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Abstract

Planning in partially observable MDPs is computationally
limited by the size of the state, action and observation spaces.
While many techniques have been proposed to deal with large
state and action spaces, the question of automatically finding
good low-dimensional observation spaces has not been ex-
plored as thoroughly. We show that two different reduction
algorithms, one based on clustering and the other on a modi-
fied principal component analysis, can be applied directly to
the observation probabilities to create a reduced feature ob-
servation matrix. We apply these techniques to a real-world
dialogue management problem, and show that fast and accu-
rate tracking and planning can be achieved using the reduced
observation spaces.

Introduction
The design of a good dialogue manager is a key to the
deployment of language-based interactive agents, be they
robotic assistants, automated answering systems, or online
interactive agents. It has been proposed that the dialogue
management problem can be cast in the Partially Observ-
able Markov Decision Process (POMDP) framework, such
that the agent can track the conversation over time and
make an optimal choice of responses to the user’s utter-
ances (Singh et al. 2002; Roy, Pineau, & Thrun 2000;
Williams, Poupart, & Young 2005).

While many recent algorithms have been proposed for
finding good control policies in this framework, their effi-
ciency typically depends on the size of the state, action and
observation spaces. This is a severe limitation for many
applications, including dialogue domains, where the state
space spans the list of conversation topics, the action space is
defined by the set of possible response, and the observation
space corresponds to the space of possible user utterances.

Significant efforts have been devoted to developing MDP
and POMDP solving techniques which can deal with large
state and action spaces. Common methods for handling
large state spaces include function approximation, factor-
ization and dimensionality reduction (Sutton & Barto 1998;
Poupart & Boutilier 2003; Roy, Gordon, & Thrun 2005). For
large action spaces, hierarchical decomposition techniques
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have also been studied (Theocharous, Rohanimanesh, &
Mahadevan 2001; Pineau, Gordon, & Thrun 2003b).

However there has been comparatively little work on
automatically finding good low-dimensional observation
spaces. This may be in part because the simpler MDP
framework (in which much of the state/action abstraction
has been studied) assumes that the state is fully observ-
able (i.e. one-to-one match between states and observa-
tions). Nonetheless finding well-behaved compact observa-
tion spaces is of great importance in POMDPs where the
complexity of both exact and approximate algorithms gen-
erally depends on the number of possible belief states (and
thus on the number of distinct observations). The only
work we are aware of in this direction looks at finding exact
(lossless) observation abstractions (Hoey & Poupart 2005;
Pineau 2004). While this is valuable, it is unlikely to be ap-
plicable in real-world domains with complex sensor data.

In this paper, we focus on the problem of approximately
reducing the observation space to provide efficient POMDP
planning in domains with rich input features. In particu-
lar, we study the applicability of two well-known classes of
data summarization techniques to this problem. We present
a clustering algorithm which, through a series of EM iter-
ations, finds a small set of summary observations. To pro-
vide a comparison against the clustering algorithm, we then
present a dimensionality reduction algorithm along the lines
of Principal Component Analysis (with a few added con-
straints) which finds a compressed version of the observa-
tion probability model. We describe how the reduced ob-
servation space obtained by each of these techniques can be
used instead of the full observation space when solving the
POMDP model.

We present a full validation of these ideas on a real-world
dialogue management problem. Our results show that the
accuracy of belief tracking and POMDP planning can be
preserved despite an aggressive reduction of the observation
space.

POMDPs
Partially Observable Markov Decision Processes (POMDPs)
are stochastic models used to model non-deterministic
decision-making problems. POMDPs consist of a set of
states, S, a set of actions, A, and a set of observations, Z
(throughout the paper we assume all of these to be finite).



When an action, a, is executed in state s, the system transi-
tions to state s′ with probability P (s′|s, a). The agent then
receives a reward, R(s, a) and an observation z is emitted
with probability Pr(z|s′).1 The agent has an initial belief
distribution across the states, Pr(st=0).

At any point in time, the underlying state, s, is not nec-
essarily observable by the agent. Therefore a distribution
across all states must be maintained. The belief distribution
Pr(st) is updated recursively each time the agent executes
an action a and receives an observation z:

Pr(st = s
′) =

∑
s
Pr(z|s′)Pr(s′|s, a)Pr(st−1 == s)∑

s′′

∑
s
Pr(z|s′′)Pr(s′′|s, a)Pr(st−1 == s)

(1)

Given a POMDP problem, an action-selection policy π
can be determined which maps belief states to actions. Gen-
erally, this is a difficult problem, and finding an exact so-
lution is at best PSPACE-complete (assuming a finite hori-
zon) and at worse undecidable (assuming an infinite hori-
zon) (Madani, Hanks, & Condon 1999). Efficient approx-
imate solution methods exist, though details of these algo-
rithms are beyond the scope of this paper. For our exper-
iment, we use the Point-Base Value Iteration (PBVI) algo-
rithm which approximates the policy by using stochastic tra-
jectories to select belief points (Pineau, Gordon, & Thrun
2003a). This method allows us to solve relatively large
POMDPs in a reasonable amount of time. However in real-
ity, both exact and approximate methods suffer greatly when
the number of distinct observations is large. The main prob-
lem is that the space of reachable beliefs grows exponen-
tially, as a function of the number of observations, with the
planning horizon. Thus POMDPs cannot practically be used
for problems with more than a few dozen distinct observa-
tions. This clearly precludes the use of rich input modali-
ties such as images and speech. The work we present be-
low attempts to overcome this by adapting standard data re-
duction techniques to the task of observation abstraction in
POMDPs, thus opening the door to solving POMDP prob-
lems with much richer observation spaces.

Observation Abstraction

Given an observation matrix for a POMDP with observa-
tions Z = {z1, z2, ..., zd}, the goal is to perform a fea-
ture reduction to determine a new set of observations Z ′ =
{z′

1
, z′

2
, ...z′d′} where d′ < d. As a demonstrative example,

the left matrix below may represent the original observation
matrix for the POMDP. The goal is to generate a new ma-
trix which has fewer observations (as shown on the right).
This new matrix can then be used for tracking and planning.
Ideally, this reduction will have little effect on the expected
reward for the policy.

1We can assume more generally that observations are condi-
tioned on both state and action: P (z|s′, a), however we ignore the
dependency on actions throughout this paper for the sake of clarity.

s1 s2 s3
z1 0.60 0.30 0.05
z2 0.05 0.30 0.05
z3 0.10 0.05 0.40
z4 0.05 0.25 0.20
z5 0.15 0.05 0.20
z6 0.05 0.05 0.10

→

s1 s2 s3

z′

1 0.65 0.60 0.10

z′

2 0.30 0.35 0.80

z′

3 0.05 0.05 0.10

Two feature reduction methods are examined in this pa-
per: an explicit grouping of observations using EM clus-
tering, and an implicit transform using principal component
analysis. In both cases, we are faced with the additional
constraint of maintaining probabilities conditions: the sum
of observations per state of the reduced observation matrix
must sum to one, and each value in the matrix must be be-
tween zero and one. Feature reduction techniques typically
treat the input space as data, where only the relationship be-
tween the points themselves is significant, not the location of
the data in the entire space. For example, PCA translates the
data to an area around the origin. This problem is addressed
differently for each method.

Explicit Observation Clustering
Our first method is a simple unsupervised clustering algo-
rithm in the tradition of the K-means algorithm. The idea
is to cluster the natural observations Z into the clusters Z ′,
such that observations with similar emission probabilities
over all states are clustered together. We denote g() the func-
tion that maps observation z ∈ Z into cluster z ′ ∈ Z ′, as in
z′ = g(z). 2 Note that observations are clustered based on
similarity between their normalized emission probabilities:

Pr(g(z) = z
′
) =

∑
s∈S

|Pr(z|s)/Pr(z) − Pr(z′|s)/Pr(z′)|
∑

z′′∈Z

∑
s∈S

|Pr(z|s)/Pr(z) − Pr(z′′|s)/Pr(z′′)|

(2)

It is crucial to use the normalized observation probabili-
ties Pr(z|s)/Pr(z) (rather than the unnormalized Pr(z|s))
to ensure that observations that are clustered together pro-
vide (near)-equivalent inference information over the set of
states. Figure 1 shows an example of this normalization.
Observations which are twice as likely to occur in s1 as s2

are closer after projection onto the x + y = 1.0 line, even
through the values in the original space are further apart.
This means that observations which behave the same way
across the states will be grouped together.

The parameters of each cluster can be learned iteratively
through the EM algorithm. In the E-step, observations are
assigned to clusters as defined in Equation 2. We typically
use L2-norm to measure distance between normalized ob-
servations. In the M-step, cluster parameters are estimated
as follows:

Pr(z′|s) =
∑

z∈Z

Pr(z|s)Pr(g(z) == z
′), (3)

Pr(z′) =
∑

z∈Z

Pr(z)Pr(g(z) == z
′).

These two steps are repeated until there is no change in the
estimation of the cluster location.

2We have considered both hard cluster assignments, as is tradi-
tional in K-means and soft (probabilistic) cluster assignments as is
the norm in EM. Our empirical results show no difference between
the two.
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Figure 1: Example of 2-d normalized observations

This EM algorithm was used as an explicit method
to group similar observations. The algorithm is run on
the input observation matrix, with each observation act-
ing as a sample, e.g. (z1 = (0.60, 0.30, 0.05), z2 =
(0.05, 0.30, 0.05), ...). The observations are clustered in d′

clusters, where d′ is the desired number of features. Once
clustering is completed, all the samples in each clusters are
summed together to create a new observation, e.g. (z1+z2 =
z′
1

= (0.65, 0.60, 0.1)). The advantages of this technique
are numerous: (1) probability constraints for the observa-
tion matrix are maintained; (2) it generally converges very
rapidly (local minima can be a problem, as in all EM pro-
cedures, but this has not been observed in practice); (3) the
clusters have a natural interpretations in many real-world ob-
servation spaces.

Principal Component Analysis
Principal Component Analysis (PCA) is a commonly-used
technique which reduces the dimensionality of data by pro-
jecting into a lower dimensional space. When applying PCA
to reduce the observation matrix, we treat each state as a
sample and each observation as a feature. The transforma-
tion to the reduced observation (or feature) space is deter-
mined by minimizing the sum of squares error between the
original data points and the projected points. This can be
formulated according to the following objective function.

Jd′ =

n∑

i=1

‖Pr(Z|si) − (Pr(Z) + αi · ν)‖2 (4)

where d′ is the dimension of the reduced observa-
tion space, n is the number of states, Pr(Z|si) =
[Pr(z1|si)...P r(zd|si)] is the vector of original observa-
tion probabilities, Pr(Z) = [Pr(z1)...P r(zd)] is the mean
probability of each observation (marginalizing over states),
αi is a d′-length vector corresponding to the projection of
Pr(Z|si) into the reduced space, and ν is a d′ × d projec-
tion matrix containing the top d′ eigenvectors.

In general, PCA does not maintain any particular con-
straints (other than that of finding a linear projection) when
determining the best transform from the original space
to the projected space. And so when applied as de-
scribed above, PCA produces projected observation vectors

[α1...αn] which are not necessarily valid multinomial dis-
tributions. If our subsequent goal is to do POMDP plan-
ning in the compressed space, this presents an important
problem. Specifically, even though our original observation
matrix conforms to probability properties, with all values
Pr(z|s) ≥ 0, and ∀s∈S

∑d

j=1
Pr(zj |s) = 1, the projected

observation matrix may not necessarily conform.
A naive approach to handle such a problem is to simply

normalize the projected observation matrix:

Pr(z
′

j |si) =
αi(z

′

j
)∑

z′∈Z′
αi(z

′)
, ∀z

′

j ∈ Z
′
, ∀si ∈ S (5)

Alternately, the Boltzmann equation can be used to re-
normalize the projected observation matrix:

Pr(z
′

j |si) =
e

αi(z
′

j
)

∑
z′∈Z′

eαi(z
′)

, ∀z
′

j ∈ Z
′
, ∀si ∈ S (6)

However, we show through experimental results that these
types of normalizations do not work particularly well.

A third approach to overcoming this problem is to aug-
ment the objective function in Equation 4 with a set of addi-
tional constraints:

∀i = 1..n, ∀z′

j
∈ Z′ αi(z

′

j) ≥ 0 (7)

∀i = 1..n

∑

z′∈Z′

αiz
′

j = 1

The objective function in Equation 4, combined with these
constraints, can be formulated as a quadratic programming
problem. Appropriate solution techniques can then be used
to determine an αi that satisfies these constraints, as well as
the original input observation matrix.

Planning and tracking with reduced observation
spaces
Given a reduced observation set Z ′ and associated probabil-
ities Pr(z′|s) constructed as described above, we can solve
the POMDP using any standard algorithm, including the one
described in Section . It is worth noting that the complex-
ity of the solution, assuming a point-based approximation, is
reduced in two ways by using a compressed observation set.
First, the expectation over observations can be taken over the
reduced set; second, the set of reachable beliefs is reduced
by considering the compact observation set. This second
factor is usually more important in terms of scalability.

Finally, a note on belief tracking. It is worth noting that
a policy created using a reduced observation matrix can still
be executed using the full observation matrix. The mapping
of the belief state to the action via the policy does not depend
on the observation set used to maintain the belief state, but
rather is conditioned at every time step on the observation
actually perceived. Note that we could map the received nat-
ural observation to the reduced set, and do tracking with the
estimated probabilities in the compressed observation space.
There is no particular computational advantage to doing this,
and it can introduce a loss of information. The magnitude of
this loss reflects the quality of the learned compression, as
we show in some of our empirical results.



Dialogue
We now study the question of observation abstraction in a
more realistic problem domain. We use the SACTI dialogue
management dataset (Williams & Young 2004), which con-
sists of a set of conversations between a user and a help wiz-
ard over the telephone. Both the user and wizard are hu-
man operators. The audio is recorded and transcribed. The
speech input is processed through a speech recognizer. The
dataset contains 168 conversations.

The task domain is one in which user can request informa-
tion concerning nine different topics, including restaurants,
movies, bus schedules, hotel locations, etc. The user can
also request information concerning up to two topics con-
currently. For example, he may be asking for the directions
to a hotel, thus requesting map information and hotel infor-
mation. Overall, twenty-five instances of single or pairs of
topics appear in the dataset. These constitute the state space
for the dialogue management problem. The set of words
emitted by the user define the natural observation set. In to-
tal, 448 unique words occur in the data set. We assume the
user can continue discussing the same topic or change topics
after every word.

Throughout the recorded conversations, the wizard re-
sponds with the appropriate information. For the purposes of
our experiment, we focus on optimizing a policy over which
visual information to present to the wizard (e.g. list of ho-
tels, map of the city, bus schedule, etc.) There is therefore
one action per state (including pairs of topics in which 2 in-
formation windows can be presented side-by-side).

A portion of the data set covering 25 conversations (each
consisting of 10-30 utterances) was annotated by hand to
have accurate state labellings. The POMDP parameters
(topic-to-topic transition probabilities, word emission prob-
abilities) are estimated from the annotated dataset. The re-
ward function was defined as positive when the correct ac-
tion is taken (i.e. relevant information is displayed).

We apply our observation reduction techniques to this
problem. The objective is to find a small reduced obser-
vation space which can compactly summarize the space of
words used throughout the set of conversations. This domain
is particularly interesting because defining a good reduced
observation space is not nearly as intuitive as in domains
where observations come from a physical environment (e.g.
robot sensors). In particular, the notion of “distance” be-
tween words is highly context dependent and often stems
from complex grammatical and semantic structure. Fortu-
nately, as suggested by our methods, in the context of a plan-
ning problem it is sufficient to examine the relationship be-
tween observations (words) in the context of their emission
probabilities and thus we can perform reduction based on
the emission of each word conditioned on each state (topic).

Tracking

We begin our empirical investigation by considering the
quality of the tracking under different reduced observation
sets. Assuming a POMDP model built as described above,
then simple Bayesian tracking (Eqn 1) can be used to de-
termine the likelihood of each topic throughout the course
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Figure 2: Topic Tracking with 448 features

of a conversation. Figure 2 shows the likelihood of six of
the topics during the course of a conversation using the full
observation set. We can see that different topics become
dominant as the conversation progresses, corresponding to
change in topic during the actual dialogue.

EM clustering was then applied to reduce the number of
observations and the conversation tracked with the reduced
observation set. We used hard-EM (i.e. K-means) for this
task, therefore we get a unique mapping from each word to
its corresponding reduced observation. Figures 3 and 4 show
the state (topic) likelihoods over time. For clarity, we only
present a segment of the conversation and the top three most
likely topics over that period. With 100 features (observa-
tion clusters), the system can still reasonably track the top-
ics. Even reducing from 448 observations to 10, the tracking
information is still usable and topics recognizable during the
conversation. Some confusion does begin to appear. Around
word 250, the correct topic is lost as very similar topics be-
come more likely. In this case, MS represents discussions
about a map and bus routes. This becomes confused with
similar topics such as SY, which represents map and tram
routes. As a comparison, random clustering was also ap-
plied. Figures 3 and 4 also show the results from random
clustering with 100 and 10 features. At 100 features, there
is some discrimination between the topics (especially in the
case of the first topic). However, at 10 features, the likeli-
hoods are more uniform and the information not usable (re-
call that we only show the 3 most-likely topics out of 25).

These results show the effects of observation reduction
using an EM approach on the quality of state tracking. The
ability to track successfully as the number of observations
decreases is a promising indicator of the ability to plan with
reduced observation spaces. We now investigate this ques-
tion directly.
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Figure 3: Topic Tracking with 100 features. K-means (on the left) vs. random clustering (on the right)
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Figure 4: Topic Tracking with 10 features. K-means (on the left) vs. random clustering (on the right)
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Figure 5: Results for Dialogue POMDP: Expected Reward (on the left) and Planning time (on the right)



Planning
To construct a POMDP using the dialogue data, we assume
there is a computer aiding the wizard by presenting infor-
mation based on the user’s requests. The goal of the agent
is to present the correct piece or pieces of information. As
explained before, the state space is defined as a single or pair
of topics (not all pairs of topics occur in the data therefore
we only have 25 states). We assume there is one relevant
piece of information per topic (a map, a list of hotels and
addresses, a list of restaurants and their prices). Thus the
action space is the same size as the state space and there is
essentially one correct action per state.

If the agent displays the correct information, there is a
small reward, otherwise, it incurs a small penalty. The state
transitions learned directly from the data (as used in the pre-
vious set of results on topic tracking) are assumed to the
be transition probabilities for the “correct action”. Transi-
tion probabilities for “incorrect action” assume that the state
stays the same with high probability, and transitions to any
other state with a small (uniform) probability. This adds
some noise to the system. As with tracking, the observation
probabilities reflect the probability of a word occurring in a
state and can be determined by counting the original data.

Once the POMDP is constructed, the feature reduction
was applied. Policies were then generated based on these
reduced POMDPs using the PBVI algorithm (Pineau, Gor-
don, & Thrun 2003a). Figure 5 (left) shows the average re-
ward based on the number of features and the type of re-
duction used. This average reward is calculated by 1000
simulated runs using the reduced observation-space policy,
but assuming that belief tracking is done using full obser-
vation POMDP. The results show that we can consistently
learn high quality policies with K-means or PCA clustered
observations even with with very few features. The planning
time as seen in Figure 5 (right) can be significantly reduced
by using fewer features at little cost to the average reward.

The time required to perform the compression is worth
discussing. For the K-means and normalized PCA trans-
form, the time required to reduce the number of features is
negligible compared to the planning time only requiring 5-6
seconds in a worst case. Determining the reduced observa-
tions using the PCA with constraints requires the use of a
quadratic program solver which can be prohibitively slow.
In our experiments, determining the solution for 50 or fewer
features was very fast, but 100 observations required a sig-
nificant amount of time and 200 features was unsolvable due
to memory constraints.

Conclusions
The work presented in this paper gives the first indication
that approximate feature reduction techniques can be ap-
plied to accelerate planning in POMDPs with rich observa-
tion spaces. We found that in general, there is enough infor-
mation captured in the observation matrix itself to properly
reduce the observation space, and by operating directly on
this matrix, we can compress features automatically with-
out injecting domain-dependent information. The ideas have
been validated on a real-world dialogue management prob-

lem.
We found that the simple EM-type clustering worked well

in this complex dialogue domain. This is encouraging be-
cause the clustering algorithm is simple to implement, fast
to compute, and generates intuitive compressed representa-
tions. We also found the constrained-based PCA performed
better than the normalized PCA, with performance compet-
itive to the EM-clustering. 450 words is relatively small in a
domain which typically encountered ten-thousand word dic-
tionaries. PCA’s advantage may become more noticeable as
the data set and observation space becomes larger.

This work, while preliminary, provides promising evi-
dence that POMDP planning is feasible in domains with rich
input spaces. We are encouraged with the results on the di-
alogue domain, and plan to investigate more sophisticated
data reduction techniques in the future.
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