COMP 551 — Applied Machine Learning
Lecture 19: Bayesian Inference

Associate Instructor: Herke van Hoof (herke.vanhoof@mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/compb51

Unless otherwise noted, all material posted for this course are copyright of the
instructor, and cannot be reused or reposted without the instructor’s written permission.




Slides

Temporarily available at:

http://cs.mcaqill.ca/~hvanho2/media/19Bayesianinference.pdf

Quiz

Will be online by tonight
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http://cs.mcgill.ca/~hvanho2/media/19BayesianInference.pdf

Bayesian probabillities

* An example from regression

« Given few noisy data points, multiple models conceivable

« Can we quantify uncertainty over models using probabilities?
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Bayesian probabillities

An example from regression

Given few noisy data points, multiple models conceivable
Can we quantify uncertainty over models using probabilities?
Classical / frequentist statistics: no

» Probability represents frequency |

of repeatable event Y

« There is only one true model, we 0
cannot observe multiple realisations

of the true model
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Bayesian probabillities

- Bayesian view of probability
« Uses probability to represent uncertainty

Well-founded

* When manipulating uncertainty, certain rules need to be

respected to make rational choices

« These rules are equivalent to the rules of probability
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Goals of the lecture

At the end of the lecture, you are able to

 Formulate Bayesian view on probability

* Give reasons for (and against) Bayesian methods are used
« Understand Bayesian inference and prediction steps

« Give some examples with analytical solutions

» Use posterior and predictive distributions in decision making
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Bayesian probabillities

« To specify uncertainty, need to specify a model
* Prior over model parameters  p(w)
+  Likelihood term p(D|w)

« Dataset

D={(x1,y1),---,(XNn,YN)}

- Inference using Bayes’ theorem

p(D|w)p(w)

p(w|D) = (D)
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Bayesian probabillities

* Predictions

p(y"|x*, D) /py,WIX , D)dw
R
y*|x*, D) / p(w|D)p(y*|x*, w)dw

RN

« Rather than fixing a fixed value for parameters, integrate over

all possible parameter values!
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Bayesian probabilities

Note: that Bayes’ theorem is used does not mean a method

uses a Bayesian view on probabilities!

Bayes’ theorem is a consequence of the sum and product rules of

probability

Can relate the conditional probabilities of repeatable random events
- Alarm vs. burglary

Many frequentist methods refer to Bayes’ theorem (naive Bayes,

Bayesian networks)

Bayesian view on probability: Can represent uncertainty (in

parameters, unique events) using probability
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Bayesian probabillities

DID THE SUN JUST EXPLODE?
(ITS NiGHT, 50 WERE NOT SURE.)

THIS NELTRIND DETECTOR MERSURES
WHEHER THE SUN HAS GONE NOVA.

THEN, ITROWS TWO DIcE. IF THEY
BOTH COME 0P SIX, TUES D LS.
OFERVIGE, T TELLS THE TRUIA.
LETS TRY.

DEECTER! H5 THE
SN GNENOA?
| 4 _L_r,"

FRECUENTIST STARSTTIAN: BRYESIPN SIATSTICAN:

THE PROGABIUTY OF THIS RESWT

Taaj

HAFFEMNG DY CHAMCE 15 30027 BET YOU $50
SMNCE p<0.05, T CONUDE IT HASNT
THAT HE SUN HAS EXPLCDED. )

Randall Munroe / xkcd.com
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Why Bayesian probabilities?

 Maximum likelihood estimates can have large variance
« Overfitting in e.g. linear regression models

« MLE of coin flip probabilities with three sequential ‘heads’
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Why Bayesian probabilities?

Maximum likelihood estimates can have large variance

We might desire or need an estimate of uncertainty

Use uncertainty in decision making

Knowing uncertainty important for many loss functions

Use uncertainty to decide which data to acquire

(active learning, experimental design)
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Why Bayesian probabilities?

« Maximum likelihood estimates can have large variance

*  We might desire or need an estimate of uncertainty

e Have small dataset, unreliable data, or small batches of data
« Account for reliability of different pieces of evidence
* Possible to update posterior incrementally with new data

« Variance problem especially bad with small data sets
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Why Bayesian probabilities?

Maximum likelihood estimates can have large variance
We might desire or need an estimate of uncertainty
Have small dataset, unreliable data, or small batches of data

Use prior knowledge in a principled fashion
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Why Bayesian probabilities?

Maximum likelihood estimates can have large variance

We might desire or need an estimate of uncertainty

Have small dataset, unreliable data, or small batches of data
Use prior knowledge in a principled fashion

In practice, using prior knowledge and uncertainty

particularly makes difference with small data sets

15 Herke van Hoof



Why not Bayesian probabilities”?

Prior induces bias
Misspecified priors: if prior is wrong, posterior can be far off

Prior often chosen for mathematical convenience, not actually

knowledge of the problem

In contrast to frequentist probability, uncertainty is subjective,

different between different people / agents
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Algorithms for Bayesian inference

« What do we need to do?

Dataset,e.g. D ={(x1,y1),---,(XN,YN)}

Inference o(w|D) = p(D}L&;VY))];(W)

Prediction

p(y*|x*, D) = / p(w|D)p(y*|x*, w)dw
RN

* When can we do these steps (in closed form)?
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Algorithms for Bayesian inference

Inference

p(D|w)p(w)
p(D)

Posterior can act like a prior

_ p(Dz2|w)p(w|D;)
pwPLD2) = Ty

p(w|D) =

Desirable that posterior and prior have same family!
« Otherwise posterior would get more complex with each step

Such priors are called conjugate priors to a likelihood function
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Algorithms for Bayesian inference

Prediction

Py D) = | p(wlD)ply" " w)iw
R same family as prior

Argument of the integral is unnormalised distribution over w
Integral calculates the normalisation constant

For prior conjugate to likelihood function, constant is known
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Algorithms for Bayesian inference

« Not all likelihood functions have conjugate priors
* However, so-called exponential family distributions do
* Normal
« Exponential
- Beta
« Bernoulli

« Categorical
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Simple example: coin toss

()

Flip unfair coin
Probability of ‘heads’ unknown value r
Likelihood:
Bern(z|r) = r*(1 — )7
* X is one (‘heads’) or zero (‘tails’)

* ris unknown parameter, between 0 and 1

()

likelihcod functicn

/ likelihood for x=1
1

0.5

r Copyright C.M. Bishop, PRML
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Simple example: coin toss

I'
Conjugate prior:  Beta(r|a,b) = F((CL)-II:(Z)) ,ra,—l(l _ ,r)b—l
a
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Simple example: coin toss

I b
« Conjugate prior: Beta(r|a, b) _ F((a)—;(b)) ra—l(l . T)b—l
a

* Prior denotes a priori belief over the value r
* ris avalue between 0 and 1 (denotes prob. of heads or tails)

* a, b are ‘hyperparameters’
_Copyright C.M. Bishop, PRML

[ \\ .

0 0.5 1 0 0s 1

r r

~___coin probably more likely to give ‘tails’ no idea about the fairness
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Simple example: coin toss

*  Model:
 Likelihood: Bern(z|r) = r®(1 — T)l—a:
« Conjugate prior:
(a+0b) . b—1
Bet b) = @ 1 —
€ a’(r|a'7 ) F(G)F(b)r ( T)

Posterior = prior x likelihood / normalisation factor

Note the similarity in the factors

p(rlz) =z~ 1r* T (1 — )0 ® again beta
distribution

normalization factor
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Simple example: coin toss

- Posterior: p(r|x) = Z—lraﬂv—l(l _ 7q)b—gc

pricr likelibcod functicn posterior
| | / :
() () ()
0 0.5 1 0 0.5 1 0 0.5 1
r r r

*  We observe more ‘heads’ -> suspect more strongly coin is biased

* Note that a, b get added to the actual outcome:

‘pseudo-observations’
- Updated a,b can now be used as ‘working prior’ for the next coin flip

Copyright C.M. Bishop, PRML
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Simple example: coin toss

—17,,a—|—x—1(1 )b—ac

Posterior: p(r|z) = z — 7

1
Prediction: p(z = 1|D) = / p(x = 1|r)p(r|D)dr
0

likelihood “ posterior

B #heads + a
~ #heads + #tails+a + b

Instead of taking one parameter value, average over all of them
a, b, again interpretable as effective # observations

Consider the difference if a=b=1, #heads=1, #tails=0
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Simple example: coin toss

Posterior: p(r|z) = 2z~ 1rot@=1(1 — p)0=?
1
Prediction: p(x = 1|D) = / p(x = 1|r)p(r|D)dr
0

likelihood “ posterior

B #heads + a
~ #heads + #tails+a + b

Instead of taking one parameter value, average over all of them
a, b, again interpretable as effective # observations
Consider the difference if a=b=1, #heads=1, #tails=0

Note that as #flips increases, prior starts to matter less
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Simple example: coin toss

* |Instead of taking one parameter value, average over all of them
« True for all Bayesian models
« Hyperparameters interpretable as effective # observations

* True for many Bayesian models

(depends on parametrization)
« As amount of data increases, prior starts to matter less

« True for all Bayesian models
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Example 2: mean of a 1d Gaussian

Try to learn the mean of a Gaussian distribution

Model:
. Likelihood p(y) = N(p, 07

 Conjugate prior p(p) = N(0, 04_1)

Assume variances of the distributions are known

We know the mean is close to zero but not its exact value
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Example 2: inference for Gaussian

* From the shape of the distributions we see again some similarity:

- log likelihood 1 (y — p)?
const — 5 5

0

1
* log conjugate prior const — 5 ,LL2O£

* Now find log posterior
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Inference for Gaussian

1 L 2
const — 5 (M + ,u2oz>

o
2
(y—w? o —_9dB B 2
T+Ma 202+02+,uoz+const
= —2% + (a4 0~ %)u? + const
o
_ 92 o yu + (o + 0~ 2)pu? + const

o+ o2 g2

> 2
)
p— m —|— COIlSt

covariance of posterior:
smaller than either
covariance of likelihood or
prior

mean of posterior
distribution of [: between
MLE (y) and paprior (0)
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Inference for Gaussian

Copyright C.M. Bishop, PRML
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Prediction for Gaussian

* Prediction ~
p(y*ID)Z/ p(y*, p|D)dp

— 00

= [ st ptulp)an

o2 1 ]
o _"_ 0__2 ytralna o _I_ 0__2 M

= / N(y* |, o* )N (u
¢ Convolution of Gaussians, can be solved in closed form

MW@=N(f

o2 9 1
a -+ 0__2 Ytrain, O —+ a —+ 0__2
noise + parameter uncertainty
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Bayesian linear regression

 More complex example: Bayesian linear regression
* Model:
« Likelihood
p(y|x, w) = N(w'x,o?)

« Conjugate prior

p(w) = N(0,a 1)

. - : : 2 .
* Prior precision & and noise variance 0~ considered known

» Linear regression with uncertainty about the parameters
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