
COMP 551 – Applied Machine Learning 
Lecture 19: Bayesian Inference

Associate Instructor:  Herke van Hoof (herke.vanhoof@mcgill.ca) 

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the  
instructor, and cannot be reused or reposted without the instructor’s written permission. 
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Slides

• Temporarily available at: 
 

http://cs.mcgill.ca/~hvanho2/media/19BayesianInference.pdf 

• Quiz  
 

Will be online by tonight

http://cs.mcgill.ca/~hvanho2/media/19BayesianInference.pdf
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Bayesian probabilities
• An example from regression 

• Given few noisy data points, multiple models conceivable 

• Can we quantify uncertainty over models using probabilities?

Copyright C.M. Bishop, PRML
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Bayesian probabilities
• An example from regression 

• Given few noisy data points, multiple models conceivable 

• Can we quantify uncertainty over models using probabilities? 

• Classical / frequentist statistics: no 

• Probability represents frequency  
of repeatable event 

• There is only one true model, we  

cannot observe multiple realisations  
of the true model

Copyright C.M. Bishop, PRML
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Bayesian probabilities

• Bayesian view of probability 

• Uses probability to represent uncertainty 

• Well-founded 

• When manipulating uncertainty, certain rules need to be 

respected to make rational choices 

• These rules are equivalent to the rules of probability
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Goals of the lecture

At the end of the lecture, you are able to 

• Formulate Bayesian view on probability 

• Give reasons for (and against) Bayesian methods are used 

• Understand Bayesian inference and prediction steps 

• Give some examples with analytical solutions 

• Use posterior and predictive distributions in decision making
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Bayesian probabilities

• To specify uncertainty, need to specify a model 

• Prior over model parameters 

• Likelihood term 

• Dataset 

• Inference using Bayes’ theorem

p(w)

p(D|w)

p(w|D) =
p(D|w)p(w)

p(D)

D = {(x1, y1), . . . , (xN , yN )}
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Bayesian probabilities

• Predictions 

• Rather than fixing a fixed value for parameters, integrate over 

all possible parameter values! 

p(y⇤|x⇤,D) =

Z

RN

p(w|D)p(y⇤|x⇤,w)dw

p(y⇤|x⇤,D) =

Z

R
p(y⇤,w|x⇤,D)dw
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Bayesian probabilities

• Note: that Bayes’ theorem is used does not mean a method 

uses a Bayesian view on probabilities! 

• Bayes’ theorem is a consequence of the sum and product rules of 

probability 

• Can relate the conditional probabilities of repeatable random events 

• Alarm vs. burglary  

• Many frequentist methods refer to Bayes’ theorem (naive Bayes, 

Bayesian networks) 

• Bayesian view on probability: Can represent uncertainty (in 

parameters, unique events) using probability
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Bayesian probabilities

Randall Munroe / xkcd.com
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Why Bayesian probabilities?
• Maximum likelihood estimates can have large variance 

• Overfitting in e.g. linear regression models 

• MLE of coin flip probabilities with three sequential ‘heads’ 
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Why Bayesian probabilities?
• Maximum likelihood estimates can have large variance 

• We might desire or need an estimate of uncertainty 

• Use uncertainty in decision making 

Knowing uncertainty important for many loss functions  

• Use uncertainty to decide which data to acquire  
(active learning, experimental design)
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Why Bayesian probabilities?
• Maximum likelihood estimates can have large variance 

• We might desire or need an estimate of uncertainty 

• Have small dataset, unreliable data, or small batches of data  

• Account for reliability of different pieces of evidence 

• Possible to update posterior incrementally with new data 

• Variance problem especially bad with small data sets
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Why Bayesian probabilities?
• Maximum likelihood estimates can have large variance 

• We might desire or need an estimate of uncertainty 

• Have small dataset, unreliable data, or small batches of data  

• Use prior knowledge in a principled fashion
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Why Bayesian probabilities?
• Maximum likelihood estimates can have large variance 

• We might desire or need an estimate of uncertainty 

• Have small dataset, unreliable data, or small batches of data  

• Use prior knowledge in a principled fashion 

• In practice, using prior knowledge and uncertainty 

particularly makes difference with small data sets
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Why not Bayesian probabilities?

• Prior induces bias 

• Misspecified priors: if prior is wrong, posterior can be far off  

• Prior often chosen for mathematical convenience, not actually 

knowledge of the problem 

• In contrast to frequentist probability, uncertainty is subjective, 

different between different people / agents
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Algorithms for Bayesian inference

• What do we need to do? 

• Dataset, e.g.  

• Inference 

• Prediction 

• When can we do these steps (in closed form)?

p(w|D) =
p(D|w)p(w)

p(D)

D = {(x1, y1), . . . , (xN , yN )}

p(y⇤|x⇤,D) =

Z

RN

p(w|D)p(y⇤|x⇤,w)dw
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Algorithms for Bayesian inference

• Inference  

• Posterior can act like a prior 

• Desirable that posterior and prior have same family! 

• Otherwise posterior would get more complex with each step 

• Such priors are called conjugate priors to a likelihood function

p(w|D) =
p(D|w)p(w)

p(D)

p(w|D1,D2) =
p(D2|w)p(w|D1)

p(D2)
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Algorithms for Bayesian inference

• Prediction 

• Argument of the integral is unnormalised distribution over w  

• Integral calculates the normalisation constant 

• For prior conjugate to likelihood function, constant is known

same family as prior

p(y⇤|x⇤,D) =

Z

RN

p(w|D)p(y⇤|x⇤,w)dw
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Algorithms for Bayesian inference

• Not all likelihood functions have conjugate priors 

• However, so-called exponential family distributions do 

• Normal 

• Exponential 

• Beta 

• Bernoulli 

• Categorical 

• …
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Simple example: coin toss

• Flip unfair coin 

• Probability of ‘heads’ unknown value r 

• Likelihood: 

• x is one (‘heads’) or zero (‘tails’) 

• r is unknown parameter, between 0 and 1

Bern(x|r) = r

x(1� r)1�x

r

likelihood for x=1
Copyright C.M. Bishop, PRML
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Simple example: coin toss

• Conjugate prior:

r r

r rCopyright C.M. Bishop, PRML

Beta(r|a, b) = �(a+ b)

�(a)�(b)
ra�1(1� r)b�1
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Simple example: coin toss

• Conjugate prior: 

• Prior denotes a priori belief over the value r 

• r is a value between 0 and 1 (denotes prob. of heads or tails) 

• a, b are ‘hyperparameters’

rr
no idea about the fairnesscoin probably more likely to give ‘tails’

Copyright C.M. Bishop, PRML

Beta(r|a, b) = �(a+ b)

�(a)�(b)
ra�1(1� r)b�1
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Simple example: coin toss

• Model: 

• Likelihood: 

• Conjugate prior: 

• Posterior = prior x likelihood / normalisation factor 

• Note the similarity in the factors 

Bern(x|r) = r

x(1� r)1�x

normalization factor

again beta 
distribution

p(r|x) = z

�1
r

a+x�1(1� r)b�x

Beta(r|a, b) = �(a+ b)

�(a)�(b)
ra�1(1� r)b�1
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Simple example: coin toss

• Posterior: 

• We observe more ‘heads’ -> suspect more strongly coin is biased 

• Note that a, b get added to the actual outcome: 

‘pseudo-observations’ 

• Updated a,b can now be used as ‘working prior’ for the next coin flip

Copyright C.M. Bishop, PRML

r r r

p(r|x) = z

�1
r

a+x�1(1� r)b�x
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Simple example: coin toss

• Posterior: 

• Prediction: 

• Instead of taking one parameter value, average over all of them 

• a, b, again interpretable as effective # observations 

• Consider the difference if a=b=1, #heads=1, #tails=0

p(r|x) = z

�1
r

a+x�1(1� r)b�x

p(x = 1|D) =

Z 1

0
p(x = 1|r)p(r|D)dr

likelihood posterior

=
#heads + a

#heads + #tails + a+ b
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Simple example: coin toss

• Posterior: 

• Prediction: 

• Instead of taking one parameter value, average over all of them 

• a, b, again interpretable as effective # observations 

• Consider the difference if a=b=1, #heads=1, #tails=0 

• Note that as #flips increases, prior starts to matter less

p(r|x) = z

�1
r

a+x�1(1� r)b�x

p(x = 1|D) =

Z 1

0
p(x = 1|r)p(r|D)dr

likelihood posterior

=
#heads + a

#heads + #tails + a+ b
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Simple example: coin toss

• Instead of taking one parameter value, average over all of them 

• True for all Bayesian models 

• Hyperparameters interpretable as effective # observations 

• True for many Bayesian models 

(depends on parametrization) 

• As amount of data increases, prior starts to matter less 

• True for all Bayesian models
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Example 2: mean of a 1d Gaussian

• Try to learn the mean of a Gaussian distribution 

• Model: 

• Likelihood 

• Conjugate prior 

• Assume variances of the distributions are known 

• We know the mean is close to zero but not its exact value

p(y) = N (µ,�2)

p(µ) = N (0,↵�1)
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Example 2: inference for Gaussian

• From the shape of the distributions we see again some similarity: 

• log likelihood 

• log conjugate prior 

• Now find log posterior

const� 1

2

(y � µ)2

�2

const� 1

2

µ2↵
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Inference for Gaussian

const� 1

2

✓
(y � µ)2

�2
+ µ2↵

◆

(y � µ)2

�2
+ µ2↵ = �yµ

�2
+

µ2

�2
+ µ2↵+ const

= �yµ

�2
+ (↵+ ��2

)µ2
+ const

= �↵+ ��2

↵+ ��2

1

�2
yµ+ (↵+ ��2

)µ2
+ const

=

⇣
��2

↵+��2 y � µ
⌘2

(↵+ ��2
)

�1
+ const

mean of posterior 
distribution of    : between 
MLE (y) and paprior (0)

covariance of posterior: 
smaller than either 

covariance of likelihood or 
prior

µ

= �2

yµ

�2
+

µ2

�2
+ µ2↵+ const

= �2

yµ

�2
+ (↵+ ��2

)µ2
+ const

= �2

↵+ ��2

↵+ ��2

1

�2
yµ+ (↵+ ��2

)µ2
+ const
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Inference for Gaussian

Copyright C.M. Bishop, PRML
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Prediction for Gaussian

• Prediction 

• Convolution of Gaussians, can be solved in closed form 

p(y⇤|D) =

Z 1

�1
p(y⇤, µ|D)dµ

=

Z 1

�1
p(y⇤|µ)p(µ|D)dµ

=

Z 1

�1
N (y⇤|µ,�2)N

✓
µ

����
��2

↵+ ��2
ytrain,

1

↵+ ��2

◆
dµ

p(y⇤|D) = N
✓
y⇤

����
��2

↵+ ��2
ytrain,�

2 +
1

↵+ ��2

◆

noise + parameter uncertainty
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Bayesian linear regression

• More complex example: Bayesian linear regression 

• Model: 

• Likelihood 

• Conjugate prior 

• Prior precision      and noise variance       considered known  

• Linear regression with uncertainty about the parameters

p(y|x,w) = N (wT
x,�2)

p(w) = N (0,↵�1I)

�2↵


