COMP 551 – Applied Machine Learning Lecture 14: Neural Networks

Instructor: Joelle Pineau (*jpineau@cs.mcgill.ca*)

Class web page: *www.cs.mcgill.ca/~jpineau/comp551*

Unless otherwise noted, all material posted for this course are copyright of the instructor, and cannot be reused or reposted without the instructor's written permission.

Kaggle: Project 2

#	∆pub	Team Name	Kernel	Team Members	Score 😮	Entries	Last
1	_	<u> </u>		7	0.81705	36	2d
2	▲1	Juicebox3.0 (Stay hydrated)		A 🔊	0.81082	25	1d
3	₹1	ZSV			0.81067	23	1d
4		Nothing but Nets			0.80600	24	4d
5	▲2	Jale Li			0.80577	10	1d
6	₹1	DMT			0.80414	29	1d
7	▲1	NAS			0.80290	24	1d
8	• 2	AJGARS			0.80271	25	1d
9	_	WIL			0.80071	28	2d
10	▲ 2	Cereal Killer			0.79736	22	1d
11	₹1	team-02-unmerged			0.79712	2	1d
12	₹1	team-02			0.79712	15	1d
13	_	LazyLearner			0.79319	26	1d
14	▲ 2	LR		-	0.79234	24	2d
15	▲ 5	Epte			0.79176	18	3d

Recall the perceptron

- We can take a linear combination and threshold it: $h_{\mathbf{w}}(\mathbf{x}) = \operatorname{sgn}(\mathbf{x} \cdot \mathbf{w}) = \begin{cases} +1 & \text{if } \mathbf{x} \cdot \mathbf{w} > 0 \\ -1 & \text{otherwise} \end{cases}$
- The output is taken as the predicted class.

Joelle Pineau

Decision surface of a perceptron

- Can represent many functions.
- To represent non-linearly separate functions (e.g. XOR), we could use a <u>network</u> of perceptron-like elements.
- If we connect perceptrons into networks, the error surface for the network is not differentiable (because of the hard threshold).

Example: A network representing XOR

COMP-551: Applied Machine Learning

Joelle Pineau

Recall the sigmoid function

Sigmoid provide "soft threshold", whereas perceptron provides "hard threshold"

- σ is the sigmoid function: $\sigma(z) = \frac{1}{1 + e^{-z}}$
- It has the following nice property: $\begin{bmatrix} \frac{d}{d} \end{bmatrix}$

$$\frac{d\sigma(z)}{dz} = \sigma(z)(1 - \sigma(z))$$

We can derive a gradient descent rule to train:

- One sigmoid unit; Multi-layer networks of sigmoid units.

Feed forward neural networks

- A collection of neurons with sigmoid activation, arranged in layers.
- Layer 0 is the **input layer**, its units just copy the input.
- Last layer (layer K) is the **<u>output layer</u>**, its units provide the output.
- Layers 1, .., K-1 are hidden layers, cannot be detected outside of network.

Why this name?

- In <u>feed-forward networks</u> the output of units in layer k become input to the units in layers k+1, k+2, ..., K.
- No cross-connection between units in the same layer.
- No backward ("recurrent") connections from layers downstream.
- Typically, units in layer k provide input to units in layer k+1 only.
- In <u>fully-connected networks</u>, all units in layer k provide input to all units in layer k+1.

Feed-forward neural networks

Notation:

- *w_{ji}* denotes weight on connection
 from unit *i* to unit *j*.
- By convention, $x_{j0} = 1$, $\forall j$
- Output of unit *j*, denoted *o_j* is computed using a sigmoid:

where w_j is vector of weights entering unit j_i

x_{*i*} is vector of inputs to unit *j*

• By definition, $x_{ji} = o_j$.

Given an input, how do we compute the output? How do we train the weights?

Hidden Layer
Input Layer
Input 1
Input 1
Input n
S entering unit
$$j_i$$

O unit j

Computing the output of the network

• Suppose we want network to make prediction about instance <x,y=?>.

Run a **forward pass** through the network.

For layer $k = 1 \dots K$

1. Compute the output of all neurons in layer *k*:

 $o_j = \sigma(\mathbf{w_j} \cdot \mathbf{x_j}), \forall j \in \mathsf{Layer} \ k$

2. Copy this output as the input to the next layer:

 $x_{j,i} = o_i, \forall i \in \text{Layer } k, \forall j \in \text{Layer } k+1$

The output of the last layer is the predicted output *y*.

Learning in feed-forward neural networks

- Assume the network structure (units+connections) is given.
- The learning problem is finding a good set of weights to minimize the error at the output of the network.
- Approach: gradient descent, because the form of the hypothesis formed by the network, h_w is:
 - **<u>Differentiable</u>**! Because of the choice of sigmoid units.
 - <u>Very complex</u>! Hence direct computation of the optimal weights is not possible.

Gradient-descent preliminaries for NN

- Assume we have a fully connected network:
 - N input units (indexed 1, ..., N)
 - *H* hidden units in a single layer (indexed *N*+1, ..., *N*+*H*)
 - one output unit (indexed N+H+1)
- Suppose you want to compute the weight update after seeing instance <x, y>.
- Let o_i, i = 1, ..., H+N+1 be the outputs of all units in the network for the given input x.
- The sum-squared error function is:

$$J(\mathbf{w}) = \frac{1}{2}(y - h_{\mathbf{w}}(\mathbf{x}))^2 = \frac{1}{2}(y - o_{N+H+1})^2$$

Gradient-descent update for output node

- Derivative with respects to the weights $W_{N+H+1,j}$ entering O_{N+H+1} :
 - Use the chain rule: $\partial J(w)/\partial w = (\partial J(w)/\partial \sigma) \cdot (\partial \sigma/\partial w)$

 $\partial J(w)/\partial \sigma = -(y - O_{N+H+1})$ $\sigma(z) = \frac{1}{1 + e^{-z}}$

 $\frac{d\sigma(z)}{dz} = \sigma(z)(1 - \sigma(z))$

Gradient-descent update for output node

- Derivative with respects to the weights $W_{N+H+1,j}$ entering O_{N+H+1} :
 - Use the chain rule: $\partial J(w)/\partial w = (\partial J(w)/\partial \sigma) \cdot (\partial \sigma/\partial w)$

 $\partial J(w)/\partial \sigma = -(y - O_{N+H+1})$ $\sigma(z) = \frac{1}{1 + e^{-z}}$

$$\frac{d\sigma(z)}{dz} = \sigma(z)(1 - \sigma(z))$$

$$\frac{\partial J}{\partial w_{N+H+1,j}} = -(y - o_{N+H+1})o_{N+H+1}(1 - o_{N+H+1})x_{N+H+1,j}$$

Gradient-descent update for output node

- Derivative with respects to the weights $W_{N+H+1,j}$ entering O_{N+H+1} :
 - Use the chain rule: $\partial J(w)/\partial w = (\partial J(w)/\partial \sigma) \cdot (\partial \sigma/\partial w)$

$$\frac{\partial J}{\partial w_{N+H+1,j}} = -(y - o_{N+H+1})o_{N+H+1}(1 - o_{N+H+1})x_{N+H+1,j}$$

Hence, we can write:
$$\frac{\partial J}{\partial w_{N+H+1,j}} = -\delta_{N+H+1}x_{N+H+1,j}$$

where:

$$\delta_{N+H+1} = (y - o_{N+H+1})o_{N+H+1}(1 - o_{N+H+1})$$

COMP-551: Applied Machine Learning

Joelle Pineau

Gradient-descent update for hidden node

 The derivative wrt the other weights, w_{l,j} where j = 1, ..., N and l = N+1, ..., N+H can be computed using <u>chain rule</u>:

$$\frac{\partial J}{\partial w_{l,j}} = -(y - o_{N+H+1})o_{N+H+1}(1 - o_{N+H+1})$$
$$\cdot \frac{\partial}{\partial w_{l,j}}(\mathbf{w}_{N+H+1} \cdot \mathbf{x}_{N+H+1})$$
$$= -\delta_{N+H+1}w_{N+H+1,l}\frac{\partial}{\partial w_{l,j}}x_{N+H+1,l}$$

• Recall that $x_{N+H+1,l} = o_l$. Hence we have:

$$\frac{\partial}{\partial w_{l,j}} x_{N+H+1,l} = o_l (1 - o_l) x_{l,j}$$

• Putting these together and using similar notation as before:

$$\frac{\partial J}{\partial w_{l,j}} = -o_l(1-o_l)\delta_{N+H+1}w_{N+H+1,l}x_{l,j} = -\delta_l x_{l,j}$$

Gradient-descent update for hidden node

 The derivative wrt the other weights, w_{k,j} where j = 1, ..., N and k = N+1, ..., N+H can be computed again using chain rule.

Image from: http://openi.nlm.nih.gov/detailedresult.php?img=2716495_bcr2257-1&req=4

Stochastic gradient descent

- Initialize all weights to small random numbers.
- Repeat until convergence:
 - Pick a training example.
 - Feed example through network to compute output $o = o_{N+H+1}$.
 - For the output unit, compute the correction:

$$\delta_{N+H+1} \leftarrow o(1-o)(y-o)$$

For each hidden unit h, compute its share of the correction:

$$\delta_h \leftarrow o_h (1 - o_h) w_{N+H+1,h} \delta_{N+H+1}$$

- Update each network weight:

$$w_{h,i} \leftarrow w_{h,i} + \alpha_{h,i} \delta_h x_{h,i}$$

Gradient descent

Backpro-

pagation

Initialization

Organizing the training data

- Stochastic gradient descent: Compute error on a single example at a time (as in previous slide).
- Batch gradient descent: Compute error on all examples.
 - Loop through the training data, accumulating weight changes.
 - Update all weights and repeat.
- Mini-batch gradient descent: Compute error on small subset.
 - Randomly select a "mini-batch" (i.e. subset of training examples).
 - Calculate error on mini-batch, apply to update weights, and repeat.

A <u>single</u> sigmoid neuron?

A <u>single</u> sigmoid neuron?

 Same representational power as a perceptron: Boolean AND, OR, NOT, but not XOR.

A <u>single</u> sigmoid neuron?

 Same representational power as a perceptron: Boolean AND, OR, NOT, but not XOR.

A neural network with a single hidden layer?

Learning the identity function

Input		Output
10000000	\rightarrow	1000000
01000000	\rightarrow	01000000
00100000	\rightarrow	00100000
00010000	\rightarrow	00010000
00001000	\rightarrow	00001000
00000100	\rightarrow	00000100
00000010	\rightarrow	00000010
00000001	\rightarrow	0000001

Learning the identity function

• Neural network structure:

		Input		Hidden Layer				Output
•	Learned hidden	10000000	\rightarrow	.89	.04	.08	\rightarrow	10000000
		01000000	\rightarrow	.15	.99	.99	\rightarrow	01000000
	layer weights:	00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000
	i i je i i e gi i e i	00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000
		00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000
		00000100	\rightarrow	.01	.11	.88	\rightarrow	00000100
		00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010
		00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001

COMP-551: Applied Machine Learning

A <u>single</u> sigmoid neuron?

 Same representational power as a perceptron: Boolean AND, OR, NOT, but not XOR.

A neural network with a single hidden layer?

- Can represent every boolean function, but might require a number of hidden units that is exponential in the number of inputs.
- Every bounded continuous function can be approximated with arbitrary precision by a boolean function.

A <u>single</u> sigmoid neuron?

 Same representational power as a perceptron: Boolean AND, OR, NOT, but not XOR.

A neural network with a single hidden layer?

- Can represent every boolean function, but might require a number of hidden units that is exponential in the number of inputs.
- Every bounded continuous function can be approximated with arbitrary precision by a boolean function.

A neural network with <u>two hidden layers</u>?

A <u>single</u> sigmoid neuron?

 Same representational power as a perceptron: Boolean AND, OR, NOT, but not XOR.

A neural network with a single hidden layer?

- Can represent every boolean function, but might require a number of hidden units that is exponential in the number of inputs.
- Every bounded continuous function can be approximated with arbitrary precision by a boolean function.

A neural network with <u>two hidden layers</u>?

 Any function can be approximated to arbitrary accuracy by a network with two hidden layers.

Project 3: Visual add / multiply (due Nov.13)

- For each image, give the result of the equation.
 - If it's an "A", add the 2 digits. If it's an "M", multiply the 2 digits.

Final notes

- What you should know:
 - Definition / components of neural networks.
 - Training by backpropagation.
- Additional information about neural networks:

Video & slides from the Montreal Deep Learning Summer School: http://videolectures.net/deeplearning2017_larochelle_neural_networks/ https://drive.google.com/file/d/0ByUKRdiCDK7-c2s2RjBiSms2UzA/view?usp=drive_web https://drive.google.com/file/d/0ByUKRdiCDK7-UXB1R1ZpX082MEk/view?usp=drive_web

- Tutorial 3 is today! TR3120, 6-7pm.
- Project #2 peer reviews will open next Monday on CMT.