Instructor: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the instructor, and cannot be reused or reposted without the instructor’s written permission.
Learning the identity function

- Also called *auto-regression*.
- This a case of *unsupervised learning*.

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000000</td>
<td>10000000</td>
</tr>
<tr>
<td>01000000</td>
<td>01000000</td>
</tr>
<tr>
<td>00100000</td>
<td>00100000</td>
</tr>
<tr>
<td>00010000</td>
<td>00010000</td>
</tr>
<tr>
<td>00001000</td>
<td>00001000</td>
</tr>
<tr>
<td>00000100</td>
<td>00000100</td>
</tr>
<tr>
<td>00000010</td>
<td>00000010</td>
</tr>
<tr>
<td>00000001</td>
<td>00000001</td>
</tr>
</tbody>
</table>
Learning the identity function

• Neural network structure:

• Learned hidden layer weights:
 (capture an alternate encoding of the data.)
Stochastic gradient descent for LMS loss

- Initialize all weights to small random numbers.
- Repeat until convergence:
 - Pick a training example.
 - Feed example through network to compute output \(o = o_{N+H+1} \).
 - For the output unit, compute the correction:
 \[
 \delta_{N+H+1} \leftarrow o(1 - o)(y - o)
 \]
 - For each hidden unit \(h \), compute its share of the correction:
 \[
 \delta_h \leftarrow o_h(1 - o_h)w_{N+H+1,h}\delta_{N+H+1}
 \]
 - Update each network weight:
 \[
 w_{h,i} \leftarrow w_{h,i} + \alpha_{h,i}\delta_h x_{h,i}
 \]
A family of sigmoid functions

\[\sigma(z) = \tanh(z) \]
\[\tanh(z) = \frac{e^z - e^{-z}}{e^z + e^{-z}} \]
\[\frac{\partial \sigma(z)}{\partial z} = 1 - \sigma(z)^2 \]
Rectified linear units

- Instead of using binary units, try \(\log(1+\exp(Wx)) \).
- Unit outputs linear function when input is positive, zero otherwise.
- Useful for speech processing and object recognition.
Encoding the input
Encoding the input: Discrete inputs

- Discrete inputs with \(k \) possible values are often encoded using a
 \textit{1-hot} or \textit{1-of-}k encoding:
 - \(k \) input bits are associated with the variable (one for each possible value).
 - For any instance, all bits are 0 except the one corresponding to the value found in the data, which is set to 1.
 - If the value is missing, all inputs are set to 0.
Encoding the input: Real-valued inputs

• Important to scale the inputs, so they have a common, reasonable range

• Standard transformation: normalize the data
 – To get mean=0, variance=1, subtract the mean and divide by the standard deviation
 – Works well if the data is roughly normal, but bad if we have outliers.
Encoding the input: Real-valued inputs

- Important to **scale the inputs**, so they have a common, reasonable range
- Standard transformation: **normalize the data**
 - To get mean=0, variance=1, subtract the mean and divide by the standard deviation
 - Works well if the data is roughly normal, but bad if we have outliers.

- Alternatives:
 - **1-to-n encoding**: discretize the variable into a given number of intervals n.
 - **Thermometer encoding**: like 1-to-n but if the variable falls in the i=th interval, all bits $1..i$ are set to 1.
 - The thermometer encoding is usually better than 1-to-n encoding.
Encoding the output

- Multi-class domains:
Encoding the output

- **Multi-class domains:**
 - Use a network with several output units: one per class
 - Compared to training multiple 1-vs-all classifiers, this allows shared weights at the hidden layers.
Encoding the output

- **Multi-class domains:**
 - Use a network with several output units: one per class
 - Compared to training multiple 1-vs-all classifiers, this allows shared weights at the hidden layers.

- **Regression tasks:**
Encoding the output

- **Multi-class domains:**
 - Use a network with several output units: one per class
 - Compared to training multiple 1-vs-all classifiers, this allows shared weights at the hidden layers.

- **Regression tasks:**
 - Use a network with several output sigmoid units, corresponding to encoding of different output ranges of output value.
 - Use an output unit without a sigmoid function (i.e. just the weighted linear combination) to get full range of output values.
Network architecture

• Overfitting occurs if there are too many parameters compared to the amount of data available.

• Choosing the number of hidden units
 – Too few hidden units do not allow the concept to be learned.
 – Too many lead to slow learning and overfitting.
 – If the m inputs are binary, $\log m$ is a good heuristic choice.
Network architecture

- Overfitting occurs if there are too many parameters compared to the amount of data available.

- Choosing the number of hidden units
 - Too few hidden units do not allow the concept to be learned.
 - Too many lead to slow learning and overfitting.
 - If the m inputs are binary, $\log m$ is a good heuristic choice.

- Choosing the number of layers
 - Always start with one hidden layer.
 - Add one at a time, see if solution improves on validation set.
Convergence of backpropagation

- Backpropagation = gradient descent over **all parameters** in network.

- If the learning rate is appropriate, the algorithm is guaranteed to converge to a **local minimum** of the cost function.
Convergence of backpropagation

- Backpropagation = gradient descent over all parameters in network.

- If the learning rate is appropriate, the algorithm is guaranteed to converge to a local minimum of the cost function.
 - NOT the global minimum. (Can be much worse.)
 - There can be MANY local minimum.
 - Use random restarts = train multiple nets with different initial weights.
 - In practice, the solution found is often good (try a few parallel restarts).
Convergence of backpropagation

• Backpropagation = gradient descent over all parameters in network.

• If the learning rate is appropriate, the algorithm is guaranteed to converge to a local minimum of the cost function.
 – NOT the global minimum. (Can be much worse.)
 – There can be MANY local minimum.
 – Use random restarts = train multiple nets with different initial weights.
 – In practice, the solution found is often good (try a few parallel restarts).

• Training can take thousands of iterations - VERY SLOW! But using network after training is very fast.

• Can we find solution faster (i.e. in fewer iterations)?
Overtraining

- Traditional **overfitting** is concerned with the number of parameters vs. the number of instances.
- In neural networks: related phenomenon called **overtraining** occurs when weights take on large magnitudes, i.e. unit saturation.
 - As learning progresses, the network has more active parameters.

Error versus weight updates (example 1)

- Training set error
- Validation set error

More application-specific tricks:

- If there is too little data, it can be perturbed by random noise; this helps escape local minima and gives more robust results.
- In image classification and pattern recognition tasks, extra data can be generated by applying transformations that make sense.
- Weight sharing can be used to indicate parameters that should have the same value based on prior knowledge.
 - In this case, each update is computed separately using backprop, then the tied parameters are updated with an average.
Overtraining

- Traditional overfitting is concerned with the number of parameters vs. the number of instances.
- In neural networks: related phenomenon called overtraining occurs when weights take on large magnitudes, i.e., unit saturation.
 - As learning progresses, the network has more active parameters.
- Use validation set to decide when to stop training. Training horizon is a hyper-parameter.
- Regularization is also effective.

![Error versus weight updates (example 1)](image)

- More application-specific tricks:
 - If there is too little data, it can be perturbed by random noise; this helps escape local minima and gives more robust results.
 - In image classification and pattern recognition tasks, extra data can be generated by applying transformations that make sense.
 - Weight sharing can be used to indicate parameters that should have the same value based on prior knowledge.
 - In this case, each update is computed separately using backprop, then the tied parameters are updated with an average.
Regularization in neural networks

• Incorporate an L2 penalty:
\[J(w) = 0.5(y-h_w(x))^2 + 0.5\lambda w^T w \]
 - Select \(\lambda \) with cross-validation.

• Can also use different penalties \(\lambda_1, \lambda_2 \) for each layer.
 - Can be interpreted as a Bayesian prior over weights.
Choosing the learning rate

- **Backprop** is very sensitive to the choice of learning rate.
 - Too large \(\Rightarrow\) divergence.
 - Too small \(\Rightarrow\) VERY slow learning.
 - The learning rate also influences the ability to escape local optima.

- Very often, different learning rates are used for units in different layers. Hard to tune by hand!

- **Heuristic**: Track performance on validation set, when it stabilizes, divide learning rate by 2.
Optimization method: Adagrad

• Calculate adaptive learning rate per parameter.

• Intuition: Adapt learning rate depending on previous updates to that parameter.
 – Learn slowly for frequent features.
 – Learn faster for rare but informative features.

• Can add regularization term.

See: Duchi, Hazan, Singer (2011) Adaptive subgradient methods for online learning and stochastic optimization. JMLR.
Adding momentum

• On the t-th training sample, instead of the update:

\[\Delta w_{ij} \leftarrow \alpha_{ij} \delta_j x_{ij} . \]

We do: \[\Delta w_{ij}(t) \leftarrow \alpha_{ij} \delta_j x_{ij} + \beta \Delta w_{ij}(t - 1) \]

The second term is called momentum
Adding momentum

• On the t-th training sample, instead of the update:

\[\Delta w_{ij} \leftarrow \alpha_{ij} \delta_j x_{ij} \]

We do:

\[\Delta w_{ij}(t) \leftarrow \alpha_{ij} \delta_j x_{ij} + \beta \Delta w_{ij}(t - 1) \]

The second term is called momentum

Advantages:

- Easy to pass small local minima.
- Keeps the weights moving in areas where the error is flat.
- Increases the speed where the gradient stays unchanged.

Disadvantages:

- With too much momentum, it can get out of a global maximum!
- One more parameter to tune, and more chances of divergence.
More application-specific tricks

• If there is too little data, it can be perturbed by random noise; this helps escape local minima and gives more robust results.
 – In image classification and pattern recognition tasks, extra data can be generated, e.g., by applying transformations that make sense.
More application-specific tricks

• If there is too little data, it can be perturbed by random noise; this helps escape local minima and gives more robust results.
 – In image classification and pattern recognition tasks, extra data can be generated, e.g., by applying transformations that make sense.

• Weight sharing can be used to indicate parameters that should have the same value based on prior knowledge.
 – Each update is computed separately using backpropagation, then the tied parameters are updated with an average.
When to consider using NNs

- Input is high-dimensional discrete or real-valued (e.g. raw sensor input).
- Output is discrete or real valued, or a vector of values.
- Possibly noisy data.
- Training time is not important.
- Form of target function is unknown.
- Human readability of result is not important.
- The computation of the output based on the input has to be fast.
Several applications

- Speech recognition and synthesis.
- Natural language understanding.
- Image classification, digit recognition.
- Financial prediction.
- Game playing strategies.
- Robotics.
- …..

In recent years, many state-of-the-art results obtained using Deep Learning.
Final notes

• What you should know:
 – Training by backpropagation.
 – Overfitting (and how to avoid it).
 – When to use NNs.
 – Some strategies for successful application of NNs.

• Project 2 peer review opening today. Due in 1 week.

• Additional information about neural networks:
 Video & slides from the Montreal Deep Learning Summer School:
 http://videolectures.net/deeplearning2017_larochelle_neural_networks/
 https://drive.google.com/file/d/0ByUKRdiCDK7-c2s2RjBiSms2UzA/view?usp=drive_web
 https://drive.google.com/file/d/0ByUKRdiCDK7-UXB1R1ZpX082MEk/view?usp=drive_web