COMP 551 – Applied Machine Learning
Lecture 13: Unsupervised learning

Associate Instructor: Herke van Hoof
(herke.vanhoof@mail.mcgill.ca)

Slides mostly by: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the instructor, and cannot be reused or reposted without the instructor’s written permission.
Today’s quiz

• The hinge loss function is convex
 – True

• The number of Lagrange multipliers in the soft SVM problem is determined by the number of features in the input set.
 – False

• A quadratic programming problem can be solved in polynomial time.
 – True

• SVM with a Gaussian kernel requires specification of the variance of the kernel. This can be selected with cross-validation.
 – True

• One disadvantage of the "kernel trick" is that the memory requirement grows linearly with the numbers of features computed.
 – False
Uploading code in CMT

Author Console

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Files</th>
<th>Track</th>
<th>Actions</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>dummy submission</td>
<td>Submission files: supervisedDRtoy.pdf</td>
<td>Project 1</td>
<td>Author Feedback: View Reviews, Post Author Feedback</td>
</tr>
<tr>
<td>66</td>
<td>Dummy submission</td>
<td>Submission files: supervisedDRtoy.pdf</td>
<td>Project 2</td>
<td>Supplementary Material: Upload Supplementary Material</td>
</tr>
</tbody>
</table>
What is unsupervised learning?

- Given only input data: \(D = \{x_i\}, i=1:n \), find some patterns or regularity in the data.

- Typically use **generative approaches**: model the available data.

- Different classes of problems:
 1. Clustering
 2. Anomaly detection
 3. Dimensionality reduction
 4. Autoregression
A simple clustering example

• A fruit merchant approaches you, with a set of apples to classify according to their variety.
 – Tells you there are five varieties of apples in the dataset.
 – Tells you the weight and colour of each apple in the dataset.

• Can you label each apple with the correct variety?
 – What would you need to know / assume?

\[\text{Data} = \langle x_1, ?, \rangle, \langle x_2, ? \rangle, \ldots, \langle x_n, ? \rangle \]
A simple clustering example

- You know there are 5 varieties.

- Assume each variety generates apples according to a (variety-specific) 2-D Gaussian distribution.
A simple clustering example

• You know there are 5 varieties.

• Assume each variety generates apples according to a (variety-specific) 2-D Gaussian distribution.

• If you know μ_i, σ_i^2 for each class, it’s easy to classify the apples.

• If you know the class of each apple, it’s easy to estimate μ_i, σ_i^2.
A simple clustering example

• You know there are 5 varieties.

• Assume each variety generates apples according to a (variety-specific) 2-D Gaussian distribution.

• If you know μ_i, σ_i^2 for each class, it’s easy to classify the apples.

• If you know the class of each apple, it’s easy to estimate μ_i, σ_i^2.

What if we know neither?
A simple algorithm: K-means clustering

- **Objective:** Cluster n instances into K distinct classes.

- **Preliminaries:**
 - **Step 1:** Pick the desired number of clusters, K.
 - **Step 2:** Assume a parametric distribution for each class (e.g. Normal).
 - **Step 3:** Randomly estimate the parameters of the K distributions.
A simple algorithm: K-means clustering

- **Objective:** Cluster n instances into K distinct classes.

- **Preliminaries:**
 - **Step 1:** Pick the desired number of clusters, K.
 - **Step 2:** Assume a parametric distribution for each class (e.g. Normal).
 - **Step 3:** Randomly estimate the parameters of the K distributions.

- **Iterate, until convergence:**
 - **Step 4:** Assign instances to the most likely classes based on the current parametric distributions.
 - **Step 5:** Estimate the parametric distribution of each class based on the latest assignment.
K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters.

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters.
2. Randomly guess k centers:

\[\{ \mu_1, \ldots, \mu_k \} \] (assume \(\sigma^2 \) is known).

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters.
2. Randomly guess k centers:
 \[\{ \mu_1, \ldots, \mu_k \} \] (assume \(\sigma^2 \) is known).
3. Assign each data point to the closest center.

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters.

2. Randomly guess k centers:
 \[\{ \mu_1, \ldots, \mu_k \} \] (assume \(\sigma^2 \) is known).

3. Assign each data point to the center.

4. Each center finds the centroid of the points it owns.
K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters.
2. Randomly guess k centers:
 \[\{ \mu_1, \ldots, \mu_k \} \] (assume \(\sigma^2 \) is known).
3. Assign each data point to the closest center.
4. Each center finds the centroid of the points it owns… and jumps there.

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm starts

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm continues (2)
K-means algorithm continues (3)

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm continues (4)

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm continues (5)

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm continues (6)
K-means algorithm continues (7)

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm continues (8)
K-means algorithm continues (9)

Image courtesy of Andrew Moore, Carnegie Mellon U.
K-means algorithm terminates
A simple algorithm: K-means clustering

- **Objective**: Cluster \(n \) instances into \(K \) distinct classes.

- **Preliminaries**:
 - **Step 1**: Pick the desired number of clusters, \(K \).
 - **Step 2**: Assume a parametric distribution for each class (e.g. Normal).
 - **Step 3**: Randomly estimate the parameters of the \(K \) distributions.

- **Iterate, until convergence**:
 - **Step 4**: Assign instances to the most likely classes based on the current parametric distributions. **Hard assignment**
 - **Step 5**: Estimate the parametric distribution of each class based on the latest assignment. **Maximization step**

COMP-551: Applied Machine Learning
Properties of K-means

- Optimality?
Properties of K-means

• **Optimality?**
 - Converges to a local optimum.
 - Can use random re-starts to get better local optimum.
 - Alternately, can choose your initial centers carefully:
 • Place μ_1 on top of a randomly chosen datapoint.
 • Place μ_2 on top of datapoint that is furthest from μ_1.
 • Place μ_3 on top of datapoint that is furthest from both μ_1 and μ_2.
Properties of K-means

- **Optimality?**
 - Converges to a local optimum.
 - Can use random re-starts to get better local optimum.
 - Alternately, can choose your initial centers carefully:
 - Place μ_1 on top of a randomly chosen datapoint.
 - Place μ_2 on top of datapoint that is furthest from μ_1.
 - Place μ_3 on top of datapoint that is furthest from both μ_1 and μ_2.

- **Complexity?**
Properties of K-means

• **Optimality?**
 - Converges to a local optimum.
 - Can use random re-starts to get better local optimum.
 - Alternately, can choose your initial centers carefully:
 • Place μ_1 on top of a randomly chosen datapoint.
 • Place μ_2 on top of datapoint that is furthest from μ_1.
 • Place μ_3 on top of datapoint that is furthest from both μ_1 and μ_2.

• **Complexity?** $O(knm)$ where $k = \#\text{centers}$

 $n = \#\text{datapoints}$

 $m = \text{dimensionality of data}$
Properties of K-means

• **Optimality?**
 - Converges to a local optimum.
 - Can use random re-starts to get better local optimum.
 - Alternately, can choose your initial centers carefully:
 • Place μ_1 on top of a randomly chosen datapoint.
 • Place μ_2 on top of datapoint that is furthest from μ_1.
 • Place μ_3 on top of datapoint that is furthest from both μ_1 and μ_2.

• **Complexity?** $O(knm)$ where $k = \#\text{centers}$

 $n = \#\text{datapoints}$

 $m = \text{dimensionality of data}$
K-means: the good and the bad

- **Good:**
 - We realize that maximizing parameters is easy once we have assignments

- **Bad:**
 - What about points that are about equally far to two clusters?
 - We can only update the mean (not variance)
 - We have to assume equal variance between clusters
Questions about K-means?
Beyond K-means

- How to fit data where variance is unknown or non-identical between clusters?
Gaussian Mixture Model

- **Idea**: Fit data with a combination of Gaussian distributions.

- What defines a set of Gaussians?
Gaussian Mixture Model

- **Idea**: Fit data with a combination of Gaussian distributions.

- Write $p(x)$ as a linear combination of Gaussians:

 $$p(x) = \sum_{k=1}^{K} p(z_k) p(x | z_k)$$

 where $p(z_k)$ is the probability of the kth mixture component

 and $p(x | z_k) = N(x | \mu_k, \sigma_k^2)$ is the prob. of x for the kth mixture component.

- Determining $p(z|x)$ is easy once we know parameters $p(z_k), \mu_k, \sigma_k^2$

 (Bayes’ rule)
Gaussian **Mixture** Model

- **Maximum likelihood** often gives a good parameter estimate

\[p(X|\theta) = \sum_Z p(X, Z|\theta) \]

- Why is it hard here?
Expectation Maximization (more generally)

- Iterative method for learning the maximum likelihood estimate of a probabilistic model, when the model contains unobservable variables.
Expectation Maximization (more generally)

• Iterative method for learning the maximum likelihood estimate of a probabilistic model, when the model contains unobservable variables.

• Main idea:
 – If we knew all variables (e.g. cluster assignments), we could easily maximize the likelihood.
 – With unobserved variables, we “fantasize” how the data should look based on the current parameter setting. I.e. compute
 Expected sufficient statistics.
 – Then we Maximize parameter setting, based on these statistics.
EM for clustering

- **Objective:** Cluster \(n \) instances into \(K \) distinct classes.

- **Preliminaries:**
 - **Step 1:** Pick the desired number of clusters, \(K \).
 - **Step 2:** Assume a parametric distribution for each class (e.g. Normal).
 - **Step 3:** Randomly initialize the parameters of the \(K \) distributions.

- **Iterate, until convergence:**
 - **Step 4:** Assign responsibility for instances to classes based on the current parametric distributions. *Soft assignment*
 \[
 \gamma_i^j = p(z_i | x_j, \theta_{\text{old}})
 \]
 - **Step 5:** Estimate the parametric distribution of each class based on the latest assignment. *Maximization step*
EM for clustering
Expectation Maximization (more generally)

- Start with some initial parameter setting.

- **Repeat** (as long as desired):
 - **Expectation (E) step**: Complete the data by assigning “values” to the missing items.
 \[
 Q(\theta, \theta_{\text{old}}) = \sum_Z p(Z|X, \theta_{\text{old}}) \log p(X, Z|\theta)
 \]
 - **Maximization (M) step**: Compute the maximum likelihood parameter setting based on the completed data.
 \[
 \theta_{\text{new}} = \arg\max_\theta Q(\theta, \theta_{\text{old}})
 \]

Once the data is completed (E-step), computing the log-likelihood and new parameters (M-step) is easy! This is what we did for K-means.
Why does it work?

- Instead of \(p(X|\theta) \), we maximize
 \[
 Q(\theta, \theta_{\text{old}}) = \sum_Z p(Z|X, \theta_{\text{old}}) \log p(X, Z|\theta)
 \]
- Original objective still improves if:
 - Maximum of \(Q \) is also the maximum of lower bound
 - Lower bound is exact at \(\theta_{\text{old}} \)
 - (Not at local maximum)

\[\ln p(X|\theta) \]
\[\mathcal{L}(q, \theta) \]

\[\theta_{\text{old}} \]
\[\theta_{\text{new}} \]

Copyright C.M. Bishop, PRML
Expectation Maximization: Properties

- Likelihood function is guaranteed to improve (or stay the same) with each iteration.
- Iterations can stop when no more improvements are achieved.
- Convergence to a local optimum of the likelihood function.
- Re-starts with different initial parameters are often necessary.
- Time complexity (per iteration) depends on model structure.

EM is very useful in practice!
K-means or EM?

- K-means can be seen as a specific case of EM (where variance is fixed to a value that decreases to 0)
- K-means tends to converge faster
- EM can deal with unknown or non-identical variance
- K-means sometimes used to initialize EM
Anomaly detection

http://www.anomalydetectionresearch.com
Anomaly detection

• Discriminative approaches tend to be ineffective when one class is much more rare than the other.
Anomaly detection

- Discriminative approaches tend to be ineffective when one class is much more rare than the other.

- A simple generative approach:
 - Fit a model, $p(x)$ using the input data.
 - Set a decision threshold ε and predict $Y = \{1$ if $p(x) > \varepsilon$, 0 otherwise$\}.$
 - Use a validation set to measure performance (can use cross-validation to set ε).
Anomaly detection vs Supervised learning

Anomaly detection
- Small number of positive examples (e.g. <10).
- Large number of negative examples (e.g. >100).

Supervised learning
- Similar number of positive and negative examples

Anomaly detection vs Supervised learning

Anomaly detection

- Small number of positive examples (e.g. <10).
- Large number of negative examples (e.g. >100).
- Many different “types” of anomalies, so don’t want to fit a model for the positive class.

Supervised learning

- Similar number of positive and negative examples
- More homogeneity within classes, or enough data to sufficiently characterize each class.

Does the distribution of nominal data look familiar?

A simple example

A simple example

• GMM can be fit again with EM

• Note that before we were mainly interested in the cluster assignments (which items go together)

• Here we are interested in the final density

Anomaly detection

• Discriminative approaches tend to be ineffective when one class is much more rare than the other.

• A simple generative approach:
 – Fit a model, $p(x)$ using the input data (using a GMM?).
 – Set a decision threshold ε and predict $Y = \{1$ if $p(x) > \varepsilon$, 0 otherwise$\}$.
 – Use a validation set to measure performance (can use cross-validation to set ε).

• Note: GMM is used here to model the nominal data only. We don’t attempt to model the anomalous data (see above)
Practical issues

• Need $p(x)$ to be low for anomalous examples.

• Apply techniques for construction/selection of features to achieve this.

• Need a validation set to select features and learning parameters.
Dimensionality reduction

- Given points in an m-dimensional space (for large m), project to a low dimensional space while preserving trends in the data.

- Principal Components Analysis

Covered in detail in Lecture 9!
Dimensionality reduction

• Learn neural networks to perform dimensionality reduction:
 auto-encoding

 input code output
 encoder decoder

• Objective: recover input as output

Covered in detail in neural network lecture
Autoregressive models for time series

• The problem:
 – Given a time series: \(X = \{x_1, x_2, \ldots, x_T\} \)
 – Predict \(x_t \) from \(x_{1:t-1} \).
Autoregressive models for time series

• The problem:
 – Given a time series: \(X = \{x_1, x_2, \ldots, x_T\} \)
 – Predict \(x_t \) from \(x_{1:t-1} \).

• A simple autoregressive (AR) model:

\[
X_t = w_0 + \epsilon + \sum_{i=1:p} w_i x_{t-i} + \epsilon_t
\]

where \(w_i \) are the parameters and \(\epsilon_t \) is white noise.
Autoregressive models for time series

• The problem:
 – Given a time series: \(X = \{x_1, x_2, \ldots, x_T\} \)
 – Predict \(x_t \) from \(x_{1:t-1} \).

• A simple autoregressive (AR) model:
 \[
 X_t = w_0 + \varepsilon + \sum_{i=1:p} w_i x_{t-i} + \varepsilon_t
 \]
 where \(w_i \) are the parameters and \(\varepsilon_t \) is white noise.

• A more general model, autoregressive-moving average (ARMA):
 \[
 X_t = w_0 + \varepsilon + \sum_{i=1:p} w_i x_{t-i} + \sum_{i=1:q} \theta_i \varepsilon_{t-i}
 \]
 where \(w_i, \theta_i \) are the parameters, and \(\varepsilon_t \sim N(0, \sigma^2) \) are assumed to be iid samples from a normal distribution.
What you should know

• The general form of the unsupervised learning problem

• Basic functioning and properties of useful algorithms:
 – K-means
 – Expectation-maximization

• A useful model
 – Gaussian mixture models

• Characteristics of common problems:
 – clustering, anomaly detection, dimensionality reduction, autoregression, autoencoding
Hierarchical clustering

- A hierarchy of clusters, where the cluster at each level are created by merging clusters from the next lower level.
Hierarchical clustering

• A hierarchy of clusters, where the cluster at each level are created by merging clusters from the next lower level.

• Two general approaches:
 – Recursively merge a pair of clusters.
 – Recursively split the existing clusters.
Hierarchical clustering

- A hierarchy of clusters, where the cluster at each level are created by merging clusters from the next lower level.

- **Two general approaches:**
 - Recursively merge a pair of clusters.
 - Recursively split the existing clusters.

- Use **dissimilarity measure** to select split/merge pairs:
 - Measure pairwise distance between any points in the 2 clusters.
 - E.g. Euclidean distance, Manhattan distance.
 - Measure distance over entire clusters using linkage criterion.
 - E.g. Min/Max/Mean over pairs of points.
Hierarchical clustering of news articles