
COMP 551 – Applied Machine Learning
Lecture 15: Neural Networks (cont’d)

Instructor:  Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the 
instructor, and cannot be reused or reposted without the instructor’s written permission. 
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Learning the identity function

• Also called auto-regression.

• This a case of unsupervised learning.
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Learning the identity function

• Neural network structure:

• Learned hidden
layer weights:

(capture an alternate
encoding of the data.)
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Stochastic gradient descent for LMS loss 
• Initialize all weights to small random numbers.

• Repeat until convergence:

– Pick a training example.

– Feed example through network to compute output o = oN+H+1.

– For the output unit, compute the correction:

– For each hidden unit h, compute its share of the correction:

– Update each network weight:

Backpro-
pagation

Gradient
descent

Forward
pass

Initialization
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A family of sigmoid functions
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E.g.
σ(z) = tanh(z)
tanh(z) = (ez - e-z) / (ez + e-z)
¶σ(z)/¶z = 1-σ(z)2



Joelle Pineau6

Rectified linear units

• Instead of using binary units, try log(1+exp(Wx)).

• Unit outputs linear function when input is positive, zero otherwise.

• Useful for speech processing and object recognition.
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Encoding the input
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Encoding the input:  Discrete inputs

• Discrete inputs with k possible values are often encoded using a 

1-hot or 1-of-k encoding:

– k input bits are associated with the variable (one for each possible 
value).

– For any instance, all bits are 0 except the one corresponding to the 
value found in the data, which is set to 1.

– If the value is missing, all inputs are set to 0.
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Encoding the input:  Real-valued inputs

• Important to scale the inputs, so they have a common, 
reasonable range

• Standard transformation: normalize the data
– To get mean=0, variance=1, subtract the mean and divide by the 

standard deviation
– Works well if the data is roughly normal, but bad if we have outliers.
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Encoding the input:  Real-valued inputs

• Important to scale the inputs, so they have a common, 
reasonable range

• Standard transformation: normalize the data
– To get mean=0, variance=1, subtract the mean and divide by the 

standard deviation
– Works well if the data is roughly normal, but bad if we have outliers.

• Alternatives:
– 1-to-n encoding: discretize the variable into a given number of intervals n.

– Thermometer encoding: like 1-to-n but if the variable falls in the i=th interval, 
all bits 1..i are set to 1.

– The thermometer encoding is usually better than 1-to-n encoding.
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Encoding the output
• Multi-class domains:
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Encoding the output
• Multi-class domains:

– Use a network with several output units: one per class
– Compared to training multiple 1-vs-all classifiers, this allows shared 

weights at the hidden layers.
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Encoding the output
• Multi-class domains:

– Use a network with several output units: one per class
– Compared to training multiple 1-vs-all classifiers, this allows shared 

weights at the hidden layers.

• Regression tasks:
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Encoding the output
• Multi-class domains:

– Use a network with several output units: one per class
– Compared to training multiple 1-vs-all classifiers, this allows shared 

weights at the hidden layers.

• Regression tasks:
– Use a network with several output sigmoid units, corresponding to 

encoding of different output ranges of output value.
– Use an output unit without a sigmoid function (i.e. just the weighted 

linear combination) to get full range of output values.
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Network architecture

• Overfitting occurs if there are too many parameters compared to 

the amount of data available.

• Choosing the number of hidden units

– Too few hidden units do not allow the concept to be learned.

– Too many lead to slow learning and overfitting.

– If the m inputs are binary, log m is a good heuristic choice.
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Network architecture

• Overfitting occurs if there are too many parameters compared to 

the amount of data available.

• Choosing the number of hidden units

– Too few hidden units do not allow the concept to be learned.

– Too many lead to slow learning and overfitting.

– If the m inputs are binary, log m is a good heuristic choice.

• Choosing the number of layers

– Always start with one hidden layer.

– Add one at a time, see if solution improves on validation set.

COMP-551: Applied Machine Learning



Joelle Pineau17COMP-551: Applied Machine Learning

Convergence of backpropagation
• Backpropagation = gradient descent over all parameters in network.

• If the learning rate is appropriate, the algorithm is guaranteed to converge 
to a local minimum of the cost function.
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Convergence of backpropagation
• Backpropagation = gradient descent over all parameters in network.

• If the learning rate is appropriate, the algorithm is guaranteed to converge 
to a local minimum of the cost function.
– NOT the global minimum. (Can be much worse.)
– There can be MANY local minimum.
– Use random restarts = train multiple nets with different initial weights.
– In practice, the solution found is often good (try a few parallel restarts).
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Convergence of backpropagation
• Backpropagation = gradient descent over all parameters in network.

• If the learning rate is appropriate, the algorithm is guaranteed to converge 
to a local minimum of the cost function.
– NOT the global minimum. (Can be much worse.)
– There can be MANY local minimum.
– Use random restarts = train multiple nets with different initial weights.
– In practice, the solution found is often good (try a few parallel restarts).

• Training can take thousands of iterations - VERY SLOW! But using 
network after training is very fast.

• Can we find solution faster (i.e. in fewer iterations)?
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Overtraining
• Traditional overfitting is concerned with the number of parameters 

vs. the number of instances

• In neural networks: related phenomenon called overtraining occurs 
when weights take on large magnitudes, i.e. unit saturation

– As learning progresses, the network has more active parameters.
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Overtraining in feed-forward networks
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• Traditional overfitting is concerned with the number of parameters vs.
the number of instances

• In neural networks there is an additional phenomenon called overtraining
which occurs when weights take on large magnitudes, pushing the
sigmoids into saturation

• E�ectively, as learning progresses, the network has more actual
parameters

• Use a validation set to decide when to stop training!
• Regularization is also very e�ective

COMP-652, Lecture 5 - September 20, 2012 37

More application-specific tricks

• If there is too little data, it can be perturbed by random noise; this helps
escape local minima and gives more robust results

• In image classification and pattern recognition tasks, extra data can be
generated, e.g., by applying transformations that make sense

• Weight sharing can be used to indicate parameters that should have the
same value based on prior knowledge

• In this case, each update is computed separately using backprop, then
the tied parameters are updated with an average

COMP-652, Lecture 5 - September 20, 2012 38
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Overtraining
• Traditional overfitting is concerned with the number of parameters 

vs. the number of instances

• In neural networks: related phenomenon called overtraining occurs 
when weights take on large magnitudes, i.e. unit saturation

– As learning progresses, the network has more active parameters.

• Use validation set to decide 
when to stop training.

Training horizon is a hyper-parameter.

• Regularization is also effective.
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Overtraining in feed-forward networks
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More application-specific tricks

• If there is too little data, it can be perturbed by random noise; this helps
escape local minima and gives more robust results

• In image classification and pattern recognition tasks, extra data can be
generated, e.g., by applying transformations that make sense

• Weight sharing can be used to indicate parameters that should have the
same value based on prior knowledge

• In this case, each update is computed separately using backprop, then
the tied parameters are updated with an average
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Regularization in neural networks

• Incorporate an L2 penalty:  J(w) = 0.5(y-hw(x))2 + 0.5λwTw

– Select λ with cross-validation.

• Can also use different penalties λ1 , λ2 for each layer.

– Can be interpreted as a Bayesian prior over weights.
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Choosing the learning rate

• Backprop is very sensitive to the choice of learning rate.

– Too large ⇒ divergence.

– Too small ⇒ VERY slow learning.

– The learning rate also influences the ability to escape local optima.

• Very often, different learning rates are used for units in different 

layers.  Hard to tune by hand!

• Heuristic: Track performance on validation set, when it 

stabilizes, divide learning rate by 2.
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Optimization method: Adagrad

• Calculate adaptive learning rate per parameter.

• Intuition:  Adapt learning rate depending on previous updates to 

that parameter.

– Learn slowly for frequent features.

– Learn faster for rare but informative features.

• Can add regularization term.

See: Duchi, Hazan, Singer (2011) Adaptive subgradient methods for online learning 
and stochastic optimization. JMLR.
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Adding momentum
• On the t-th training sample, instead of the update:

We do:

The second term is called momentum

COMP-551: Applied Machine Learning

Adding momentum

• On the t-th training sample, instead of the update:

�wij ⇥ �ij⇤jxij, we do:

�wij(t) ⇥ �ij⇤jxij + ⇥�wij(t� 1)

The second term is called momentum

• Advantages:

– Easy to pass small local minima
– Keeps the weights moving in areas where the error is flat
– Increases the speed where the gradient stays unchanged

• Disadvantages:

– With too much momentum, it can get out of a global maximum!
– One more parameter to tune, and more chances of divergence
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• It can be shown that each unit has its own optimal learning rate
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Adding momentum
• On the t-th training sample, instead of the update:

We do:

The second term is called momentum

Advantages:

– Easy to pass small local minima.

– Keeps the weights moving in areas where the error is flat.

– Increases the speed where the gradient stays unchanged.

Disadvantages:

– With too much momentum, it can get out of a global maximum!

– One more parameter to tune, and more chances of divergence.
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More application-specific tricks

• If there is too little data, it can be perturbed by random noise; 

this helps escape local minima and gives more robust results.

– In image classification and pattern recognition tasks, extra data can 
be generated, e.g., by applying transformations that make sense.

COMP-551: Applied Machine Learning
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More application-specific tricks

• If there is too little data, it can be perturbed by random noise; 

this helps escape local minima and gives more robust results.

– In image classification and pattern recognition tasks, extra data can 
be generated, e.g., by applying transformations that make sense.

• Weight sharing can be used to indicate parameters that should 

have the same value based on prior knowledge.

– Each update is computed separately using backpropagation, then 
the tied parameters are updated with an average.
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When to consider using NNs

• Input is high-dimensional discrete or real-valued (e.g. raw 

sensor input).

• Output is discrete or real valued, or a vector of values.

• Possibly noisy data.

• Training time is not important.

• Form of target function is unknown.

• Human readability of result is not important.

• The computation of the output based on the input has to be fast.
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Several applications

• Speech recognition and synthesis.

• Natural language understanding.

• Image classification, digit recognition.

• Financial prediction.

• Game playing strategies.

• Robotics.

• …..

In recent years, many state-of-the-art results obtained using Deep Learning.
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Final notes
• What you should know:

– Definition / components of neural networks.
– Training by backpropagation.
– Overfitting (and how to avoid it).
– When to use NNs.
– Some strategies for successful application of NNs.

• Project 2 peer review opening today. Due in 1 week.

• Additional information about neural networks:

Video & slides from the Montreal Deep Learning Summer School:
http://videolectures.net/deeplearning2017_larochelle_neural_networks/

https://drive.google.com/file/d/0ByUKRdiCDK7-c2s2RjBiSms2UzA/view?usp=drive_web

https://drive.google.com/file/d/0ByUKRdiCDK7-UXB1R1ZpX082MEk/view?usp=drive_web


