glue package (Tanner and White, 2009). The simulator was built based on data
collected from two separate flights of an XCell Tempest helicopter. The data was used
to adjust the parameters of an “acceleration prediction model”, which is more accurate
than the linear model normally adopted by industry. The objective in the problem is to
keep the helicopter hovering as close as possible to a specific location. Therefore, at each
time step the agent gets a negative reward proportional to the distance from the target
position. Since the problem’s original action space is A ≡ [−1, 1]4, we discretized each
dimension using 4 break points distributed unevenly over [−1, 1]. We tried several possible
discretizations and picked the one which resulted in the best performance of the SARSA
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agent (see Section 5.2.3). After this process, the problem’s action space was redefined as
A ≡ {−0.25,−0.05,+0.05,+0.25}4. The problem was modeled as a discounted task with
γ = 0.99. The decision policies were evaluated in episodes starting from the target position
and ending when the helicopter crashed.

B.2 Algorithms

In all experiments, we used
φ(z) ≡ φ̄(z) ≡ exp(−z) (66)

to define the kernels used by KBRL, LSPI, and KBSF. In the experiments involving a large
number of sample transitions we used sparse kernels, that is, we only computed the µ largest
values of kτ (s̄i, ·) and the µ̄ largest values of k̄τ̄ (ŝai , ·). In order to implement this feature,
we used a KD-tree to find the µ (µ̄) nearest neighbors of s̄i (ŝai ) and only computed kτ
(k̄τ̄ ) in these states (Bentley, 1975). The value of kτ and k̄τ̄ outside this neighborhood was
truncated to zero (we used specialized data structures to avoid storing those).

We now list a few details regarding the algorithms’s implementations which were not
described in the paper:

• KBRL and KBSF: We used modified policy iteration to compute Q̂∗ (Puterman
and Shin, 1978). The value function of a fixed policy π was approximated through
value iteration using the stop criterion described by Puterman (1994, Proposition
6.6.5) with ε = 10−6. Table 1 shows the parameters’s values used by KBSF across
the experiments.

• LSPI: As explained above, LSPI used the kernel derived from (66) as its basis func-
tion. Following Lagoudakis and Parr (2003), we adopted one block of basis functions
for each action a ∈ A. Singular value decomposition was used to avoid eventual nu-
merical instabilities in the system of linear equations constructed at each iteration of
LSPI (Golub and Loan, 1993).

• Fitted Q-iteration and extra trees: FQIT has four main parameters: the number
of iterations, the number of trees composing the ensemble, the number of candidate
cut-points evaluated during the generation of the trees, and the minimum number of
elements required to split a node, denoted here ηmin. In general, increasing the first
three improves performance, while ηmin has an inverse relation with the quality of
the final value function approximation. Our experiments indicate that the following
configuration of FQIT usually results in good performance on the tasks considered
in this paper: 50 iterations (with the structure of the trees fixed after the 10th one),
an ensemble of 30 trees, and dS candidate cut points, where dS is the dimension of
the state space S. The parameter ηmin has a particularly strong effect on FQIT’s
performance and computational cost, and its correct value seems to be more problem-
dependent. Therefore, in all of our experiments we fixed the parameters of FQIT as
described above and only varied ηmin.

• SARSA: We adopted the implementation of SARSA(λ) available in the RL-Glue
package (Tanner and White, 2009). The algorithm uses gradient descent temporal-
difference learning to configure a tile coding function approximator.
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Problem Section s̄i m τ τ̄ µ µ̄

Puddle 4.2.1 k-means {10, 30, ..., 150} {0.01, 0.1, 0.1} {0.01, 0.1, 0.1} ∞ ∞
Puddle 5.2.1 evenly 100 {0.01, 0.1, 0.1} {0.01, 0.1, 0.1} ∞ ∞
Single Pole 4.2.2 k-means {10, 30, ..., 150} 1 {0.01, 0.1, 0.1} ∞ ∞
Double Pole 4.2.2 k-means {20, 40, ..., 200} 1 {0.01, 0.1, 0.1} ∞ ∞
Triple Pole 5.2.2 on-line on-line 100∗ 1∗ 50∗ 10∗

HIV 4.2.3 random {2000, 4000, ..., 10000} 1 1 2∗ 3∗

Epilepsy 4.2.4 k-means 50000∗ 1 {0.01, 0.1, 0.1} 6∗ 6∗

Helicopter 5.2.3 k-means 500∗ 1 1 4∗ 4∗

Table 1: Parameters used by KBSF on the computational experiments. The values marked
with an asterisk (∗) were determined by trial and error on preliminary tests. The
remaining parameters were kept fixed from the start or were defined based on a
very coarse search.

Appendix C. Table of Symbols

Table 2 shows the main symbols used in the paper. Auxiliary symbols and functions whose
use is restricted to a specific part of the text are not listed in the table.
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Symbol Meaning Defined
in Sec.

γ Discount factor in [0, 1) 2
A, a Action space, generic action 2
S Generic state space 2
S, dS Continuous state space, dimension of S 2.2
Sa Sample transitions associated with action a, Sa ≡ {(sai , rai , ŝai )|i = 1, 2, ..., na} 2.2

s, si, s(t), s
a
i , ŝ

a
i Generic state, ith state of an MDP, state occupied at time t, ith tuple in Sa 2

r, r(t), r
a
i Generic reward, reward received at time t, ith sampled reward in Sa 2

na, n, n̂ Number of sample transitions in Sa, n =
∑
a na, and n̂ = maxa na 2.2

P a, Pπ, Pa, Pπ Transition function associated with a or π and their matrix counterparts 2.1
Ra, Rπ, ra, rπ Reward function associated with a or π and corresponding reward vectors 2.1
M MDP, M ≡ (S,A, P a, Ra, γ) 2.1
π, π∗ Generic decision policy, optimal decision policy in M 2
V π, V ∗, vπ, v∗ Value function of π, optimal value function of M , vector counterparts 2.1
Qπ, Q∗, Qπ, Q∗ Action-value functions of π and M and matrix counterparts 2.1
Γ Operator: ΓQ = v ⇐⇒ vi = maxj qij , ∀i 2.1

∆ Operator associated with M : ∆v = Q ⇐⇒ qia = rai + γ
∑|S|
j=1 p

a
ijvj , ∀i, a 2.1

T Bellman operator of M , given by T ≡ Γ∆ 2.1
φ, φ̄ Non-increasing functions in R+ 7→ R+ used to construct the kernels 2.2, 4
kτ , k̄τ̄ Kernel functions: kτ (s, s′) = φ (‖s− s′‖/τ) and k̄τ̄ (s, s′) = φ̄ (‖s− s′‖/τ̄) 2.2, 4
τ, τ̄ Scalars defining the “widths” of kτ and k̄τ̄ 2.2, 4

κaτ , κ̄τ̄ Normalized kernels: κaτ (s, sai ) =
kτ (s,sai )∑na
j=1 kτ (s,saj )

and κ̄τ̄ (s, s̄i) = k̄τ̄ (s,s̄i)∑m
j=1 k̄τ̄ (s,s̄j)

2.2, 4

S̄ Set of representative states, S̄ ≡ {s̄1, s̄2, ..., s̄m} 4

s̄i ith representative state 4
m Number of representative states 4

D, Ḋa Stochastic matrix in Rn×m and its na ×m block associated with a 4

Ka, K̇a Stochastic matrix in Rm×n and its dense version in Rm×na 4

rs Function: rs(s, i) = s̄k ⇐⇒ s̄k is the ith closest representative state to s 4.1
dist Function: dist(s, i) = ‖s− rs(s, i)‖ 4.1

Table 2: List of main symbols used throughout the paper. We use the same notation
to refer to all MDPs and the associated elements, and resort to math accents
to distinguish between them. So, for example, if M̄ is an MDP, the associated
elements are referred to as P̄a, r̄a, v̄∗, Q̄∗, π̄∗, ∆̄, and T̄ .
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André M. S. Barreto, Doina Precup, and Joelle Pineau. Reinforcement learning using kernel-
based stochastic factorization. In Advances in Neural Information Processing Systems
(NIPS), pages 720–728, 2011.
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