
COMP 551 – Applied Machine Learning
Lecture 12:  Support Vector Machines 

(cont’d)

Instructor:  Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the 
instructor, and cannot be reused or reposted without the instructor’s written permission. 
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Today’s quiz

Apply Support Vector Machines to data 
generated by the AND boolean function:   
Y = X1 AND  X2

1. What is M, the margin size?

2. What are the weights, w*?

3. Which datapoints define the margin?
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X1 X2  Y     .
0 0    -1
0 1    -1
1 0    -1
1 1    +1
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SVM formulation
• SVM problem: Min ½ ||w||2

w.r.t. w

s.t. yiwTxi ≥ 1

• This can be solved with quadratic programming.
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Non-linearly separable data

• A linear boundary might be too simple to capture the data.

• Option 1:  Relax the constraints and allow some points to be 

misclassified by the margin.

• Option 2:  Allow a nonlinear decision boundary in the input 

space by finding a linear decision boundary in an expanded 

space (similar to adding polynomial terms in linear regression.)

– Here xi is replaced by ɸ(xi), where ɸ is called a feature mapping. 
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Soften the primal objective

• We wanted to solve: minw ½ ||w||2
s.t. yiwTxi ≥ 1

• This can be re-written: minw ∑i L0-∞ (wTxi, yi)  +  ½ ||w||2
s.t. yiwTxi ≥ 1

where ∑i L0-∞ (wTxi, yi) = (∞ for a misclassification, 0 correct classification)

• Soften misclassification cost: minw ∑i L0-1 (wTxi, yi) + ½ ||w||2 

s.t. yiwTxi ≥ 1
where ∑i L0-1 (wTxi, yi) = (1 for a misclassification, 0 correct classification)

• But this is a non-convex objective!
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Approximation of the L0-1 function
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SVM with hinge loss 

• Hinge loss: Lhin (wTxi, yi) = max {1-yiwTxi , 0}

• Soften misclassification cost: minw C ∑i Lhin (wTxi, yi) + ½ ||w||2 

where C controls trade-off between slack penalty and margin.

• The hinge loss upper-bounds
the 0-1 loss.

ξi ≥  1- yiwTxi ≥ L0-1 (wTxi, yi)
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Primal Soft SVM problem

• Define slack variables   ξi = Lhin (wTxi, yi) = max {1-yiwTxi , 0}

• Solve: ŵsoft = argminw,ξ C ∑i :1:n  ξi + ½||w||2 Add Lagrange mult:
s. t. yiwTxi ≥ 1 – ξi , i = 1, …, n <= Call this αi

ξi ≥ 0 , i = 1, …, n <= Call this βi

where w ε Rm, ξ ε Rn

• Introduce Lagrange multipliers: α = ( α1, α2, …, αn )T, 0 ≤ αi

β = ( β1, β2, …, αn )T, 0 ≤ βi
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Soft SVM problem: Adding Lagrange multipliers

• Primal objective:   (w, ξ, α, β) = arg minw,ξ maxα,β L(w, ξ, α, β)

where L(w, ξ, α, β) = ½||w||2 + C ∑i :1:n  ξi - ∑i :1:n αi (yiwTxi -1+ξi ) - ∑i :1:n βiξi
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Soft SVM problem: Adding Lagrange multipliers

• Primal objective:   (w, ξ, α, β) = arg minw,ξ maxα,β L(w, ξ, α, β)

where L(w, ξ, α, β) = ½||w||2 + C ∑i :1:n  ξi - ∑i :1:n αi (yiwTxi -1+ξi ) - ∑i :1:n βiξi

• Dual (invert min and max):  (w, ξ, α, β) = arg maxα,β minw,ξ L(w, ξ, α, β)
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Soft SVM problem: Adding Lagrange multipliers

• Primal objective:   (w, ξ, α, β) = arg minw,ξ maxα,β L(w, ξ, α, β)

where L(w, ξ, α, β) = ½||w||2 + C ∑i :1:n  ξi - ∑i :1:n αi (yiwTxi -1+ξi ) - ∑i :1:n βiξi

• Dual (invert min and max):  (w, ξ, α, β) = arg maxα,β minw,ξ L(w, ξ, α, β)

• Solve:  δL/δw =  w - ∑i αi yi xi = 0 =>  w* =  ∑i αi yi xi

δL/δξ = C1n – α – β = 0 => β = C1n – α
Lagrange multipliers are positive, so we have:  0 ≤ βi , 0 ≤ αi ≤ C
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Soft SVM problem: Adding Lagrange multipliers

• Primal objective:   (w, ξ, α, β) = arg minw,ξ maxα,β L(w, ξ, α, β)

where L(w, ξ, α, β) = ½||w||2 + C ∑i :1:n  ξi - ∑i :1:n αi (yiwTxi -1+ξi ) - ∑i :1:n βiξi

• Dual (invert min and max):  (w, ξ, α, β) = arg maxα,β minw,ξ L(w, ξ, α, β)

• Solve:  δL/δw =  w - ∑i αi yi xi = 0 =>  w* =  ∑i αi yi xi

δL/δξ = C1n – α – β = 0 => β = C1n – α
Lagrange multipliers are positive, so we have:  0 ≤ βi , 0 ≤ αi ≤ C

• Plug into dual :  maxα ∑i αi – ½ ∑i,j yiyjαiαj(xi·x) 
with constraints 0 ≤ αi ≤ C and ∑i αi yi= 0 .

• This is a quadratic programming problem (similar to Hard SVM).
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• Soft-SVM has one more constraint 0 ≤ αi ≤ C (vs 0 ≤ αi in Hard SVM).
• When C=>∞, then Soft-SVM=>Hard-SVM.

Soft SVM solution
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• Soft-SVM has one more constraint 0 ≤ αi ≤ C (vs 0 ≤ αi in Hard SVM).
• When C=>∞, then Soft-SVM=>Hard-SVM.

• Points away from margin have αi = 0.
• Points on the margin have αi > 0 and ξi=0.
• Points within the margin have 0 < ξi < 1

• Points on the decision line have ξi = 1.
• Misclassified points have ξi > 1.

Soft SVM solution
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• Soft-SVM has one more constraint 0 ≤ αi ≤ C (vs 0 ≤ αi in Hard SVM).
• When C=>∞, then Soft-SVM=>Hard-SVM.

• Points away from margin have αi = 0.
• Points on the margin have αi > 0 and ξi=0.
• Points within the margin have 0 < ξi < 1

• Points on the decision line have ξi = 1.
• Misclassified points have ξi > 1.

Soft SVM solution
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• Soft-SVM has one more constraint 0 ≤ αi ≤ C (vs 0 ≤ αi in Hard SVM).
• When C=>∞, then Soft-SVM=>Hard-SVM.

• Points away from margin have αi = 0.
• Points on the margin have αi > 0 and ξi=0.
• Points within the margin have 0 < ξi < 1

• Points on the decision line have ξi = 1.
• Misclassified points have ξi > 1.

Soft SVM solution
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• Soft-SVM has one more constraint 0 ≤ αi ≤ C (vs 0 ≤ αi in Hard SVM).
• When C=>∞, then Soft-SVM=>Hard-SVM.

• Points away from margin have αi = 0.
• Points on the margin have αi > 0 and ξi=0.
• Points within the margin have 0 < ξi < 1

• Points on the decision line have ξi = 1.
• Misclassified points have ξi > 1.

Soft SVM solution
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• Soft-SVM has one more constraint 0 ≤ αi ≤ C (vs 0 ≤ αi in Hard SVM).
• When C=>∞, then Soft-SVM=>Hard-SVM.

• Points away from margin have αi = 0.
• Points on the margin have αi > 0 and ξi=0.
• Points within the margin have 0 < ξi < 1

• Points on the decision line have ξi = 1.
• Misclassified points have ξi > 1.

Soft SVM solution
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• Soft-SVM has one more constraint 0 ≤ αi ≤ C (vs 0 ≤ αi in Hard SVM).
• When C=>∞, then Soft-SVM=>Hard-SVM.

• Points away from margin have αi = 0.
• Points on the margin have αi > 0 and ξi=0.
• Points within the margin have 0 < ξi < 1

• Points on the decision line have ξi = 1.
• Misclassified points have ξi > 1.

• To predict on test data:
hw(x) = sign( ∑i=1:n αiyi (xi·x) ) 

• Only need to store the support vectors
(i.e. points on the margin) to predict.

Soft SVM solution

COMP-551: Applied Machine Learning

o
o

o o
o

+
+

+
+

+ +
+  

+          +

αj>0, ξj=0

0< ξj<1 ξj>1
ξj>1

ξj=1

αj=1



Joelle Pineau20

Multiple classes

• One-vs-All:  Learn K separate binary classifiers.

– Can lead to inconsistent results.

– Training sets are imbalanced, e.g. assuming n examples per class, 
each binary classifier is trained with positive class having 1*n of the 
data, and negative class having (K-1)*n of the data.

COMP-551: Applied Machine Learning
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Multiple classes

• One-vs-All:  Learn K separate binary classifiers.

– Can lead to inconsistent results.

– Training sets are imbalanced, e.g. assuming n examples per class, 
each binary classifier is trained with positive class having 1*n of the 
data, and negative class having (K-1)*n of the data.

• Multi-class SVM:  Define the margin to be the gap between the 

correct class and the nearest other class.
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SVMs for regression
• Minimize a regularized error function:

ŵ = argminw C ∑i :1:n  ( yi- wTxi )2 + ½||w||2

• Introduce slack variables to optimize  “tube” 
around the regression function.

COMP-551: Applied Machine Learning
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SVMs for regression
• Minimize a regularized error function:

ŵ = argminw C ∑i :1:n  ( yi- wTxi )2 + ½||w||2

• Introduce slack variables to optimize  “tube” 
around the regression function.

• Typically, relax to ε-sensitive error on the linear target to 
ensure sparse solution (i.e. few support vectors):

ŵ = argminw C ∑i :1:n  Eε ( yi- wTxi )2 + ½||w||2

where Eε = 0  if ( yi- wTxi )<ε,
(yi- wTxi) – ε otherwise

COMP-551: Applied Machine Learning
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Non-linearly separable data

• A linear boundary might be too simple to capture the data.

• Option 1:  Relax the constraints and allow some points to be 

misclassified by the margin.

• Option 2:  Allow a nonlinear decision boundary in the input 

space by finding a linear decision boundary in an expanded 

space (similar to adding polynomial terms in linear regression.)

– Here xi is replaced by ɸ(xi), where ɸ is called a feature mapping. 
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Margin optimization in feature space

• Replacing xi by ɸ(xi), the optimization problem for w becomes:

– Primal form: Min ½ ||w||2

w.r.t. w

s.t. yiwTɸ(xi) ≥ 1

COMP-551: Applied Machine Learning
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Margin optimization in feature space

• Replacing xi by ɸ(xi), the optimization problem for w becomes:

– Primal form: Min ½ ||w||2

w.r.t. w

s.t. yiwTɸ(xi) ≥ 1

– Dual form: Max ∑i αi – ½ ∑i,j yiyjαiαj(ɸ(xi)·ɸ(x))

w.r.t. αi

s.t. αi ≥0

∑i αi yi = 0

COMP-551: Applied Machine Learning
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Feature space solution

• The optimal weights, in the expended feature space, are 

w = ∑i=1:n αi yi ɸ(xi)

• Classification of an input x is given by:

hw(x) = sign( ∑i=1:n αiyi (ɸ(xi)·ɸ(x)) ) 

COMP-551: Applied Machine Learning
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Feature space solution

• The optimal weights, in the expended feature space, are 

w = ∑i=1:n αi yi ɸ(xi)

• Classification of an input x is given by:

hw(x) = sign( ∑i=1:n αiyi (ɸ(xi)·ɸ(x)) ) 

• Note that to solve the SVM optimization problem in dual form 

and to make a prediction, we only ever need to compute dot-

products of feature vectors.
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Kernel functions
• Whenever a learning algorithm (such as SVMs) can be written in 

terms of dot-products, it can be generalized to kernels.

• A kernel is any function K: Rm x Rm →R, which corresponds to a 
dot product for some feature mapping ɸ:

K(x1, x2) = ɸ(x1)·ɸ(x2) for some ɸ

COMP-551: Applied Machine Learning
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Kernel functions
• Whenever a learning algorithm (such as SVMs) can be written in 

terms of dot-products, it can be generalized to kernels.

• A kernel is any function K: Rm x Rm →R, which corresponds to a 
dot product for some feature mapping ɸ:

K(x1, x2) = ɸ(x1)·ɸ(x2) for some ɸ

• Conversely, by choosing feature mapping ɸ, we implicitly 
choose a kernel function.

• Recall that ɸ(x1)·ɸ(x2) = cos∠(x1, x2), where ∠denotes the 
angle between the vectors, so a kernel function can be thought 
of as a notion of similarity.
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Example: Quadratic kernel

• Let K(x, z) = (x·z)2 .

• Is this a kernel?
K(x, z) =  ( ∑i=1:m xi zi )  (∑j=1:m xj zj )

=  ∑i,jε{1..m} xi zi xj zj

=  ∑i,j ε {1..m} ( xi xj ) ( zi zj )

COMP-551: Applied Machine Learning
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Example: Quadratic kernel

• Let K(x, z) = (x·z)2 .

• Is this a kernel?
K(x, z) =  ( ∑i=1:m xi zi )  (∑j=1:m xj zj )

=  ∑i,jε{1..m} xi zi xj zj

=  ∑i,j ε {1..m} ( xi xj ) ( zi zj )

• We see it is a kernel, with feature mapping:

ɸ(x) = < x1
2, x1x2, …, x1xm, x2x1, x2

2, …, xm
2 >

Feature vector includes all squares of elements and all cross terms.

COMP-551: Applied Machine Learning
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Example: Quadratic kernel

• Let K(x, z) = (x·z)2 .

• Is this a kernel?
K(x, z) =  ( ∑i=1:m xi zi )  (∑j=1:m xj zj )

=  ∑i,jε{1..m} xi zi xj zj

=  ∑i,j ε {1..m} ( xi xj ) ( zi zj )

• We see it is a kernel, with feature mapping:

ɸ(x) = < x1
2, x1x2, …, x1xm, x2x1, x2

2, …, xm
2 >

Feature vector includes all squares of elements and all cross terms.

Important:  Computing ɸ takes O(m2) but computing K only takes O(m).
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Polynomial kernels

• More generally, K(x, z) = (x·z)d  is a kernel, for any positive 
integer d: K(x, z) =  ( ∑i=1:m xi zi )d

• If we expanded the sum above in the naïve way, we get nd terms.

• Terms are monomials (products of xi) with total power equal to d.

COMP-551: Applied Machine Learning
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Polynomial kernels

• More generally, K(x, z) = (x·z)d  is a kernel, for any positive 
integer d: K(x, z) =  ( ∑i=1:m xi zi )d

• If we expanded the sum above in the naïve way, we get nd terms.

• Terms are monomials (products of xi) with total power equal to d.

• If we use the primal form of the SVM, each term gets a weight.

• Curse of dimensionality: it is very expensive both to optimize and 
to predict with an SVM in primal form.

• However, evaluating the dot-produce of any two feature vectors 
can be done using K in O(m).

COMP-551: Applied Machine Learning
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The “kernel trick”

• If we work with the dual, we do not have to ever compute the 
feature mapping ɸ. We just compute the similarity kernel K.

COMP-551: Applied Machine Learning
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The “kernel trick”

• If we work with the dual, we do not have to ever compute the 
feature mapping ɸ. We just compute the similarity kernel K.

• We can solve the dual for the αi :
Max ∑i=1:n αi – ½ ∑i,j=1:n  yi yj αi αj K(xi ,xj )

w.r.t. αi

s.t. αi ≥0  and ∑i:1..n αi yi = 0
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The “kernel trick”

• If we work with the dual, we do not have to ever compute the 
feature mapping ɸ. We just compute the similarity kernel K.

• We can solve the dual for the αi :
Max ∑i=1:n αi – ½ ∑i,j=1:n  yi yj αi αj K(xi ,xj )

w.r.t. αi

s.t. αi ≥0  and ∑i:1..n αi yi = 0

• The class of a new input x is computed as:

hw(x) = sign( ∑i=1:n αi yi K(xi ,x ) )
where xi are the support vectors (defining the margin).

• Remember, K(·,·) can be evaluated in O(m) time = big savings!
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Some other kernel functions

• K(x, z) = (1 + x·z)d - feature expansion has all monomial terms 

of total power.

• Radial basis / Gaussian kernel:  K(x, z) = exp ( -||x-z||2 / 2σ2 )

– This kernel has an infinite-dimensional feature expansion, but dot-
products can still be computed in O(m) (where m=#features)

• Sigmoidal kernel: K(x, z) = tanh(c1x·z + c2)

COMP-551: Applied Machine Learning
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Example:  Gaussian kernel

COMP-551: Applied Machine Learning

Some other (fairly generic) kernel functions

• K(x, z) = (1 + x · z)d – feature expansion has all monomial terms of
⌅ d total power.

• Radial basis/Gaussian kernel:

K(x, z) = exp(�✏x� z✏2/2⌅2
)

The kernel has an infinite-dimensional feature expansion, but dot-
products can still be computed in O(n)!

• Sigmoidal kernel:

K(x, z) = tanh(c1x · z+ c2)

COMP-652, Lecture 9 - October 9, 2012 39

Example: Gaussian kernel

Note the non-linear decision boundary
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Kernels beyond SVMs

• A lot of research related to defining kernel functions suitable to 

particular tasks / kinds of inputs (e.g. words, graphs, images).

• Many kernels are available:

– Information diffusion kernels (Lafferty and Lebanon, 2002)

– Diffusion kernels on graphs (Kondor and Jebara, 2003)

– String kernels for text classification (Lodhi et al, 2002)

– String kernels for protein classification (Leslie et al, 2002)

… and others!

COMP-551: Applied Machine Learning
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Example: String kernels

• Very important for DNA matching, text classification, …

• Often use a sliding window of length k over the two strings that we 

want to compare.

• Within the fixed-size window we can do many things:

– Count exact matches.

– Weigh mismatches based on how bad they are.

– Count certain markers, e.g. AGT.

• The kernel is the sum of these similarities over the two sequences.

COMP-551: Applied Machine Learning
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Kernelizing other ML algorithms

• Many other machine learning algorithms have a “dual formulation”, 

in which dot-products of features can be replaced by kernels.

• Examples:

– Perceptron

– Logistic regression

– Linear regression

COMP-551: Applied Machine Learning
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What you should know

From last class and from today:

• Perceptron algorithm.

• Margin definition for linear SVMs.

• Use of Lagrange multipliers to transform optimization problems.

• Primal and dual optimization problems for SVMs.

• Feature space version of SVMs.

• The kernel trick and examples of common kernels.


