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Today’s quiz
• The hinge loss function is convex

– True

• The number of Lagrange multipliers in the soft SVM problem is 
determined by the number of features in the input set.
– False

• A quadratic programming problem can be solved in polynomial 
time.
– True

• SVM with a Gaussian kernel requires specification of the variance 
of the kernel. This can be selected with cross-validation.
– True

• One disadvantage of the "kernel trick" is that the memory 
requirement grows linearly with the numbers of features computed.
– False
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Uploading code in CMT
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What is unsupervised learning?

• Given only input data:  D = <xi>, i=1:n, find some patterns or 

regularity in the data.

• Typically use generative approaches: model the available data.

• Different classes of problems:

1. Clustering

2. Anomaly detection

3. Dimensionality reduction

4. Autoregression
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A simple clustering example

• A fruit merchant approaches you, with a set of apples to classify 

according to their variety.

– Tells you there are five varieties of apples in the dataset.

– Tells you the weight and colour of each apple in the dataset.

• Can you label each apple with the correct variety?

– What would you need to know / assume?

Data = <x1, ?>, <x2, ?>, …, <xn, ?>

COMP-551: Applied Machine Learning



Joelle Pineau6

A simple clustering example

• You know there are 5 varieties.

• Assume each variety generates apples according to a (variety-
specific) 2-D Gaussian distribution.
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A simple clustering example

• You know there are 5 varieties.

• Assume each variety generates apples according to a (variety-
specific) 2-D Gaussian distribution.

• If you know µi, si
2 for each class, it’s easy to classify the apples.

• If you know the class of each apple, it’s easy to estimate µi, si
2.
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A simple clustering example

• You know there are 5 varieties.

• Assume each variety generates apples according to a (variety-
specific) 2-D Gaussian distribution.

• If you know µi, si
2 for each class, it’s easy to classify the apples.

• If you know the class of each apple, it’s easy to estimate µi, si
2.

What if we know neither?
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A simple algorithm: K-means clustering

• Objective:  Cluster n instances into K distinct classes.

• Preliminaries:

– Step 1:  Pick the desired number of clusters, K.

– Step 2:  Assume a parametric distribution for each class (e.g. Normal). 

– Step 3:  Randomly estimate the parameters of the K distributions.
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A simple algorithm: K-means clustering

• Objective:  Cluster n instances into K distinct classes.

• Preliminaries:

– Step 1:  Pick the desired number of clusters, K.

– Step 2:  Assume a parametric distribution for each class (e.g. Normal). 

– Step 3:  Randomly estimate the parameters of the K distributions.

• Iterate, until convergence:

– Step 4:  Assign instances to the most likely classes based on the 

current parametric distributions.

– Step 5:  Estimate the parametric distribution of each class based on 

the latest assignment.
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K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters. Image courtesy of Andrew Moore, Carnegie Mellon U. 
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K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters.

2. Randomly guess k centers:

{ µ1,…, µk } (assume s2 is known).

Image courtesy of Andrew Moore, Carnegie Mellon U. 
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K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters.

2. Randomly guess k centers:

{ µ1,…, µk } (assume s2 is known).

3. Assign each data point to the closest 

center.

Image courtesy of Andrew Moore, Carnegie Mellon U. 
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K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters.

2. Randomly guess k centers:

{ µ1,…, µk } (assume s2 is known).

3. Assign each data point to the closest 

center.

4. Each center finds the centroid

of the points it owns.

Image courtesy of Andrew Moore, Carnegie Mellon U. 
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K-means algorithm

This data could easily be modeled by Gaussians.

1. Ask user how many clusters.

2. Randomly guess k centers:

{ µ1,…, µk } (assume s2 is known).

3. Assign each data point to the closest 

center.

4. Each center finds the centroid

of the points it owns… 

and jumps there.  

Image courtesy of Andrew Moore, Carnegie Mellon U. 
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K-means algorithm starts

Image courtesy of Andrew Moore, Carnegie Mellon U. 
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K-means algorithm continues (2)

Image courtesy of Andrew Moore, Carnegie Mellon U. 
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K-means algorithm continues (3)

Image courtesy of Andrew Moore, Carnegie Mellon U. 
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K-means algorithm continues (4)

Image courtesy of Andrew Moore, Carnegie Mellon U. 
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K-means algorithm continues (5)

Image courtesy of Andrew Moore, Carnegie Mellon U. 
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K-means algorithm continues (6)

Image courtesy of Andrew Moore, Carnegie Mellon U. 
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K-means algorithm continues (7)

Image courtesy of Andrew Moore, Carnegie Mellon U. 
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K-means algorithm continues (8)

Image courtesy of Andrew Moore, Carnegie Mellon U. 
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K-means algorithm continues (9)

Image courtesy of Andrew Moore, Carnegie Mellon U. 
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K-means algorithm terminates

Image courtesy of Andrew Moore, Carnegie Mellon U. 
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A simple algorithm: K-means clustering

• Objective:  Cluster n instances into K distinct classes.

• Preliminaries:

– Step 1:  Pick the desired number of clusters, K.

– Step 2:  Assume a parametric distribution for each class (e.g. Normal). 

– Step 3:  Randomly estimate the parameters of the K distributions.

• Iterate, until convergence:

– Step 4:  Assign instances to the most likely classes based on the 

current parametric distributions. Hard assignment
– Step 5:  Estimate the parametric distribution of each class based on 

the latest assignment. Maximization step

COMP-551: Applied Machine Learning



Joelle Pineau27

Properties of K-means
• Optimality?
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Properties of K-means
• Optimality?

– Converges to a local optimum.

– Can use random re-starts to get better local optimum.

– Alternately, can choose your initial centers carefully:
• Place µ1 on top of a randomly chosen datapoint.
• Place µ2 on top of datapoint that is furthest from µ1.

• Place µ3 on top of datapoint that is furthest from both µ1 and µ2.
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Properties of K-means
• Optimality?

– Converges to a local optimum.

– Can use random re-starts to get better local optimum.

– Alternately, can choose your initial centers carefully:
• Place µ1 on top of a randomly chosen datapoint.
• Place µ2 on top of datapoint that is furthest from µ1.

• Place µ3 on top of datapoint that is furthest from both µ1 and µ2.

• Complexity?
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Properties of K-means
• Optimality?

– Converges to a local optimum.

– Can use random re-starts to get better local optimum.

– Alternately, can choose your initial centers carefully:
• Place µ1 on top of a randomly chosen datapoint.
• Place µ2 on top of datapoint that is furthest from µ1.

• Place µ3 on top of datapoint that is furthest from both µ1 and µ2.

• Complexity? O(knm) where k = #centers

n = #datapoints

m = dimensionality of data
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Properties of K-means
• Optimality?

– Converges to a local optimum.

– Can use random re-starts to get better local optimum.

– Alternately, can choose your initial centers carefully:
• Place µ1 on top of a randomly chosen datapoint.
• Place µ2 on top of datapoint that is furthest from µ1.

• Place µ3 on top of datapoint that is furthest from both µ1 and µ2.

• Complexity? O(knm) where k = #centers

n = #datapoints

m = dimensionality of data
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K-means: the good and the bad

• Good:

– We realize that maximizing parameters is easy once we have 
assignments

• Bad:

– What about points that are about 
equally far to two clusters?

– We can only update the mean 
(not variance)

– We have to assume equal variance 
between clusters

COMP-551: Applied Machine Learning
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Questions about K-means?
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Beyond K-means

COMP-551: Applied Machine Learning

• How to fit data where variance is unknown or non-identical 

between clusters?

Copyright C.M. Bishop, PRML
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Gaussian Mixture Model

• Idea:  Fit data with a combination of Gaussian distributions.

• What defines a set of Gaussians?

COMP-551: Applied Machine Learning
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Gaussian Mixture Model

• Idea:  Fit data with a combination of Gaussian distributions.

• Write p(x) as a linear combination of Gaussians:

p(x) = ∑k=1:K p(zk) p(x | zk)

where p(zk) is the probability of the kth mixture component

and p(x | zk) = N(x | μk, σk
2) is the prob. of x for the kth mixture component.

• Determining p(z|x) is easy once we know parameters p(zk), μk, σk
2 

(Bayes’ rule)

COMP-551: Applied Machine Learning
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Gaussian Mixture Model

• Maximum likelihood often gives a good parameter estimate

• Why is it hard here? 

COMP-551: Applied Machine Learning

p(X|✓) =
X

Z

p(X,Z|✓)
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Expectation Maximization (more generally)

• Iterative method for learning the maximum likelihood estimate of a 
probabilistic model, when the model contains unobservable variables.

COMP-551: Applied Machine Learning
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Expectation Maximization (more generally)

• Iterative method for learning the maximum likelihood estimate of a 
probabilistic model, when the model contains unobservable variables.

• Main idea:

– If we knew all variables (e.g. cluster assignments), we could easily 
maximize the likelihood.

– With unobserved variables, we “fantasize” how the data should 
look based on the current parameter setting.   I.e. compute 
Expected sufficient statistics.

– Then we Maximize parameter setting, based on these statistics.

COMP-551: Applied Machine Learning
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EM for clustering
• Objective:  Cluster n instances into K distinct classes.

• Preliminaries:
– Step 1:  Pick the desired number of clusters, K.

– Step 2:  Assume a parametric distribution for each class (e.g. Normal). 

– Step 3:  Randomly initialize the parameters of the K distributions.

• Iterate, until convergence:
– Step 4:  Assign responsibility for instances to classes based on the 

current parametric distributions. Soft assignment

– Step 5:  Estimate the parametric distribution of each class based on 

the latest assignment. Maximization step
COMP-551: Applied Machine Learning
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EM for clustering

COMP-551: Applied Machine Learning
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Expectation Maximization (more generally)

COMP-551: Applied Machine Learning

• Start with some initial parameter setting.

• Repeat (as long as desired):

– Expectation (E) step: Complete the data by assigning “values” to 
the missing items.

– Maximization (M) step: Compute the maximum likelihood parameter 
setting based on the completed data.

Once the data is completed (E-step), computing the log-likelihood and 

new parameters (M-step) is easy!   This is what we did for K-means.

Q(✓, ✓
old

) =

X

Z

p(Z|X, ✓
old

) log p(X,Z|✓)

✓
new

= argmax

✓
Q(✓, ✓

old

)
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Why does it work?

• Instead of               , we maximize 

• Original objective still improves if:

– Maximum of Q is also the maximum of lower bound

– Lower bound is exact at 

– (Not at local maximum)

COMP-551: Applied Machine Learning

p(X|✓)
Q(✓, ✓

old

) =

X

Z

p(Z|X, ✓
old

) log p(X,Z|✓)

✓
old
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Expectation Maximization:  Properties

• Likelihood function is guaranteed to improve (or stay the same) 

with each iteration.

• Iterations can stop when no more improvements are achieved.

• Convergence to a local optimum of the likelihood function.

• Re-starts with different initial parameters are often necessary.

• Time complexity (per iteration) depends on model structure.

EM is very useful in practice!

COMP-551: Applied Machine Learning
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K-means or EM?

• K-means can be seen as a specific case of EM 

(where variance is fixed to a value that decreases to 0)

• K-means tends to converge faster

• EM can deal with unknown or non-identical variance

• K-means sometimes used to initialize EM

COMP-551: Applied Machine Learning
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Anomaly detection

COMP-551: Applied Machine Learning

http://www.anomalydetectionresearch.com
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Anomaly detection

• Discriminative approaches tend to be ineffective when one class 

is much more rare than the other.

COMP-551: Applied Machine Learning
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Anomaly detection

• Discriminative approaches tend to be ineffective when one class 

is much more rare than the other.

• A simple generative approach:

– Fit a model, p(x) using the input data.

– Set a decision threshold ε and predict Y= {1 if p(x)>ε, 0 otherwise}.

– Use a validation set to measure performance (can use cross-
validation to set ε).

COMP-551: Applied Machine Learning
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Anomaly detection vs Supervised learning

Anomaly detection

• Small number of positive 

examples (e.g. <10).

• Large number of negative 

examples (e.g. >100).

COMP-551: Applied Machine Learning

Supervised learning

• Similar number of positive and 

negative examples

http://opencourseonline.com/400/coursera-open-course-stanford-university-machine-learning-
video-playlist-15-anomaly-detection
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Anomaly detection vs Supervised learning

Anomaly detection

• Small number of positive 

examples (e.g. <10).

• Large number of negative 

examples (e.g. >100).

• Many different “types” of 

anomalies, so don’t want to fit a 

model for the positive class.

COMP-551: Applied Machine Learning

Supervised learning

• Similar number of positive and 

negative examples

• More homogeneity within 

classes, or enough data to 

sufficiently characterize each 

classes.

http://opencourseonline.com/400/coursera-open-course-stanford-university-machine-learning-
video-playlist-15-anomaly-detection
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A simple example

COMP-551: Applied Machine Learning

From: M. Zhao and V. Saligrama, “Anomaly Detection with Score functions based on Nearest Neighbor 
Graphs”, Neural Information Processing Systems (NIPS) Conference, 2009

Does the distribution 
of nominal data look 
familiar?
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A simple example

COMP-551: Applied Machine Learning

From: M. Zhao and V. Saligrama, “Anomaly Detection with Score functions based on Nearest Neighbor 
Graphs”, Neural Information Processing Systems (NIPS) Conference, 2009

Another GMM!
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A simple example

COMP-551: Applied Machine Learning

From: M. Zhao and V. Saligrama, “Anomaly Detection with Score functions based on Nearest Neighbor 
Graphs”, Neural Information Processing Systems (NIPS) Conference, 2009

Another GMM!
• GMM can be fit again with EM

• Note that before we were 

mainly interested in the cluster 

assignments 

(which items go together)

• Here we are interested in the 

final density



Joelle Pineau54

Anomaly detection

• Discriminative approaches tend to be ineffective when one class 

is much more rare than the other.

• A simple generative approach:

– Fit a model, p(x) using the input data (using a GMM?).

– Set a decision threshold ε and predict Y= {1 if p(x)>ε, 0 otherwise}.

– Use a validation set to measure performance (can use cross-
validation to set ε).

• Note: GMM is used here to model the nominal data only. We 

don’t attempt to model the anomalous data (see above)

COMP-551: Applied Machine Learning
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Practical issues

• Need p(x) to be low for anomalous examples.

• Apply techniques for construction/selection of features to 

achieve this.

• Need a validation set to select features and learning 

parameters.

COMP-551: Applied Machine Learning



Joelle Pineau56

Dimensionality reduction

• Given points in an m-dimensional space (for large m), project to 
a low dimensional space while preserving trends in the data.

• Principal Components Analysis

COMP-551: Applied Machine Learning

Covered in detail
in Lecture 9!
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Dimensionality reduction

• Learn neural networks to perform dimensionality reduction: 

auto-encoding

• Objective: recover input as output

COMP-551: Applied Machine Learning

input output

code

encoder decoder

Covered in detail in 
neural network lecture
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Autoregressive models for time series
• The problem:

– Given a time series:  X = {x1, x2, …, xT}

– Predict xt from x1:t-1.

COMP-551: Applied Machine Learning
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Autoregressive models for time series
• The problem:

– Given a time series:  X = {x1, x2, …, xT}

– Predict xt from x1:t-1.

• A simple autoregressive (AR) model:

Xt = w0 + ε + ∑i=1:p wi xt-i + εt

where wi are the parameters and εt is white noise.
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Autoregressive models for time series
• The problem:

– Given a time series:  X = {x1, x2, …, xT}

– Predict xt from x1:t-1.

• A simple autoregressive (AR) model:

Xt = w0 + ε + ∑i=1:p wi xt-i + εt

where wi are the parameters and εt is white noise.

• A more general model, autoregressive-moving average (ARMA):

Xt = w0 + ε + ∑i=1:p wi xt-i + ∑i=1:q 𝛳i εt-i

where wi 𝛳i are the parameters, and εt ~N(0,σ2) are assumed to be iid
samples from a normal distribution.

COMP-551: Applied Machine Learning
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What you should know

• The general form of the unsupervised learning problem

• Basic functioning and properties of useful algorithms:

– K-means

– Expectation-maximization

• A useful model

– Gaussian mixture models

• Characteristics of common problems:

– clustering, anomaly detection, dimensionality reduction, 
autoregression, autoencoding
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Hierarchical clustering
• A hierarchy of clusters, where the cluster at each level are 

created by merging clusters from the next lower level.

COMP-551: Applied Machine Learning
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Hierarchical clustering
• A hierarchy of clusters, where the cluster at each level are 

created by merging clusters from the next lower level.

• Two general approaches:
– Recursively merge a pair of clusters.

– Recursively split the existing clusters.
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Hierarchical clustering
• A hierarchy of clusters, where the cluster at each level are 

created by merging clusters from the next lower level.

• Two general approaches:
– Recursively merge a pair of clusters.

– Recursively split the existing clusters.

• Use dissimilarity measure to select split/merge pairs:

– Measure pairwise distance between any points in the 2 clusters.
• E.g. Euclidean distance, Manhattan distance.

– Measure distance over entire clusters using linkage criterion.
• E.g. Min/Max/Mean over pairs of points.

COMP-551: Applied Machine Learning
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Hierarchical clustering of news articles

COMP-551: Applied Machine Learning

http://nlp.stanford.edu/IR-book/html/htmledition/hierarchical-agglomerative-clustering-1.html


