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Unless otherwise noted, all material posted for this course are copyright of the  
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Last week’s Quiz

The neural auto encoder is analogous to the PCA under which conditions?

Linear layer / Non-linear layer / Single hidden layer / Cross-entropy 
loss function / Squared-error loss function / L1-regularization

Which of the following statements are True:

Dropout reduces overfitting by reducing computation.  
Dropout reduces overfitting by increasing the model capacity.  
Dropout reduces overfitting by reducing noise.  
Dropout reduces overfitting by model averaging.

CNNs are effective for computer vision task for which reasons:

They have a built-in ability to exploit local regularities.  
They can scale to high-dimensional inputs.  
They can be trained with less data than feed-forward neural networks.  
They are invariant to translations.
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Today’s Quiz



Herke van Hoof4

Today’s Goals

• Why do we need uncertainty in regression? 

• How can we quantify uncertainty in regression? 

• State-of-art algorithms for regression: 

• Kernel ridge regression 

• Gaussian process regression
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Bayesian linear regression - part II

Copyright C.M. Bishop, PRML

• Regression with (extremely) small and noisy dataset 

• Many functions are compatible with data
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Bayesian linear regression - part II

Copyright C.M. Bishop, PRML

• Quantify the uncertainty using probabilities 
(e.g. Gaussian mean and variance for every input x)
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Decision making

• What to do with the predictive distribution? 

• Knowing uncertainty of output helpful in decision making 

• Consider inspecting task.  

• x: some measurement 

• y: predicted breaking strength 

• Parts which are to weak (breaking strength < t) are rejected 

• Falsely rejecting a part incurs a small cost (c=1) 

• Falsely accepting a part can cause more damage down the 

line (expected cost c=100)
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Decision making

Copyright C.M. Bishop, PRML

threshold

should we accept this part?

how about this one?
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Determining uncertainty

• To make good decisions, sometimes need to know uncertainty 

• Sources of uncertainty: 

• We do not know the parameters w, especially in areas where 

we have little data 

• Even if we knew the parameters w of the underlying function, 

individual parts might be slightly offset from this function 
 p(y|x,w) = f(w,x) +N (0,�2)

p(w|D) = ŵ +N (0,⌃)

D = {(x1, y1), . . . , (xN , yN )}
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Determining uncertainty

• To make good decisions, sometimes need to know uncertainty 

• Sources of uncertainty: 

• We do not know the parameters w, especially in areas where 

we have little data 
1: determine  

• Even if we knew the parameters w of the underlying function, 

individual parts might be slightly offset from this function 
 
2: combine these predictions for all w

p(y|x,w) = f(w,x) +N (0,�2)

p(w|D) = ŵ +N (0,⌃)

D = {(x1, y1), . . . , (xN , yN )}
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Step 1: Determine posterior

• Goal: fit lines 

• Bayes theorem: p(w|D) =
p(D|w)p(w)

p(D)

y = w0 + w1x+ ✏

x

y
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Step 1: Determine posterior

• Goal: fit lines 

• Bayes theorem:  

• Similar to ridge regression, expect good w to be small

p(w|D) =
p(D|w)p(w)

p(D)

y = w0 + w1x+ ✏

x

yWhat prior?

Copyright C.M. Bishop, PRML
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Step 1: Determine posterior
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Step 1: Determine posterior

• Goal: fit lines 

• Bayes theorem:  

• Similar to ridge regression, expect good w to be small

p(w|D) =
p(D|w)p(w)

p(D)

y = w0 + w1x+ ✏
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Step 1: Determine posterior

• Goal: fit lines 

• Bayes theorem:  

• Good lines should pass ‘close by’ datapoint

p(w|D) =
p(D|w)p(w)

p(D)

y = w0 + w1x+ ✏

x

yWhat likelihood?

x

y
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Step 1: Determine posterior

• Goal: fit lines 

• Bayes theorem:  

• Good lines should pass ‘close by’ datapoint

p(w|D) =
p(D|w)p(w)

p(D)

y = w0 + w1x+ ✏

x

yWhat likelihood?

x

y
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Step 1: Determine posterior

• Goal: fit lines 

• Bayes theorem:  

• For all values of w, multiply prior and likelihood  

(and re-normalize)

p(w|D) =
p(D|w)p(w)

p(D)

y = w0 + w1x+ ✏

x

y

x =

Copyright C.M. Bishop, PRML
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Determining uncertainty

• To make good decisions, sometimes need to know uncertainty 

• Sources of uncertainty: 

• We do not know the parameters w, especially in areas where 

we have little data 
1: determine  

• Even if we knew the parameters w of the underlying function, 

individual parts might be slightly offset from this function 
 
2: combine these predictions for all w

p(y|x,w) = f(w,x) +N (0,�2)

p(w|D) = ŵ +N (0,⌃)

D = {(x1, y1), . . . , (xN , yN )}
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Step 2: Combine predictions

• Every w makes a prediction 
y = w0 + w1x+ ✏
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Bayesian linear regression in general

• Model: 

• Likelihood 

• Conjugate prior 

• Prior precision      and noise variance       considered known  

• Linear regression with uncertainty about the parameters

p(y|x,w) = N (wTx,�2)

p(w) = N (0,↵�1I)

�2↵
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• Some algebra on the model definitions gives the solution 

•      has one input per row,    has one target output per row 

• If prior precision     goes to 0, mean becomes maximum 

likelihood solution (ordinary linear regression) 

• Infinitely wide likelihood variance      , or 0 datapoints, means 

distribution reduces to prior 

SN = (↵I+ ��2XTX)�1

p(w|D) = N (��2SNXTy,SN )

↵

�2

X y

Bayesian linear regression: inference
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• We can investigate the maximum of the posterior (MAP) 

• Log-transform posterior: log is sum of prior + likelihood 

Bayesian linear regression: inference

max log p(w|y)

max���2

2

NX

n=1

(yn �wTxn)
2 � ↵

2
wTw + const.

min
NX

n=1

(yn �wTxn)
2 + �wTw
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• We can investigate the maximum of the posterior (MAP) 

• Log-transform posterior: log is sum of prior + likelihood 

• Same objective function as for ridge regression! 

• Penalty term: 

Ridge regression,  
Lecture 4  

(linear regression)

prior precision
likelihood 
variance

� = ↵�2

Bayesian linear regression: inference

max log p(w|y)

max���2

2

NX

n=1

(yn �wTxn)
2 � ↵

2
wTw + const.

min
NX

n=1

(yn �wTxn)
2 + �wTw
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Bayesian linear regression: prediction

• Prediction for new datapoint: 

• Convolution of two Gaussians, can compute solution analytically: 

• Variance tends to go down with more data until it reaches  

• Corresponds to sources of uncertainty discussed before

p(y⇤|x⇤,D) =

Z

RN

p(w|D)p(y⇤|x⇤,w)dw

p(y⇤|D) = N (��2x⇤TSNXTy,�2 + xTSNx)

mean w 
from before

from weight 
uncertainty

from observation 
noise

new input

�2
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Beyond linear regression

• Non-linear data sets can be handled by using non-linear features 

• Features specify the class of functions we consider 
(hypothesis class) 

• What if we do not know good features? 

ŷ =
MX

i=1

wi�i(x)
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Beyond linear regression

Copyright C.M. Bishop, PRML
Input dimension 1

In
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• Certain features work with many problems 
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Beyond linear regression

• Scaling with number of inputs 

• Grid of radial basis functions  
k RBFs per dimension, m-dimensional input? 

• Polynomial expansion 
order k polynomial, m-dimensional input?
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Beyond linear regression

• Scaling with number of inputs 

• Grid of radial basis functions  
k RBFs per dimension, m-dimensional input? 

• Polynomial expansion 
order k polynomial, m-dimensional input?

km

mk

features

features (+ lower order terms)
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Beyond linear regression

• Relying on features can be problematic 

• We tried to avoid using features before… 
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Beyond linear regression

• Relying on features can be problematic 

• We tried to avoid using features before…  

• Lecture 8, instance based learning. Use distances! 

• Lecture 12, support vector machines. Use kernels! 

• We can use a similar approach with (Bayesian) linear regression
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Kernels (recap)

• Kernel is a function of two arguments which corresponds to a dot 

product in some feature space 

• Advantage of using kernels: 

• Sometimes evaluating k is cheaper than evaluating features 

and taking the dot product 

• Sometimes k corresponds to an inner product in a feature 

space with infinite dimensions 

k(x,y) = �(x)T�(y)

k(x,y) = (xTy)d

k(x,y) = exp(�(x� y)2)
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Kernels (recap)

• Kernelize algorithm: 

• Try to formulate algorithm so feature vectors only ever occur 

in inner products 

• Replace inner products by kernel evaluations (kernel trick) 

• Sidenote: different kernel definitions are used in different 

methods. Here, ’Mercer kernels’ are used.
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Kernelizing the mean function

• Inspect solution mean from Bayesian linear regression 

• Vector      concatenates training outputs 

• Matrix  X   has one column for each feature (length N) 
                        one row for each datapoint (length M) 

• Mean prediction is 

y

(2)

(1)

SN = (↵I+ ��2XTX)�1

p(y⇤|D) = N (��2x⇤TSNXTy,�2 + xTSNx)

y⇤ = ��2x⇤T (↵I+ ��2XTX)�1XTy
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element i of this vector is 

35

Kernelizing the mean function

• Step 2: Reformulate to only have inner products of features 

element i,j of this matrix is �(xi)
T�(xj)

�(xi)
T�(x⇤)

k(x⇤)T

y⇤ = ��2x⇤T (↵I+ ��2XTX)�1XTy

y⇤ = ��2x⇤TXT (↵I+ ��2XXT )�1y

K
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element i of this vector is 

36

Kernelizing the mean function

• Step 2: Reformulate to only have inner products of features 

element i,j of this matrix is �(xi)
T�(xj)

�(xi)
T�(x⇤)

Kk(x⇤)T

# features x #features

# datapoints x #datapoints

y⇤ = ��2x⇤TXT (↵I+ ��2XXT )�1y

y⇤ = ��2x⇤T (↵I+ ��2XTX)�1XTy
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Kernelizing the mean function

• Step 3: Replace inner products by kernel evaluations 

• Remember: Mean function is same as ridge regression 

• This is kernel ridge regression

element i,j of this matrix is 

element i of this vector is k(xi,x
⇤)

k(xi,xj)

y⇤ = k(x⇤)T (↵I+K)�1y
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Kernel ridge regression

• Choosing a kernel
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Kernel ridge regression

• Setting parameters
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Kernel ridge regression

• Setting parameters

k(x, y) = exp� (x� y)2

�2

� = 1� = 10 � = 0.1
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Why does it work

• We still have #features = #datapoints, so regularisation critical!
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Kernel regression: Practical issues

• Compare ridge regression:  
 

inverse               matrix-vector product 
prediction  
memory  

• Kernel ridge regression:   
 
inverse, product 

prediction 
memory

O(d3) O(d2N)

O(N3)

O(d)

O(d)

O(N)

O(N)

y⇤ = k(x⇤)T (↵I+K)�1y

w = (�I+XTX)�1XTy
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Kernel regression: Practical issues

• If we have a small set of good features it’s faster to do 

regression in feature space 

• However, if no good features are available (or we need a very big 

set of features), kernel regression might yield better results 

• Often, it is easier to pick a kernel than to choose a good set of 

features



Herke van Hoof44

Kernelizing Bayesian linear regression

• We have now kernelized ridge regression 

• Could we kernelize Bayesian linear regression, too?

linear 
regression

ridge  
regression

bayesian linear 
regression

(kernel  
regression)

kernel ridge 
regression
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Kernelizing Bayesian linear regression

• We have now kernelized ridge regression 

• Could we kernelize Bayesian linear regression, too? 

• Yes, and this is called a Gaussian process regression (GPR)

linear 
regression

ridge  
regression

bayesian linear 
regression

(kernel  
regression)

kernel ridge 
regression

Gaussian 
process
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Deriving GP equations

• Model:  

• We are interested in the function values                   , at a set 

of points                    . We observe target values for the 

training set, but we assume these are noisy 

• Prior:  
With y a vector of function values  

and K the kernel matrix 

• Likelihood: 

y1, y2, . . .

x1,x2, . . .

tn = yn + ✏

y ⇠ N (0,K)

Copyright C.M. Bishop, PRML

t ⇠ N (y,��1I)
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Examples from the prior

y ⇠ N (0,K)

k(x, y) = exp�(x� y)2 k(x, y) = exp�|x� y|
Copyright C.M. Bishop, PRML
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GP Regression

• Prior and likelihood are Gaussian 

• Again obtain a closed form solution  

• Prediction of new observations 

• Easy to implement!

kernel ridge regression

prior 
variance

reduction in variance due to 
close training points

add noise 
term

Cov[t⇤] = k(x⇤,x⇤)� k(x⇤)T (K+ ��1I)�1k(x⇤) + ��1

Cov[y⇤] = k(x⇤,x⇤)� k(x⇤)T (K+ ��1I)�1k(x⇤)

E[y⇤] = yT (K+ ��1I)�1k(x⇤)
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GP Regression

• Results of GP regression
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GP Regression: hyperparameters
• Hyperparameters 

• Assumed noise (variance of likelihood) 

• Any parameters of the kernel 

• Typical kernel:  

• s: scale (standard deviation prior to seeing data) 

•    : bandwidth (which datapoint are considered close) 

• Effective regularisation:  

• Knowing the ‘meaning’ of parameters helps tune them

t ⇠ N (y,��1I)

k(xi,xj) = s2 exp�kxi � xjk2

2�2

�

��1s�1
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GP Regression: hyperparameters

• Assumed noise (variance of likelihood) 

• Effective regularisation:  

• Mostly changes behaviour close to train points

t ⇠ N (y,��1I)

��1s�1
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GP Regression: hyperparameters

• Kernel 

• Effective regularisation 

• Mostly changes behaviour further away from training points

k(xi,xj) = s2 exp�kxi � xjk2

2�2

��1s�1
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GP Regression: hyperparameters

• Kernel 

• Changes what is considered ‘close’ or ‘far’

k(xi,xj) = s2 exp�kxi � xjk2

2�2
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GPs: Practical issues

• Complexity pretty much similar to kernel regression 

• Except for calculating predictive variance 

• inverse, product 

• prediction 

• memory

O(N3)

O(N)

O(N)

O(N2)

Cov[y⇤] = k(x⇤,x⇤)� k(x⇤)T (K+ ��1I)�1k(x⇤)

E[y⇤] = yT (K+ ��1I)�1k(x⇤)
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GPs: Practical issues

• For small dataset, GPR is a state-of-the-art method! 

• Advantage: uncertainty, flexible yet can control overfitting 

• Computational costs acceptable for small datasets (<10 000) 

• For large datasets, uncertainty not so important, expensive, …. 

• Good approximations exist 

• Specifying the right prior (kernel!) is important! 

• This means choosing good hyper parameters 

• Choice of hyper parameters investigated in next lecture
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Bayesian methods in practice

• Time complexity varies compared to frequentist methods 

• Memory complexity can be higher 

• e.g. need to store mean + uncertainty : quadratic, not linear 

• Much data everywhere: posterior close to point estimate 

• (might as well use frequentist methods) 

• Little data everywhere 

• Prior information helps bias/variance trade-off 

• Some areas with little, some areas with much data 

• Uncertainty helps to decide where predictions are reliable
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Inference in more complex models

• We saw some examples with closed-form posterior 

• In many complex models, no closed-form representation 

• Variational inference (deterministic) 

• Consider family of distributions we can represent (Gaussian) 

• Use optimisation techniques to find best of these 

• Sampling (stochastic) 

• Try to directly sample from the posterior 

• Expectations can be approximated using the samples 

• Maximum a posterior (point estimate)
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What you should know

• Last lecture: 

• What is the Bayesian view of probability? 

• Why can the Bayesian view be beneficial? 

• Role of the following distributions: 

• Likelihood, prior, posterior, posterior predictive 

• This lecture: 

• Key idea of Bayesian regression and its properties 

• Key idea of kernel regression and its properties 

• Key idea of Gaussian process regression and its properties
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Why does it work?

• In linear regression, we choose M basis functions, then find the 

best function of the form 

• In kernel regression, we find the best function of the form 
 

 
For any set  

• Basis function              available at every possible input 

y =
MX

i=1

wi�(x)

y =
X

s2S
↵sk(x, s)

S
k(·, s)
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Why does it work?

• Basis function              available at every possible input  

• But only function at the training points are used to minimise 

training error (representer theorem, Schölkopf et al., 2001)

k(·, s)

input dim 1

in
pu

t d
im

 2

input dim 1

in
pu

t d
im

 2
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Why called Gaussian process?

Stochastic process 
Collection of random variables indexed by some set 
Ie. R.V. yi for every element 𝑖 in index set 

Here, we will consider the function values yi as random variables 

The index is the function argument, e.g.  

Furthermore, we assume that any subset of these random variables 
is jointly Gaussian distributed - thus defining a Gaussian process 

This same assumption underlies Bayesian linear regression! 

2 Rd


