COMP 551 – Applied Machine Learning Lecture 17: Deep Learning (cont'd)

Instructor: Joelle Pineau (*jpineau@cs.mcgill.ca*)

Class web page: *www.cs.mcgill.ca/~jpineau/comp551*

Unless otherwise noted, all material posted for this course are copyright of the instructor, and cannot be reused or reposted without the instructor's written permission.

Major paradigms for deep learning

- Deep neural networks: The model should be interpreted as a computation graph.
 - Supervised training: Feedforward neural networks.
 - Unsupervised pre-training: Stacked autoencoders.

- Special architectures for different problem domains.
 - Computer vision => Convolutional neural nets.
 - Text and speech => Recurrent neural nets.

Neural models for sequences

- Several datasets contain sequences of data (e.g. time-series, text)
- Bag-of-words assumption looses the ordering information.

COMP-551: Applied Machine Learning

Recurrent Neural Networks (RNNs)

COMP-551: Applied Machine Learning

15

Joelle Pineau

16

Recurrent neural networks (RNNs)

- RNNs can have arbitrary topology.
 - No fixed direction of information flow.
- Delays associated with connections.
 - Every directed cycle contains a delay.
- What can we represent with cycles?

Recurrent neural networks (RNNs)

- RNNs can have arbitrary topology.
 - No fixed direction of information flow.
- Delays associated with connections.
 - Every directed cycle contains a delay.
- What can we represent with cycles?
 - Store an internal dynamic state.
 - Summarize/encode sequences, timeseries.
 - Can capture oscillatory patterns.
 - Can ignore some portion of sequence.
 - Hard: Sequences with long dependencies.

Recurrent Neural Networks (RNNs)

• Can unroll the RNN in time to get a standard feedforward NN.

18

Training RNNs

 Backpropagate through time on the unrolled RNN, with constraint that corresponding weights are tied.

Training RNNs

- Backpropagate through time on the unrolled RNN, with constraint that corresponding weights are tied.
- Can specify the target in a few different ways:
 - Desired final activation of all units
 - Desired activations for all units for multiple time steps.
 - Desired activity of a subset of units.

Training RNNs

- Backpropagate through time on the unrolled RNN, with constraint that corresponding weights are tied.
- Can specify the target in a few different ways:
 - Desired final activation of all units
 - Desired activations for all units for multiple time steps.
 - Desired activity of a subset of units.

• Main challenge:

Exploding/vanishing gradients (gradients shrink/grow quickly.)

=> Change the architecture.

Long short-term memory (LSTM) network

COMP-551: Applied Machine Learning

LSTMs for speech recognition

Graves, Mohamed & Hinton (2013) used a bidirectional LSTM to incorporate both previous and future contextual information to predict a sequence of phonemes from the sequence of utterances.

COMP-551: Applied Machine Learning

12

Tasks for which LSTMs are best

- LSTM architecture has existed for many years (Hochreiter & Schmidhuber 1997).
- Several state-of-the-art results:
 - Cursive handwriting recognition (Graves & Schmidhuber, 2009)
 - Speech recognition (Graves, Mohamed & Hinton, 2013)
 - Machine translation (Sutskever, Vinyals & Le, 2014)
 - Question-answer (Weston et al., 2015)
 - Unstructured dialogue response generation (Serban et al., 2016)
- Main model for language understanding & generation tasks.

Neural Language Modelling

COMP-551: Applied Machine Learning

Neural Language Modelling

COMP-551: Applied Machine Learning

Neural Language Modelling

Continuous space representation - Embeddings

COMP-551: Applied Machine Learning

COMP-551: Applied Machine Learning

or **memory**, which summarizes history from x_1 up to x_{t-1} .

Recurrent neural language model

Transition Function $h_t = f(h_{t-1}, x_{t-1})$ Output/Readout Function $p(x_t = w | x_1, \dots, x_{t-1}) = g_w(h_t)$

 $p(\text{the}) \quad p(\text{cat}|\dots) \quad p(\text{is}|\dots) \quad p(\text{eating}|\dots)$ Example: p(the, cat, is, eating)

Training an RNN language model

• Loss function: $J(\Theta)$

Log-Probability of a sentence (x_1, x_2, \ldots, x_T)

$$\log p(x_1, x_2, \dots, x_T) = \sum_{t=1}^T \log p(x_t \mid x_1, \dots, x_{t-1})$$

$$N \qquad \left\{ (x_1^1, \dots, x_{T_1}^1), \dots, (x_1^N, \dots, x_{T_n}^N) \right\}$$

maximize_{\OVER} $\frac{1}{N} \sum_{n=1}^N \log p(x_1^n, \dots, x_{T_n}^n)$
 $\iff \text{minimize}_{\Theta} J(\Theta) = -\frac{1}{N} \sum_{n=1}^N \sum_{t=1}^{T_n} \log p(x_t^n | x_1^n, \dots, x_{t-1}^n)$

COMP-551: Applied Machine Learning

Training an RNN language model

• Loss function: $J(\Theta)$

Log-Probabilit $\mathcal{A}(\Theta)$ a sentence (x_1, x_2, \ldots, x_T)

$$\log p(x_1, x_2, \dots, x_T) = \sum_{t=1}^{(x_1, x_2, \dots, x_T)} \log p(x_t \mid x_1, \dots, x_{t-1})$$
$$\log p(x_1, x_2, \dots, x_T) = \sum_{t=1}^{(x_t)} \log p(x_t^{t=1} \mid x_1, \dots, x_{t-1})$$

• Train an RNN LM to maximize the log-prob's of training sentences $N = \{x_1, \dots, x_{T_1}, \dots, (x_1^N, \dots, x_{T_1}^N), \dots, (x_1^N, \dots, x_{T_1}^N)$

Given a training set of N sentences: $\{(x_1^1, \dots, x_{T_1}^1), \dots, (x_1^N, \dots, x_{T_N}^N)\}$

$$\text{maximize}_{\Theta} \frac{1}{N} \sum_{n=1}^{N} \log p(x_1^n, \dots, x_{T_n}^n)$$

$$\iff \text{minimize}_{\Theta} J(\Theta) = -\frac{1}{N} \sum_{n=1}^{N} \sum_{t=1}^{T_n} \log p(x_t^n | x_1^n \dots, x_{t-1}^n)$$

COMP-551: Applied Machine Learning

Neural Machine Translation

Dialogue management

Dialogue datasets

Dataset	Туре	Task	# Dialogues	# Utterances	Description
Switchboard [2]	Human-human	Various	2,400	—	Telephone conversations
	spoken				on pre-specified topics
DSTC1 [9]	Human-computer	State	15,000	210,000	Bus ride information
	spoken	tracking			system
DSTC2 [4]	Human-computer	State	3,000	24,000	Restaurant booking
	spoken	tracking			system
DSTC3 [3]	Human-computer	State	2,265	15,000	Tourist information
	spoken	tracking			system
DSTC4 [5]	Human-human	State	35	—	21 hours of tourist info
	spoken	tracking			exchange over Skype
Twitter	Human-human	Next utterance	1,300,000	3,000,000	Post/ replies extracted
Corpus [6]	micro-blog	generation			from Twitter
Twitter Triple	Human-human	Next utterance	29,000,000	87,000,000	A-B-A triples from
Corpus [8]	micro-blog	generation			Twitter replies
Sina Weibo [7]	Human-human	Next utterance	4,435,959	8,871,918	Post/ reply pairs extracted
	micro-blog	generation			from Weibo

COMP-551: Applied Machine Learning

26

Ubuntu chat corpus

Initial chat room log:

Time	User	Utterance
03:44	Old	I dont run graphical ubuntu,
		I run ubuntu server.
03:45	kuja	Taru: Haha sucker.
03:45	Taru	Kuja: ?
03:45	bur[n]er	Old: you can use "ps ax"
		and "kill (PID#)"
03:45	kuja	Taru: Anyways, you made
		the changes right?
03:45	Taru	Kuja: Yes.
03:45	LiveCD	or killall speedlink
03:45	kuja	Taru: Then from the terminal
		type: sudo apt-get update
03:46	_pm	if i install the beta version,
	_	how can i update it when
		the final version comes out?
03:46	Taru	Kuja: I did.

Ubuntu chat corpus

Initial chat room I

	Time	User	Utterance
	03:44	Old	I dont run graphical ubuntu,
Initial chat room log:			I run ubuntu server.
.	03:45	kuja	Taru: Haha sucker.
	03:45	Taru	Kuja: ?
	03:45	bur[n]er	Old: you can use "ps ax" and "kill (PID#)"
	03:45	kuja	Taru: Anyways, you made the changes right?
	03:45	Taru	Kuja: Yes.
	03:45	LiveCD	or killall speedlink
	03:45	kuja	Taru: Then from the terminal
			type: sudo apt-get update
	03:46	_pm	if i install the beta version,
			how can i update it when
			the final version comes out?
	03:46	Taru	Kuja: I did.
	Sender	Recipient	Utterance
	Old		I dont run graphical ubuntu, I run ubuntu server.
	bur[n]er	Old	you can use "ps ax" and "kill (PID#)"
	kuja	Taru	Haha sucker.
	Taru	Kuja	?
Disentangled into 2-	kuja	Taru	Anyways, you made the changes right?
	Taru	Kuja	Yes.
way conversation:	kuja	Taru	Then from the terminal type: sudo apt-get update
	Taru	Kuja	I did.

way conversation

COMP-551: Applied Machine Learning

Ubuntu dialogue corpus

Key properties:

# dialogues (human-human)	930,000
# utterances (in total)	7,100,000
# words (in total)	100,000,000
Min. # turns per dialogue	3
Avg. # turns per dialogue	7.71
Avg. # words per utterance	10.34
Median conversation length (min)	6

COMP-551: Applied Machine Learning

Task 1: Next utterance classification

Context:

. . . .

```
"any apache hax around ? I just deleted all of _path_ - which package provides it?"
```

```
"reconfiguring apache do n't solve it?"
```

```
Response 1: "does n't seem to, no"
```

Response 2: "you can log in but not transfer files?"

The Dual Encoder model

[Lowe, Pow, Serban, Pineau, SIGdial 2015]

COMP-551: Applied Machine Learning

31

Results: Dual Encoder model on Ubuntu dataset

Method	TF-IDF		
1 in 2 R@1	65.9%	87.8%	
1 in 10 R@1	41.0%	60.4%	
1 in 10 R@2	54.5%	74.5%	
1 in 10 R@5	70.8%	92.6%	

TF-IDF : Term frequency – inverse document frequencyTF(t,d) = frequency of a word t in a document dIDF(t,D) = measure of how much information the word tprovidesacross corpus of documents DTF-IDF(t,d,D) = $TF(t,d) \times IDF(t,D)$

User study

Context: "Hello. anybody could help?EOS" "You need to say what your problem is, first."	
 Response: "the text of some of my applications' menu are not well displayed" Response: "do you know if cs:s runs good on it?" Response: "he wants emerald theme" Response: "i dont have a cd-rom drive." Response: "But wont the number be part? eg., sda4 is always '4'?" 	

User study

Context: "Hello. anybody could help? __EOS__" "You need to say what your problem is, first." Response: "the text of some of my applications' menu are not well displayed" Response: "do you know if cs:s runs good on it?" Response: "he wants emerald theme..." Response: "i dont have a cd-rom drive." Response: "But wont the number be part? eg., sda4 is always '4'?"

	Number	Ubuntu Corpus		
	of Users	R@1	R@2	
AMT non-experts	135	$52.9 \pm 2.7\%$	$69.4 \pm 2.5\%$	
AMT experts	10	$52.0 \pm 9.8\%$	$63.0\pm9.5\%$	
Lab experts	8	$83.8\pm8.1\%$	$87.8\pm7.2\%$	
ANN model	machine	66.2%	83.7%	

Task 2: Large corpus next-utterance retrieval

- Search full dataset for a good response: 1 in 10⁶ R@10
 - Pre-compute the response encoding for all candidate utterances.

• Output ranked list of responses based on P(flag=1|c,r) = $\sigma(c^T M r)$.

Top 10 likely responses in order

[[0.99915196]] i wonder if it 's a heat issue. or it 's draining the battery so fast that your laptop will shutdown

[[0.99909478]] didnt know that there is a page for apm , thanks :d. well , apm is not quite what i needed . my battery is going low too fast - although it should work at least __number__ hours (up to __number__) , it is **unknown** empty at ~ 1:40 . it is a toshiba m50 satellite and i think that i have to **unknown** something to spare some energy . the notebook an the accu are __number__ hours old ...

[[0.9989985]] sorry rodd !. how long does it stay on without being plugged in ?. and how old is battery roughly ?

[[0.99867463]] any ideas as to why nothing changes ?. yes to all ?. ok , here 's what i 've got __url__. i followed this guide : __url__ to install the **unknown** i do n't mind restarting , i can check the bios and see what the temp is according to it. brb. nothing changed , cpu temp according to bios is the __organization__ temp in sensors and __organization__ temp is the __organization__ cpu temp. nothing changed , cpu temp according to bios is the __organization__ temp in sensors and __organization__ temp in sensors and __organization__ temp is the __organization__ cpu temp is the _

[[0.99856425]] i will seriously give you , free of charge , a ___number__ ghz athlonxp on an a7v8x with roughly ___number__ gb ram. why do you people have such horrid hardware ?

[[0.99848473]] i have this other computer , mobo is a asus **unknown** and no network card ive tried in it will work , i have a cheap network hub that is ok , this comp is in it , i got another old one going on it , but it refuses to use it. ive tried about 10-12 different network adaptors and short of trying to put in a **unknown** system for it im out of ideas. so far infact , i only have a intel adaptor on a older asus based comp and the __number__ 3com card in this computer going , most of the other ones i tried were infact , identical models to the 3com in this computer , and i tested them to work fine at school ...

[[0.99823273]] blast ... forgot about the __organization__ settings , have n't checked them ... will reboot & have a look @ bios . thanks !. homebuilt - __person__ a7n8x-e mobo , 1gb ddr , __number__ ghz amd xp-m cpu

Query("why is my laptop losing battery so fast", "tfidf") Tf-idf match on query

[1] come again ?. you might want to check __url__

[2] ibm thinkpad t22 ?

[3] __gpe__ to know :)

[4] i tried there but there isnt my problem

[5] i guess is another problem .

[6] __gpe__ , np . thanks for your time :)

[7] try livecd, most likely it is hardware issue

[8] this shows my how much time is left . but i would like to see the actual discharge rate

[9] __gpe__ prob not. your __organization__ probably limits charging above a certain % too (why it says __number__ minutes vs say __number__)

[10] that is correct. fast user switching seems to work better for me (it uses the __organization__ package for doing it . it is probably a newer version in __gpe__)

Measuring response retrieval quality

• **BLEU score** from Machine Translation analyzes co-occurrence of n-grams in 2 sentences.

Score computed between true response and generated response.

Dual Encoder model	17.08 (high variance)
Tf-idf	5.81
Random response	0.20

Generative modeling of responses

<speaker A> How are you, Tom? </s>

<speaker B> I'm good, thanks <pause> did you get my message yesterday? </s>

<speaker B nods>

...

<speaker B> Yes, it was interesting. </s>

<speaker C turns head around>

<speaker C> what message? </s>

Task 3: Natural language response generation

[Serban, A. Sordoni, Y. Bengio, A. Courville, J. Pineau, AAAI 2015]

Hierarchical Encoder-Decoder

- Encode each utterance + Encode the conversation
- Decode response into natural language

COMP-551: Applied Machine Learning

Results

			F D (E B (OII
Model	Perplexity	Perplexity@ U_3	Error-Rate	Error-Rate@ U_3
Backoff N-Gram	64.89	65.05	-	-
Modified Kneser-Ney	60.11	54.75	-	-
Absolute Discounting N-Gram	56.98	57.06	-	-
Witten-Bell Discounting N-Gram	53.30	53.34	-	-
RNN	35.63 ± 0.16	35.30 ± 0.22	$66.34\% \pm 0.06$	$66.32\% \pm 0.08$
DCGM-I	36.10 ± 0.17	36.14 ± 0.26	$66.44\% \pm 0.06$	$66.57\% \pm 0.10$
HRED	36.59 ± 0.19	36.26 ± 0.29	$66.32\% \pm 0.06$	$66.32\% \pm 0.11$
HRED + Word2Vec	33.95 ± 0.16	33.62 ± 0.25	$66.06\% \pm 0.06$	$66.05\% \pm 0.09$
RNN + SubTle	27.09 ± 0.13	26.67 ± 0.19	$64.10\% \pm 0.06$	$64.07\% \pm 0.10$
HRED + SubTle	27.14 ± 0.12	26.60 ± 0.19	$64.10\% \pm 0.06$	$64.03\% \pm 0.10$
HRED-Bi. + SubTle	26.81 ± 0.11	26.31 ± 0.19	${\bf 63.93\% \pm 0.06}$	$\mathbf{63.91\%} \pm 0.09$

Results

Model	Perplexity	Perplexity@U ₃	Error-Rate	Error-Rate@U ₃
Backoff N-Gram	64.89	65.05	-	-
Modified Kneser-Ney	60.11	54.75	-	-
Absolute Discounting N-Gram	56.98	57.06	-	-
Witten-Bell Discounting N-Gram	53.30	53.34	-	-
RNN	35.63 ± 0.16	35.30 ± 0.22	$66.34\% \pm 0.06$	$66.32\% \pm 0.08$
DCGM-I	36.10 ± 0.17	36.14 ± 0.26	$66.44\% \pm 0.06$	$66.57\% \pm 0.10$
HRED	36.59 ± 0.19	36.26 ± 0.29	$66.32\% \pm 0.06$	$66.32\% \pm 0.11$
HRED + Word2Vec	33.95 ± 0.16	33.62 ± 0.25	$66.06\% \pm 0.06$	$66.05\% \pm 0.09$
RNN + SubTle	27.09 ± 0.13	26.67 ± 0.19	$64.10\% \pm 0.06$	$64.07\% \pm 0.10$
HRED + SubTle	27.14 ± 0.12	26.60 ± 0.19	$64.10\% \pm 0.06$	$64.03\% \pm 0.10$
HRED-Bi. + SubTle	26.81 ± 0.11	26.31 ± 0.19	$63.93\% \pm 0.06$	${\bf 63.91\% \pm 0.09}$

Conclusion?

- Neural models are better than n-gram models.
- HRED is better than RNNs (handles longer dialogues)
- Incorporating Word2Vec and SubTle improves performance.

Evaluation metrics

V Perplexity, word error rate

Word overlap metrics: Count number of overlapping word subsets

between generated and reference response.

- From machine translation: **BLEU**, METEOR
- From text summarization: ROUGE

Correlation with human judgment

[Liu, Lowe, Serban, Noseworthy, Charlin, Pineau, EMNLP 2016]

4

Task design

Context:

Hello. anybody could help? __EOS___ You need to say what your problem is, first.

Response 1: the text of some of my applications' menu are not well displayed (ubuntu 8.10).

Response 2: do you know if cs:s runs good on it?

Response 3: he wants emerald theme...

Response 4: i dont have a cd-rom drive.

Response 5: But wont the number be part? eg., sda4 is always '4'?

Space of acceptable next utterances is large!

It's hard to pick a good loss function!

Automatic Dialogue Evaluation Model (ADEM)

• Given context, model response, and reference response,

ADEM tries to predict the human score for that response.

$$\mathcal{L} = \sum_{i=1:K} [score(c_i, r_i, \hat{r}_i) - human_score_i]^2 + \gamma ||\theta||_1$$

• Minimize:

46

What you should know

- Types of deep learning architectures:
 - Stacked autoencoders
 - Convolutional neural networks
 - Recurrent neural networks

• Examples of successful applications.

 From more on Deep Learning, see invited talks at DLSS'16: https://sites.google.com/site/deeplearningsummerschool2016/speakers (Some material from today's lecture taken from Kyunghyun Cho's talk.)