COMP 551 — Applied Machine Learning
Lecture 18: Semi-supervised learning

Instructor: Joelle Pineau (jpineau@cs.mcqill.ca)

Class web page: www.cs.mcgqill.ca/~jpineau/compb51

Unless otherwise noted, all material posted for this course are copyright of the
instructor, and cannot be reused or reposted without the instructor’s written permission.




Basic idea

« Traditional classifiers learn only from labeled data.

- Label data can be expensive / difficult to collect.

— Human annotation is slow, boring!

— Labels can require experts, or special devices to acquire.
«  We prefer to get better performance for free: Unlabeled data!

« Goal of semi-supervised learning is to exploit both labeled and

unlabeled examples.

« Most of today will be on semi-supervised classification; brief
discussion of semi-supervised regression and semi-supervised

clustering.
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Example of hard-to-get labels

Task: speech analysis
@ Switchboard dataset
@ telephone conversation transcription

@ 400 hours annotation time for each hour of speech
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Example of hard-to-get labels

Task: natural language parsing
@ Penn Chinese Treebank

@ 2 years for 4000 sentences
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“The National Track and Field Championship has finished.”
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Example of not-so-hard-to-get labels

For some tasks, it may not be too difficult to label 1000+ instances.

Task: image categorization of “eclipse”
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Example of not-so-hard-to-get labels

For some tasks, it may not be too difficult to label 1000+ instances.

Task: image categorization of “eclipse”
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There are ways like
the EPS game
(www.epsgame.org)
to encourage
“human computation”
for more labels.
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Example of not-so-hard-to-get labels

For some tasks, it may not be too difficult to label 1000+ instances.

nonetheless...
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Goal: Use both labeled and unlabeled data to build better learners,
than using each one alone.
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Notation

- Given:
— Labeled data: (X, Y) ={x., v/} available during training
— Unlabeled data: X, ={ x,,,.,} available during training

— Testdata: X, ={ X .10/} NOT available during training

« Usually /<<n, so much more unlabeled data than labeled data.
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Notation

supervised learning (classification, regression) {(z1.n, ¥1:n)}

l

semi-supefvised classification/regression {(x1.1,Y1:1), Zi4+1:n, Ttest }
transductive classification /regression {(x1.1,v1:1), Zi+1:n}

l

semi-supervised clustering {x1.,, must-, cannot-links}

l

unsupervised learning (clustering) {x1.,}
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How can unlabeled data help?

* Assuming each class is a coherent group (e.g. Gaussian)

« With vs without unlabeled data: Decision boundary shifts.

w labeled data

------ decision boundary (labeled)
(O unlabeled data
decision boundary (labeled and unlabeled)
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Self-training algorithm

« Assume: One’s own high confidence predictions are correct.

- Basic algorithm:
— Train ffrom (X, Y)).
— Predict for x € X,

— Add (x, f(x)) to labeled data.
— Repeat.
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Self-training algorithm

* Assume: One’s own high confidence predictions are correct.

- Basic algorithm:
— Train ffrom (X, Y)).
— Predict for x € X,

— Add (x, f(x)) to labeled data.
— Repeat.

 Variations:

— Add a few most confident (x, f(x)) to labeled data.

— Add all (x, f(x)) to labeled data.
— Add all (x, f(x)) to labeled data, weigh each by confidence.
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Self-training example: image categorization

« Train a Naive Bayes classifier on two initial labeled images:

14 g

COMP-551: Applied Machine Learning 13 Joelle Pineau



Self-training example: image categorization

- Each image is divided into small patches.

* 10x10 grid, random size of 10 ~ 20
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Self-training example: image categorization

« All patches are normalized.

- Define a dictionary of 200 “visual words” (cluster centroids) with

200-means clustering on all patches.

* Represent a patch by the index of its closest visual word.
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Self-training example: image categorization

* Train a Naive Bayes classifier on two initial labeled images:

ooo
D |
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. Classify unlabeled data, sort by confidence log Pr(y=astronomy | x).
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Advantages of self-training

* The simplest semi-supervised learning method.

* A wrapper method, applies to existing (complex) classifiers.

« Often used in real tasks like natural language processing.
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Disadvantages of self-training?
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Disadvantages of self-training?

- Early mistakes could reinforce themselves.

— Heuristic solutions, e.g. “un-label” an instance if its confidence falls
below a threshold.

« Cannot say too much in terms of convergence.

— But there are special cases when self-training is equivalent to the
Expectation-Maximization (EM) algorithm.

— There are also special cases (e.g. linear functions) when the
closed-form solution is known.
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Alternatives?
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The generative approach

 Given labeled data, assume each class has a Gaussian

distribution.
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The generative approach

 Given labeled data, assume

5

each class has a Gaussian

distribution. J

* The most likely model and its 2 —

decision boundary:
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The generative approach

 Given labeled data, assume
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The generative approach

 (Given labeled data, assume

5
each class has a Gaussian

4t
distribution. .l

«  The most likely model and its _ i
decision boundary: T o{ M\ //
. Add unlabeled data. BN = ZEA\

 The most likely model and %

decision boundary change.
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The generative approach

« Decision boundaries are different because they maximize

different quantities.
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Revisiting the EM algorithm

«  Setup:
— Observed data: D= (X, Y, X))
— Hidden data: H=Y,
- P(DI6) =2, p(D, H| )

« Goal: Find &to maximize p(D|&)
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Revisiting the EM algorithm

«  Setup:
— Observed data: D= (X, Y, X))
— Hidden data: H =Y,
- P(DI6) =2, p(D, H| )

« Goal: Find &to maximize p(D|6&)

* Algorithm:
— Start with some arbitrary 6,.
— E-step: Estimate p(H|D,6)
— M-step: Find argmax, > ,p(D,H|6)

« Comments: EM iteratively improves p(D|&). Converges to a
local minima of &. K-means is a special case of this.
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Comments on the generative approach

* This offers a clear, well-studied, probabilistic framework.

« (Can be very effective if the model is close to correct.
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Comments on the generative approach

* This offers a clear, well-studied, probabilistic framework.
« (Can be very effective if the model is close to correct.

« Often difficult to verify the correctness of the model. Unlabeled

data can hurt the solution if the generative model is wrong.

EM converges to a local optima.

* There are other ways than EM to find parameters, e.g.

variational approximation.
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Alternate method: Cluster-and-label

Instead of running EM with the probabilistic generative model using

the labeled data:
» Run the clustering algorithm assuming all data is unlabeled.

« Label all points within a cluster by the majority of labeled points

in that cluster.
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Alternate method: Cluster-and-label

Instead of running EM with the probabilistic generative model using

the labeled data:
» Run the clustering algorithm assuming all data is unlabeled.

« Label all points within a cluster by the majority of labeled points

in that cluster.

* Pro: Another simple wrapper method.

« Con: Can be difficult to analyze; labels within a cluster may

disagree.
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Recall: Autoencoder + supervised layer

Train an autoencoder, then add a supervised layer and train the full
network with backpropagation using error on the predicted output, Err(W) =
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http://www.dmi.usherb.ca/~larocheh/projects deep learning.html
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Many more methods!

« Co-training.

« Semi-supervised SVMs.
« Graph-based algorithms.
- Eftc.
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Generative Models

Density estimation

T

Training examples Model samples

Material from lan Goodfellow, Montreal Summer School 2017
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Maximum Likelihood Criteria

0" = arg ;nax Ezrpynr, 108 Pmodel(x | @)

Material from lan Goodfellow, Montreal Summer School 2017

COMP-551: Applied Machine Learning 35 Joelle Pineau



What can you do with generative models?

«  Semi-supervised learning

« Missing data

« Multiple correct answers

« Realistic generation tasks

« Simulation by prediction

« Simulated environments and training data

« Learn useful embeddings

Material from lan Goodfellow, Montreal Summer School 2017
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Generative Adversarial Nets
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Picture from https.//www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html
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Generative Adversarial Nets

« Ve ry rea listic sam p les! nttp:/research.nvidia.com/publication/2017-10_Progressive-Growing-of

« Also used to generate voice, natural language, robot behaviors, ...
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Does unlabeled data always help?

* There’s no free lunch! Semi-supervised learning typically makes

strong model assumptions (to compensate for lack of labels).

« Performance can degrade by addition of unlabeled data when
the modeling assumptions are not appropriate. This has been

empirically observed by many researchers.
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Does unlabeled data always help?

* There’s no free lunch! Semi-supervised learning typically makes

strong model assumptions (to compensate for lack of labels).

« Performance can degrade by addition of unlabeled data when
the modeling assumptions are not appropriate. This has been

empirically observed by many researchers.

« So far, we have discussed missing labels.
* |In many problems, we are missing some of the features.

More on this later in the semester.
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Final notes

* You should know:

Problem definition for semi-supervised learning.
Self-training method, pros/cons
Generative approach, generative models

Concept of Generative Adversarial Nets

 Significant material for these slides was taken from:

http://pages.cs.wisc.edu/~jerryzhu/icmlO7tutorial.html
http.//pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
http.//www.cs.cmu.edu/~tom/10701_sp11/slides/LabUnlab-3-17-2011.pdf

https://drive.google.com/file/d/0ByUKRdICDK?7-
bTgxTGoxYjQ4NWS8/Niew?usp=drive_web
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