COMP 551 – Applied Machine Learning Lecture 18: Semi-supervised learning

Instructor: Joelle Pineau (*jpineau@cs.mcgill.ca*)

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the instructor, and cannot be reused or reposted without the instructor's written permission.

Basic idea

- Traditional classifiers learn only from labeled data.
- Label data can be expensive / difficult to collect.
 - Human annotation is slow, boring!
 - Labels can require experts, or special devices to acquire.
- We prefer to get better performance for free: Unlabeled data!
- Goal of semi-supervised learning is to exploit both labeled and unlabeled examples.
- Most of today will be on semi-supervised classification; brief discussion of semi-supervised regression and semi-supervised clustering.

Example of hard-to-get labels

Task: speech analysis

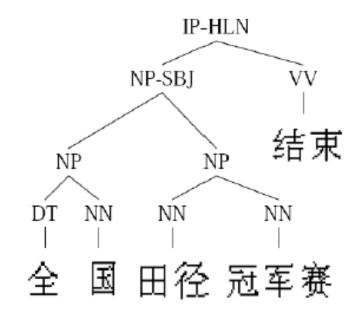
- Switchboard dataset
- telephone conversation transcription
- 400 hours annotation time for each hour of speech

 $film \Rightarrow f ih_n uh_gl_n m$ be all \Rightarrow bcl b iy iy_tr ao_tr ao l_dl

Example of hard-to-get labels

Task: natural language parsing

- Penn Chinese Treebank
- 2 years for 4000 sentences



"The National Track and Field Championship has finished."

Example of not-so-hard-to-get labels

For some tasks, it may not be too difficult to label 1000+ instances.

2.jpeg

7.jpeg

17.jpeg

Task: image categorization of "eclipse"

1. jpeg

3.jpeg

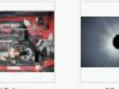
8. [peg]

4.jpeg

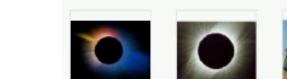
5. jpeg

9. jpeq.

15.jpag



20. jpeq.



11.jpeg

16. jpeg

6.jpeq

19. jpeq.

14.jpeg

COMP-551: Applied Machine Learning

Example of not-so-hard-to-get labels

For some tasks, it may not be too difficult to label 1000+ instances.

Task: image categorization of "eclipse"

There are ways like the EPS game (*www.epsgame.org*) to encourage "human computation" for more labels.

Example of not-so-hard-to-get labels

For some tasks, it may not be too difficult to label 1000+ instances.

Goal: Use both labeled and unlabeled data to build better learners, than using each one alone.

Notation

- Given:
 - Labeled data: $(X_{l}, Y_{l}) = \{x_{1:l}, y_{1:l}\}$
 - Unlabeled data: $X_u = \{x_{l+1:n}\}$
 - Test data: $X_{test} = \{x_{n+1:N}\}$

available during training available during training NOT available during training

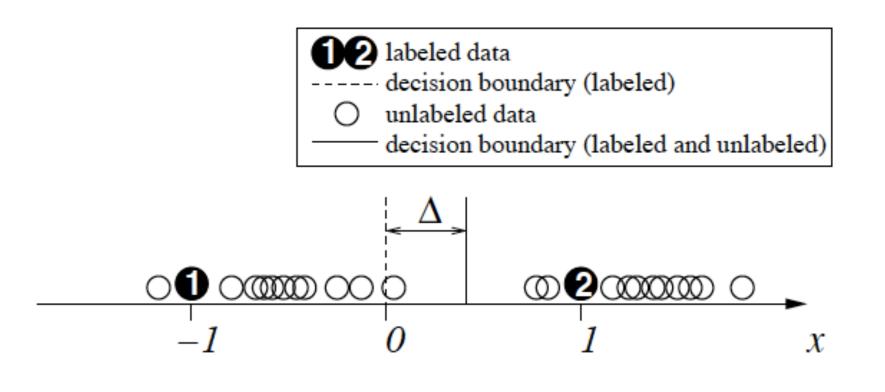
• Usually *I*<<*n*, so much more unlabeled data than labeled data.

Notation

supervised learning (classification, regression) $\{(x_{1:n}, y_{1:n})\}$ semi-supervised classification/regression $\{(x_{1:l}, y_{1:l}), x_{l+1:n}, x_{test}\}$ transductive classification/regression $\{(x_{1:l}, y_{1:l}), x_{l+1:n}\}$ semi-supervised clustering $\{x_{1:n}, \text{must-, cannot-links}\}$ \downarrow unsupervised learning (clustering) $\{x_{1:n}\}$

How can unlabeled data help?

- Assuming each class is a coherent group (e.g. Gaussian)
- With vs without unlabeled data: Decision boundary shifts.



COMP-551: Applied Machine Learning

Self-training algorithm

- Assume: One's own high confidence predictions are correct.
- Basic algorithm:
 - Train *f* from (X_{l}, Y_{l}) .
 - Predict for $\mathbf{x} \in \mathbf{X}_u$.
 - Add (x, f(x)) to labeled data.
 - Repeat.

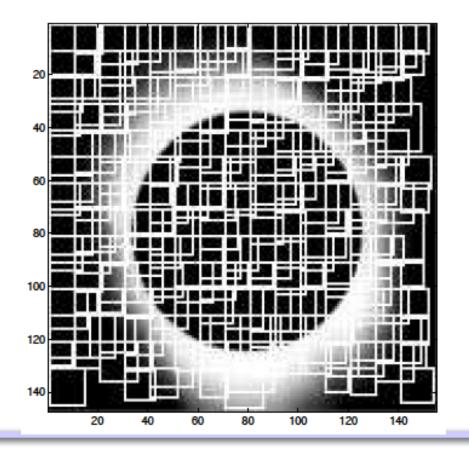
Self-training algorithm

- Assume: One's own high confidence predictions are correct.
- Basic algorithm:
 - Train *f* from (X_{l}, Y_{l}) .
 - Predict for $\mathbf{x} \in \mathbf{X}_u$.
 - Add (x, f(x)) to labeled data.
 - Repeat.
- Variations:
 - Add a few most confident (x, f(x)) to labeled data.
 - Add all (x, f(x)) to labeled data.
 - Add all (x, f(x)) to labeled data, weigh each by confidence.

• Train a Naïve Bayes classifier on two initial labeled images:

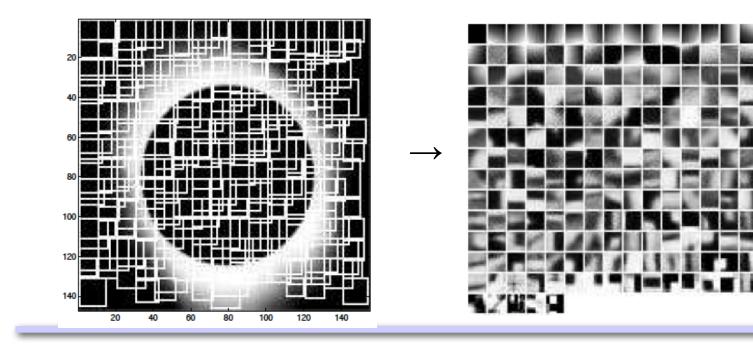
14.jpeg

- Each image is divided into small patches.
- 10x10 grid, random size of 10 ~ 20



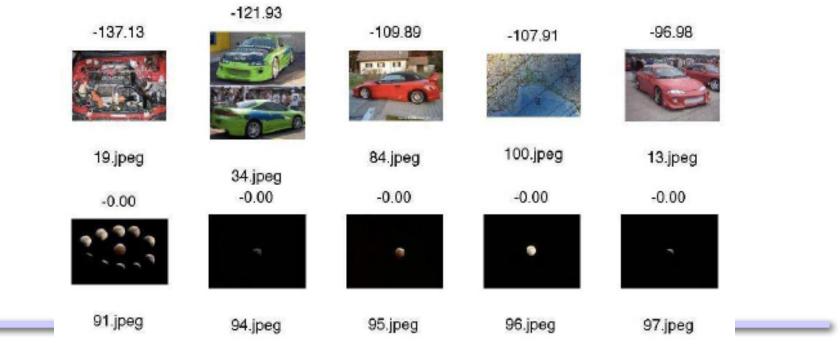
COMP-551: Applied Machine Learning

- All patches are normalized.
- Define a dictionary of 200 "visual words" (cluster centroids) with 200-means clustering on all patches.
- Represent a patch by the index of its closest visual word.



• Train a Naïve Bayes classifier on two initial labeled images:

• Classify unlabeled data, sort by confidence log Pr(y=astronomy | x).



COMP-551: Applied Machine Learning

Advantages of self-training

• The simplest semi-supervised learning method.

• A wrapper method, applies to existing (complex) classifiers.

• Often used in real tasks like natural language processing.

Disadvantages of self-training?

COMP-551: Applied Machine Learning

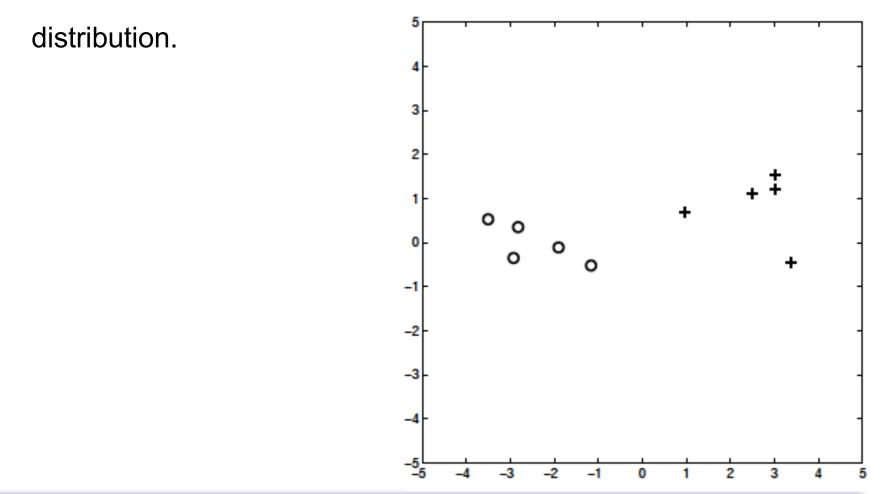
Disadvantages of self-training?

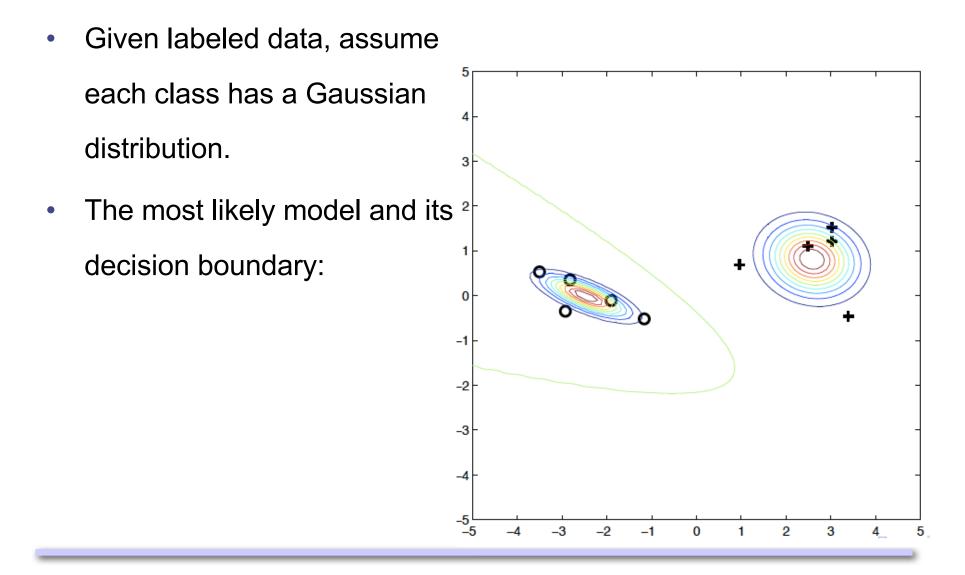
- Early mistakes could reinforce themselves.
 - Heuristic solutions, e.g. "un-label" an instance if its confidence falls below a threshold.
- Cannot say too much in terms of convergence.
 - But there are special cases when self-training is equivalent to the Expectation-Maximization (EM) algorithm.
 - There are also special cases (e.g. linear functions) when the closed-form solution is known.

Alternatives?

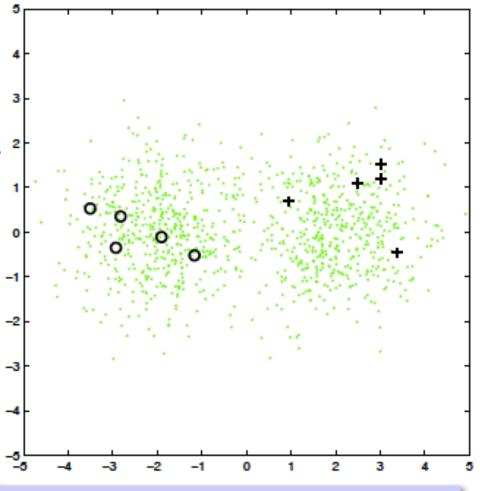
COMP-551: Applied Machine Learning

Given labeled data, assume each class has a Gaussian

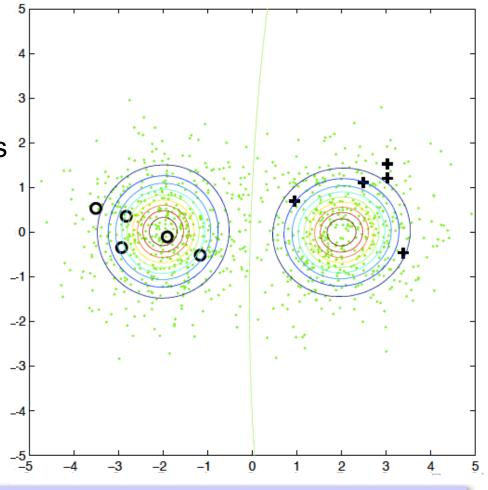




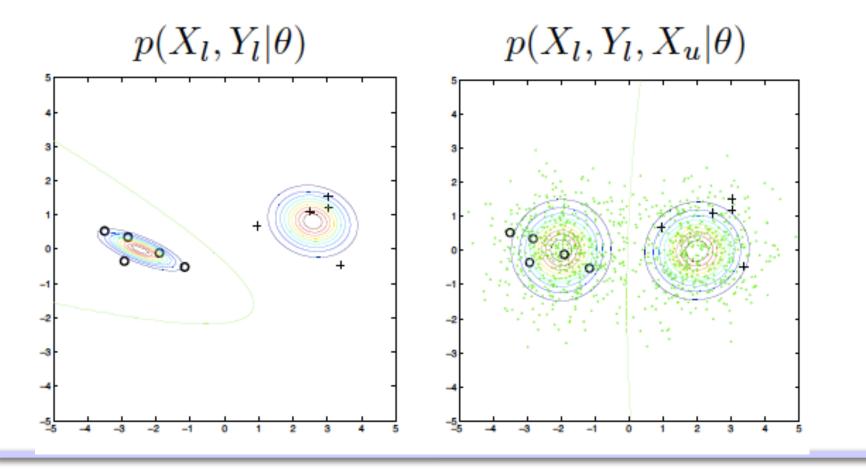
- Given labeled data, assume each class has a Gaussian distribution.
- The most likely model and its decision boundary.
- Add unlabeled data:



- Given labeled data, assume each class has a Gaussian distribution.
- The most likely model and its decision boundary:
- Add unlabeled data.
- The most likely model and decision boundary change.



 Decision boundaries are different because they maximize different quantities.



COMP-551: Applied Machine Learning

Revisiting the EM algorithm

• Setup:

- Observed data: $D = (X_{l}, Y_{l}, X_{u})$
- Hidden data: $H = Y_u$
- $P(D|\theta) = \sum_{H} p(D, H \mid \theta)$
- **Goal**: Find θ to maximize $p(D|\theta)$

Revisiting the EM algorithm

• Setup:

- Observed data: $D = (X_{l}, Y_{l}, X_{u})$
- Hidden data: $H = Y_u$
- $P(D|\theta) = \sum_{H} p(D, H \mid \theta)$
- **Goal**: Find θ to maximize $p(D|\theta)$
- Algorithm:
 - Start with some arbitrary θ_0 .
 - **E-step**: Estimate $p(H|D, \theta)$
 - **M-step**: Find $argmax_{\theta} \sum_{H} p(D, H|\theta)$
- Comments: EM iteratively improves p(D|∂). Converges to a local minima of ∂. K-means is a special case of this.

Comments on the generative approach

- This offers a clear, well-studied, probabilistic framework.
- Can be very effective if the model is close to correct.

Comments on the generative approach

- This offers a clear, well-studied, probabilistic framework.
- Can be very effective if the model is close to correct.
- Often difficult to verify the correctness of the model. Unlabeled data can hurt the solution if the generative model is wrong.

- EM converges to a local optima.
- There are other ways than EM to find parameters, e.g. variational approximation.

Alternate method: Cluster-and-label

Instead of running EM with the probabilistic generative model using the labeled data:

- Run the clustering algorithm assuming all data is unlabeled.
- Label all points within a cluster by the majority of labeled points in that cluster.

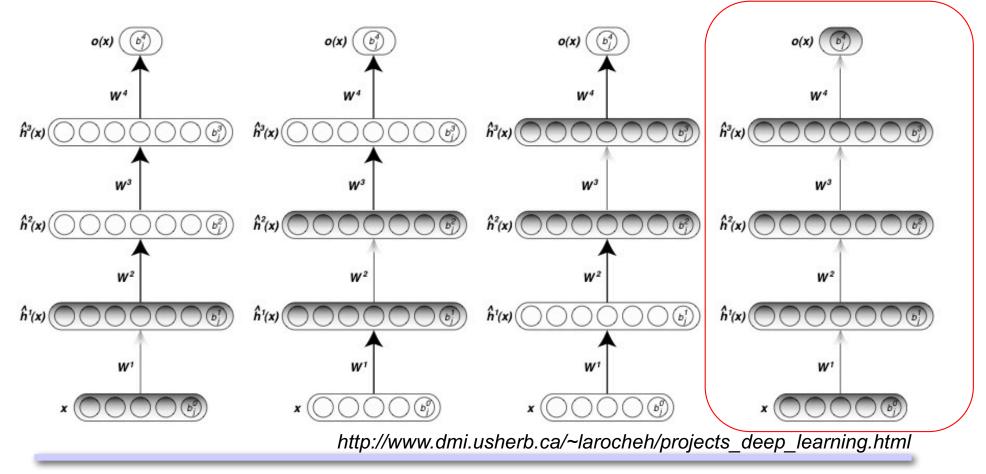
Alternate method: Cluster-and-label

Instead of running EM with the probabilistic generative model using the labeled data:

- Run the clustering algorithm assuming all data is unlabeled.
- Label all points within a cluster by the majority of labeled points in that cluster.
- **Pro**: Another simple wrapper method.
- **Con**: Can be difficult to analyze; labels within a cluster may disagree.

Recall: Autoencoder + supervised layer

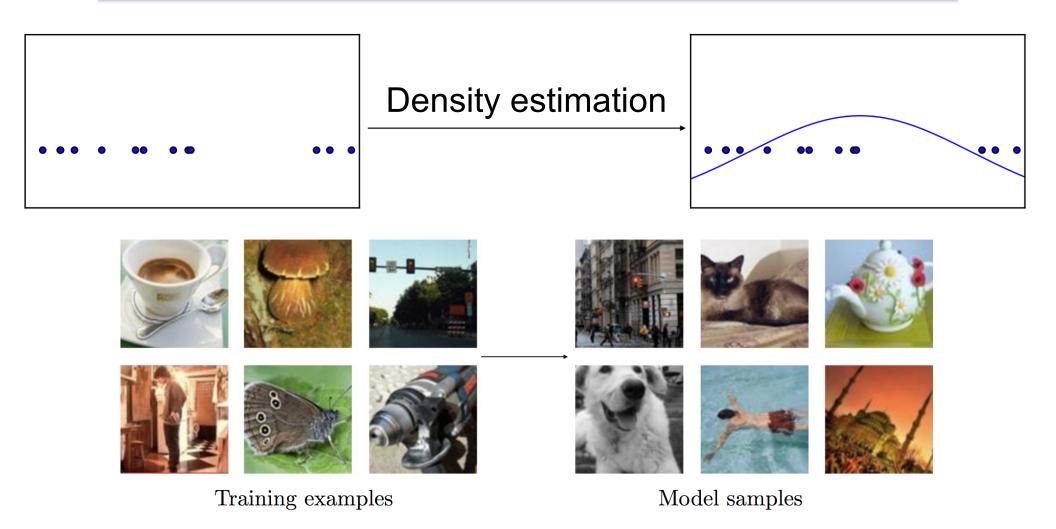
Train an autoencoder, then add a supervised layer and train the full network with backpropagation using error on the predicted output, $Err(W) = \sum_{i=1:n} L[y_i, o(x_i)]$



Many more methods!

- Co-training.
- Semi-supervised SVMs.
- Graph-based algorithms.
- Etc.

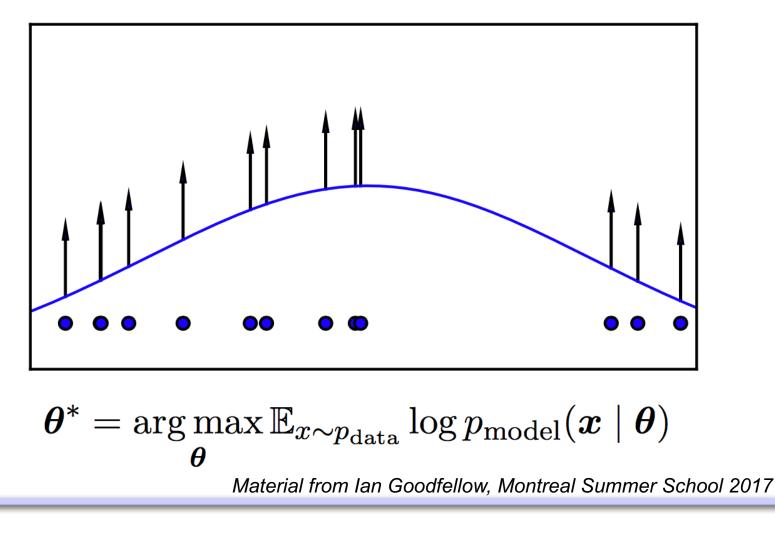
Generative Models



Material from Ian Goodfellow, Montreal Summer School 2017

COMP-551: Applied Machine Learning

Maximum Likelihood Criteria



COMP-551: Applied Machine Learning

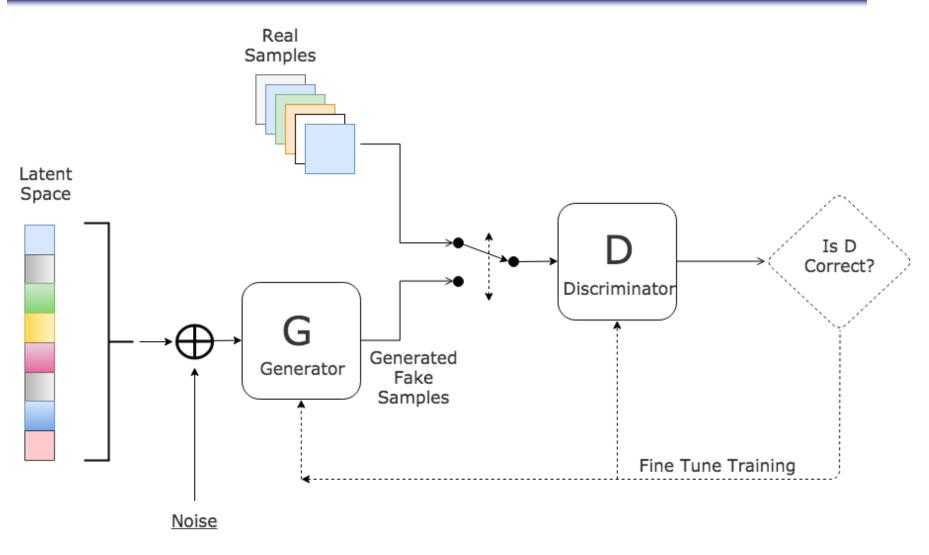
What can you do with generative models?

- Semi-supervised learning
- Missing data
- Multiple correct answers
- Realistic generation tasks
- Simulation by prediction
- Simulated environments and training data
- Learn useful embeddings

Material from Ian Goodfellow, Montreal Summer School 2017

COMP-551: Applied Machine Learning

Generative Adversarial Nets



Picture from https://www.kdnuggets.com/2017/01/generative-adversarial-networks-hot-topic-machine-learning.html

COMP-551: Applied Machine Learning

Generative Adversarial Nets

• Very realistic samples! http://research.nvidia.com/publication/2017-10_Progressive-Growing-of

• Also used to generate voice, natural language, robot behaviors, ...

Does unlabeled data always help?

- There's no free lunch! Semi-supervised learning typically makes strong model assumptions (to compensate for lack of labels).
- Performance can degrade by addition of unlabeled data when the modeling assumptions are not appropriate. This has been empirically observed by many researchers.

Does unlabeled data always help?

- There's no free lunch! Semi-supervised learning typically makes strong model assumptions (to compensate for lack of labels).
- Performance can degrade by addition of unlabeled data when the modeling assumptions are not appropriate. This has been empirically observed by many researchers.
- So far, we have discussed **missing labels**.
- In many problems, we are missing some of the features.
- More on this later in the semester.

Final notes

- You should know:
 - Problem definition for semi-supervised learning.
 - Self-training method, pros/cons
 - Generative approach, generative models
 - Concept of Generative Adversarial Nets
- Significant material for these slides was taken from:
 - *http://pages.cs.wisc.edu/~jerryzhu/icml07tutorial.html*
 - http://pages.cs.wisc.edu/~jerryzhu/pub/ssl_survey.pdf
 - http://www.cs.cmu.edu/~tom/10701_sp11/slides/LabUnlab-3-17-2011.pdf
 - https://drive.google.com/file/d/0ByUKRdiCDK7bTgxTGoxYjQ4NW8/view?usp=drive_web