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Today’s quiz

* The hinge loss function is convex
— True

« The number of Lagrange multipliers in the soft SVM problem is
determined by the number of features in the input set.
— False
* A quadratic programming problem can be solved in polynomial
time.
— True
«  SVM with a Gaussian kernel requires specification of the variance
of the kernel. This can be selected with cross-validation.
— True
* One disadvantage of the "kernel trick" is that the memory
requirement grows linearly with the numbers of features computed.
— False
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Uploading code in CMT

l Submissions Select Your Role: Author ~ APPLIEDML2017 ~ Herke van Hoof ~
Author Console

::'p" Title Files Track Actions

60 dummy submission Submission files: Project 1

® supervisedDRtoy.pdf
Author Feedback:
& View Reviews & Post Author Feedback
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Supplementary Material:

& Upload Supplementary Material

licts 38 Delete Submission
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What is unsupervised learning?

« Given only input data: D = <x;>, i=1.n, find some patterns or

regularity in the data.

« Typically use generative approaches: model the available data.

« Different classes of problems:
1. Clustering
2. Anomaly detection
3. Dimensionality reduction

4. Autoregression
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A simple clustering example

« A fruit merchant approaches you, with a set of apples to classify

according to their variety.

— Tells you there are five varieties of apples in the dataset.

— Tells you the weight and colour of each apple in the dataset.

« Can you label each apple with the correct variety?

— What would you need to know / assume?

Data = <x,, 7>, <x,, 7>, ..., <x,,, 7>
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A simple clustering example

*  You know there are 5 varieties.

* Assume each variety generates apples according to a (variety-
specific) 2-D Gaussian distribution.
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A simple clustering example

 You know there are 5 varieties.

« Assume each variety generates apples according to a (variety-
specific) 2-D Gaussian distribution.

 If you know u;,, o/ for each class, it’ s easy to classify the apples.

« If you know the class of each apple, it s easy to estimate p;, 2.
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A simple clustering example

 You know there are 5 varieties.

« Assume each variety generates apples according to a (variety-
specific) 2-D Gaussian distribution.

 If you know u;,, o/ for each class, it’ s easy to classify the apples.

« If you know the class of each apple, it s easy to estimate p;, 2.

What if we know neither?
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A simple algorithm: K-means clustering

* Objective: Cluster ninstances into K distinct classes.

* Preliminaries:
— Step 1: Pick the desired number of clusters, K.
— Step 2: Assume a parametric distribution for each class (e.g. Normal).

— Step 3: Randomly estimate the parameters of the K distributions.
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A simple algorithm: K-means clustering

* Objective: Cluster ninstances into K distinct classes.

* Preliminaries:
— Step 1: Pick the desired number of clusters, K.
— Step 2: Assume a parametric distribution for each class (e.g. Normal).
— Step 3: Randomly estimate the parameters of the K distributions.

* [|terate, until convergence:

— Step 4: Assign instances to the most likely classes based on the

current parametric distributions.

— Step 5: Estimate the parametric distribution of each class based on

the latest assignment.
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K-means algorithm

This data could easily be modeled by Gaussians.

Image courtesy of Andrew Moore, Carnegie Mellon U.
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K-means algorithm

This data could easily be modeled by Gaussians.

Image courtesy of Andrew Moore, Carnegie Mellon U.
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K-means algorithm

This data could easily be modeled by Gaussians.

Image courtesy of Andrew Moore, Carnegie Mellon Ujl

1. Ask user how many clusters.

3

2. Randomly guess k centers:
{ Ly, ..., W} (@assume G2 is known).

3. Assign each data point to the |+«

center.

4
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K-means algorithm

This data could easily be modeled by Gaussians.

_Image courtesy of Andrew Moore, Carnegie Mellon U.
1. Ask user how many clusters. [ O e teamic i

2. Randomly guess k centers:
{ Ly, ..., W} (@assume G2 is known).

3. Assign each data point to the |

center.

4. Each center finds the centroid

of the points it owns. ol
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K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters.
2. Randomly guess k centers:
{ L, ..., I} (assume o2 is known).

3. Assign each data point to the

center.

4. Each center finds the centroid

of the points it owns...

and jumps there.

_Image courtesy of Andrew Moore, Carnegie Mellon U.
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K-means algorithm starts

Image courtesy of Andrew Moore, Carnegie Mellon U.
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K-means algorithm continues (2)
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K-means algorithm continues (3)
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K-means algorithm continues (4)
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K-means algorithm continues (5)

Image courtesy of Andrew Moore, Carnegie Mellon U.
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K-means algorithm continues (6)
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K-means algorithm continues (7)
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K-means algorithm continues (8)
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K-means algorithm continues (9)
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K-means algorithm terminates
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A simple algorithm: K-means clustering

* Objective: Cluster ninstances into K distinct classes.

* Preliminaries:
— Step 1: Pick the desired number of clusters, K.
— Step 2: Assume a parametric distribution for each class (e.g. Normal).

— Step 3: Randomly estimate the parameters of the K distributions.

/ Iterate, until convergence: \

— Step 4: Assign instances to the most likely classes based on the

current parametric distributions. Hard assignment

— Step 5. Estimate the parametric distribution of each class based on

\ the latest assignment. Maximization step )
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Properties of K-means

*  Optimality?
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Properties of K-means

« Optimality?
— Converges to a local optimum.
— Can use random re-starts to get better local optimum.

— Alternately, can choose your initial centers carefully:
« Place p, on top of a randomly chosen datapoint.
« Place p, on top of datapoint that is furthest from p,
+ Place p; on top of datapoint that is furthest from both p, and p,.
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Properties of K-means

« Optimality?
— Converges to a local optimum.
— Can use random re-starts to get better local optimum.

— Alternately, can choose your initial centers carefully:
« Place p, on top of a randomly chosen datapoint.
« Place p, on top of datapoint that is furthest from p,
+ Place p; on top of datapoint that is furthest from both p, and p,.

«  Complexity?

COMP-551: Applied Machine Learning 29 Joelle Pineau



Properties of K-means

« Optimality?
— Converges to a local optimum.
— Can use random re-starts to get better local optimum.

— Alternately, can choose your initial centers carefully:
« Place p, on top of a randomly chosen datapoint.
« Place p, on top of datapoint that is furthest from p,
+ Place p; on top of datapoint that is furthest from both p, and p,.

« Complexity? O(knm) where k= #centers
n = #datapoints

m = dimensionality of data
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Properties of K-means

« Optimality?
— Converges to a local optimum.
— Can use random re-starts to get better local optimum.

— Alternately, can choose your initial centers carefully:
« Place p, on top of a randomly chosen datapoint.
« Place p, on top of datapoint that is furthest from p,
+ Place p; on top of datapoint that is furthest from both p, and p,.

« Complexity? O(knm) where k= #centers
n = #datapoints

m = dimensionality of data
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K-means: the good and the bad

« Good:

— We realize that maximizing parameters is easy once we have
assignments

 Bad:

— What about points that are about 1
equally far to two clusters?

— We can only update the mean 0.5
(not variance)

— We have to assume equal variance 0

between clusters 0 0.5 1

Copyright C.M. Bishop, PRML
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Questions about K-means?
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Beyond K-means

 How to fit data where variance is unknown or non-identical

between clusters?

0.5

0 0.5 1
Copyright C.M. Bishop, PRML
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Gaussian Mixture Model

 ldea: Fit data with a combination of Gaussian distributions.

 What defines a set of Gaussians?
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Gaussian Mixture Model

 |ldea: Fit data with a combination of Gaussian distributions.

«  Write p(x) as a linear combination of Gaussians:

pP(X) = 2 k=1x P(24) P(X | Z})
where p(z,) is the probability of the k" mixture component

and p(x | z,) = N(x | y,, 0,°) is the prob. of x for the k' mixture component.

- Determining p(z|x) is easy once we know parameters p(z,), U, 0,2

(Bayes’ rule)
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Gaussian Mixture Model

« Maximum likelihood often gives a good parameter estimate

p(X10) = Zp (X,Z|0)

« Why is it hard here?
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Expectation Maximization (more generally)

» lterative method for learning the maximum likelihood estimate of a

probabilistic model, when the model contains unobservable variables.
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Expectation Maximization (more generally)

» lterative method for learning the maximum likelihood estimate of a

probabilistic model, when the model contains unobservable variables.

« Main idea:

— If we knew all variables (e.g. cluster assignments), we could easily
maximize the likelihood.

— With unobserved variables, we “fantasize” how the data should
look based on the current parameter setting. |.e. compute
Expected sufficient statistics.

— Then we Maximize parameter setting, based on these statistics.
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EM for clustering

* Objective: Cluster ninstances into K distinct classes.

* Preliminaries:
— Step 1: Pick the desired number of clusters, K.
— Step 2: Assume a parametric distribution for each class (e.g. Normal).

— Step 3: Randomly initialize the parameters of the K distributions.

/ Iterate, until convergence: \

— Step 4: Assign responsibility for instances to classes based on the

current parametric distributions. Soft assignment

Y] = p(2i|xj, 001a)

— Step 5: Estimate the parametric distribution of each class based on

\ the latest assignment. Maximization step /
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EM for clustering
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Expectation Maximization (more generally)

« Start with some initial parameter setting.

* Repeat (as long as desired):

— Expectation (E) step: Complete the data by assigning “values” to

the missing items.
Q(0,001a) = >  p(Z|X,001a) log p(X, Z|6)
A

— Maximization (M) step: Compute the maximum likelihood parameter

setting based on the completed data.

Hnew — arg m@ax Q(@, Hold)

Once the data is completed (E-step), computing the log-likelihood and

new parameters (M-step) is easy! This is what we did for K-means.
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Why does it work?

« Instead ofp(X|9), we maximize

Q(0,0010) = > p(Z]X, 001a) log p(X, Z|6)
A

* Original objective still improves if:

— Maximum of Q is also the maximum of lower bound

— Lower bound is exact at 901d

— (Not at local maximum)

Copyright C.M. Bishop, PRML
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Expectation Maximization: Properties

 Likelihood function is guaranteed to improve (or stay the same)

with each iteration.
 |terations can stop when no more improvements are achieved.

« Convergence to a local optimum of the likelihood function.

Re-starts with different initial parameters are often necessary.

Time complexity (per iteration) depends on model structure.

EM is very useful in practice!
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K-means or EM?

« K-means can be seen as a specific case of EM

(where variance is fixed to a value that decreases to 0)
« K-means tends to converge faster
 EM can deal with unknown or non-identical variance

« K-means sometimes used to initialize EM
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Anomaly detection
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Anomaly detection

« Discriminative approaches tend to be ineffective when one class

IS much more rare than the other.
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Anomaly detection

« Discriminative approaches tend to be ineffective when one class

IS much more rare than the other.

* A simple generative approach:
— Fit a model, p(x) using the input data.
— Set a decision threshold € and predict Y= {17 if p(x)>¢, 0 otherwise}.

— Use a validation set to measure performance (can use cross-

validation to set ¢).
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Anomaly detection vs Supervised learning

Anomaly detection Supervised learning
* Small number of positive « Similar number of positive and
examples (e.g. <10). negative examples

« Large number of negative

examples (e.g. >100).

http.//opencourseonline.com/400/coursera-open-course-stanford-university-machine-learning-
video-playlist-15-anomaly-detection
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Anomaly detection vs Supervised learning

Anomaly detection Supervised learning
* Small number of positive « Similar number of positive and
examples (e.g. <10). negative examples

« Large number of negative

examples (e.g. >100).

* More homogeneity within
* Many different “types” of
classes, or enough data to
anomalies, so don’t want to fit a
sufficiently characterize each
model for the positive class.
classes.

http.//opencourseonline.com/400/coursera-open-course-stanford-university-machine-learning-
video-playlist-15-anomaly-detection
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A simple example

anomaly detection via K-LPE, n=200, K=6, «=0.05

5
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C  labeled as nominal
s -4 -2 0 2 4

From: M. Zhao and V. Saligrama, “Anomaly Detection with Score functions based on Nearest Neighbor
Graphs”, Neural Information Processing Systems (NIPS) Conference, 2009

COMP-551: Applied Machine Learning 51 Joelle Pineau



A simple example

Another GMM!

anomaly detection via K-LPE, n=200, K=6, «=0.05 Bivariate Gaussian mixture distribution
5 T T T T T T
*

4 3

3 5

2 L

1 L

0 L
_1 3
_2 - .

H
_3 3 -
—4 | wmimm level set ata=0.05 i -4}
-5 # labeled as anomaly | -5t
©  labeled as nominal

—6 M M _6 A A " " "

-5 4 -2 0 2 4 % -4 -2 0 2 -

From: M. Zhao and V. Saligrama, “Anomaly Detection with Score functions based on Nearest Neighbor
Graphs”, Neural Information Processing Systems (NIPS) Conference, 2009
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A simple example

Another GMM!

Bivariate Gaussian mixture distribution

GMM can be fit again with EM

* Note that before we were :
mainly interested in the cluster 3
assignments :
(which items go together) _?
* Here we are interested in the :;
final density “:

- S E— : 2 4

From: M. Zhao and V. Saligrama, “Anomaly Detection with Score functions based on Nearest Neighbor
Graphs”, Neural Information Processing Systems (NIPS) Conference, 2009
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Anomaly detection

« Discriminative approaches tend to be ineffective when one class

IS much more rare than the other.

- A simple generative approach:
— Fit a model, p(x) using the input data (using a GMM?).
— Set a decision threshold € and predict Y= {1 if p(x)>¢, 0 otherwise}.
— Use a validation set to measure performance (can use cross-
validation to set ¢).

« Note: GMM is used here to model the nominal data only. We

don’t attempt to model the anomalous data (see above)
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Practical issues

* Need p(x) to be low for anomalous examples.

* Apply techniques for construction/selection of features to

achieve this.

* Need a validation set to select features and learning

parameters.

COMP-551: Applied Machine Learning 55 Joelle Pineau



Dimensionality reduction

« Given points in an m-dimensional space (for large m), project to
a low dimensional space while preserving trends in the data.

* Principal Components Analysis
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Dimensionality reduction

« Learn neural networks to perform dimensionality reduction:
auto-encoding

iInput output

- Obijective: recover input as output _
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Autoregressive models for time series

The problem:
— Given a time series: X ={x,, Xy, ..., X}

— Predict x, from x,.._,.
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Autoregressive models for time series

* The problem:
— Given atime series: X ={x,, Xy, ..., X7}

— Predict x, from x,.._,.

* A simple autoregressive (AR) model:
Xe=Wo+ €+ g, Wi Xy + &

where w; are the parameters and ¢, is white noise.
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Autoregressive models for time series

* The problem:
— Given a time series: X ={x,, Xy, ..., X7}

— Predict x; from x,.._,.

« A simple autoregressive (AR) model:
Xe=Wo+ €+ g, Wi Xy + &

where w; are the parameters and ¢, is white noise.

* A more general model, autoregressive-moving average (ARMA):
Xe=Wo+t &+ 1pn WXy t 214 O &
where w; &; are the parameters, and ¢, ~N(0,0?) are assumed to be iid
samples from a normal distribution.
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What you should know

« The general form of the unsupervised learning problem

« Basic functioning and properties of useful algorithms:
— K-means
— Expectation-maximization

A useful model

— Gaussian mixture models

« Characteristics of common problems:

— clustering, anomaly detection, dimensionality reduction,
autoregression, autoencoding
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Hierarchical clustering

* A hierarchy of clusters, where the cluster at each level are
created by merging clusters from the next lower level.
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Hierarchical clustering

* A hierarchy of clusters, where the cluster at each level are

created by merging clusters from the next lower level.

 Two general approaches:

— Recursively merge a pair of clusters.

— Recursively split the existing clusters.
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Hierarchical clustering

* A hierarchy of clusters, where the cluster at each level are

created by merging clusters from the next lower level.

- Two general approaches:

— Recursively merge a pair of clusters.

— Recursively split the existing clusters.

« Use dissimilarity measure to select split/merge pairs:
— Measure pairwise distance between any points in the 2 clusters.
« E.g. Euclidean distance, Manhattan distance.

— Measure distance over entire clusters using linkage criterion.
« E.g. Min/Max/Mean over pairs of points.
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Hierarchical clustering of news articles

http.//nip.stanford.edu/IR-book/htmi/htmledition/hierarchical-agglomerative-clustering-1.html

1.0 0.8 0.6 0.4 0.2 0.0
| | | | |

Ag trade reform.
Back-to—school spending is up
Lloyd's CEO questioned !
Lloyd's chief / U.S. grilling '
Viag stays positive
Chrysler / Latin America
. Ohio Blue Cross
Japanese prime minister / Mexico
CompuServe reports loss |
Sprint / Internet access service '
Planet Hollywood 1
Trocadero: fripling of revenues
German unions split
War hero Colin Powell —
War hero Colin Powell ——
Qil prices slip

Chains may raise prices !
Clinton signs law T
Lawsuit against tobacco companies |
suits against tobacco firms —}— |

Indiana tobacco lawsuit

Most active stocks
Mexican markets
Hog prices tumble

NYSE closing averages JJ>

British FTSE index

Fed holds interest rates steady ———
Fed to keep interest rates steady — —

Fed keeps interest rates steady ]

Fed keeps interest rates steady I

COMP-551: Applied Machine Learning 65 Joelle Pineau



