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Today’s quiz
1. Output of 1NN for A?

2. Output of 3NN for A?

3. Output of 3NN for B?

4. Explain in 1-2 sentences the difference between a "lazy" learner 
(such as nearest neighbour classifier) and an "eager" learner 
(such as logistic regression classifier).

COMP-551: Applied Machine Learning
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Project #2

• A note on the contest rules:

– You are allowed to use the built-in cross-validation methods from libraries 
like scikit-learn, for all parts.

– You are allowed to use NLTK or another library for preprocessing your data 
for all parts

– You can use an outside corpus to evaluate the features (e.g. TF-IDF).

COMP-551: Applied Machine Learning
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Project #2
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Project #2

COMP-551: Applied Machine Learning

• Some features:

– Sub-word features (skiing: ski – kii – iin - ing) allows out-of-
vocabulary and misspelling

– Languages in hierarchical tree make use of inbalance in classes

– K-means and feature selection to reduce model size
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Next topic:  Ensemble methods

• Recently seen supervised learning methods:
– Logistic regression, Naïve Bayes, LDA/QDA
– Decision trees, Instance-based learning

• Core idea of decision trees?  Build complex classifiers from 
simpler ones.
E.g.  Linear separator -> Decision trees

• Ensemble methods use this idea with other ‘simple’ methods

• Several ways to do this.
– Bagging
– Random forests
– Boosting

COMP-551: Applied Machine Learning

Lectures 4,5 – Linear Classification
Lecture 7 – Decision Trees
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Ensemble learning in general
• Key idea:  Run a base learning algorithm multiple times, then 

combine the predictions of the different learners to get a final 
prediction.
– What’s a base learning algorithm?

• Naïve Bayes, LDA, Decision trees, SVMs, …

COMP-551: Applied Machine Learning
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Ensemble learning in general
• Key idea:  Run a base learning algorithm multiple times, then 

combine the predictions of the different learners to get a final 
prediction.
– What’s a base learning algorithm?

• Naïve Bayes, LDA, Decision trees, SVMs, …

• First attempt:  Construct several classifiers independently.
– Bagging.

– Randomizing the test selection in decision trees (Random forests).

– Using a different subset of input features to train different trees.
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Ensemble learning in general
• Key idea:  Run a base learning algorithm multiple times, then 

combine the predictions of the different learners to get a final 
prediction.
– What’s a base learning algorithm?

• Naïve Bayes, LDA, Decision trees, SVMs, …

• First attempt:  Construct several classifiers independently.
– Bagging.

– Randomizing the test selection in decision trees (Random forests).

– Using a different subset of input features to train different trees.

• More complex approach:  Coordinate the construction of the 
hypotheses in the ensemble.

COMP-551: Applied Machine Learning
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Ensemble methods in general

• Training models independently on same dataset tends to yield 

same result!

• For an ensemble to be useful, trained models need to be 

different

1. Use slightly different (randomized) datasets

2. Use slightly different (randomized) training procedure

COMP-551: Applied Machine Learning
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Recall bootstrapping

• Given dataset D, construct a bootstrap replicate of D, called Dk, 
which has the same number of examples, by drawing samples 
from D with replacement.

• Use the learning algorithm to construct a hypothesis hk by 
training on Dk.

• Compute the prediction of hk on each of the remaining points, 
from the set Tk = D – Dk.

• Repeat this process K times, where K is typically a few hundred.

COMP-551: Applied Machine Learning

Lecture 6 –
Evaluation
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Estimating bias and variance

• For each point x, we have a set of estimates h1(x), …, hK(x), with K≤B

(since x might not appear in some replicates).

• The average empirical prediction of x is:  ĥ (x) = (1/K) ∑k=1:K hk(x).

• We estimate the bias as: y – ĥ(x).

• We estimate the variance as:  (1/(K-1)) ∑k=1:K ( ĥ(x) - hk(x) )2.

COMP-551: Applied Machine Learning
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Bagging: Bootstrap aggregation

• If we did all the work to get the hypotheses hb, why not use all of 

them to make a prediction?  (as opposed to just estimating 

bias/variance/error).

• All hypotheses get to have a vote.

– For classification: pick the majority class.

– For regression, average all the predictions.

• Which hypotheses classes would benefit most from this 

approach?

COMP-551: Applied Machine Learning
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Bagging

• For each point x, we have a set of estimates h1(x), …, hK(x), with 

K≤B (since x might not appear in some replicates).

– The average empirical prediction of x is:  ĥ (x) = (1/K) ∑k=1:K hk(x).

– We estimate the bias as: y – ĥ(x).

– We estimate the variance as:  (1/(K-1)) ∑k=1:K ( ĥ(x) - hk(x) )2.

COMP-551: Applied Machine Learning
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Bagging

• In theory, bagging eliminates variance altogether.

• In practice, bagging tends to reduce variance and increase bias.

• Use this with “unstable” learners that have high variance, e.g. 

decision trees, neural networks, nearest-neighbour.

COMP-551: Applied Machine Learning
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Random forests (Breiman, 2001)
• Basic algorithm:

– Use K bootstrap replicates to train K different trees.

– At each node, pick m variables at random (use m<M, the total 
number of features).

– Determine the best test (using normalized information gain).

– Recurse until the tree reaches maximum depth (no pruning).

COMP-551: Applied Machine Learning
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Random forests (Breiman, 2001)
• Basic algorithm:

– Use K bootstrap replicates to train K different trees.

– At each node, pick m variables at random (use m<M, the total 
number of features).

– Determine the best test (using normalized information gain).

– Recurse until the tree reaches maximum depth (no pruning).

• Comments:

– Each tree has high variance, but the ensemble uses averaging, 
which reduces variance.

– Random forests are very competitive in both classification and 
regression, but still subject to overfitting.

COMP-551: Applied Machine Learning
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Extremely randomized trees (Geurts et al., 2006)

• Basic algorithm:
– Construct K decision trees.
– Pick m attributes at random (without replacement) and pick a random 

test involving each attribute.
– Evaluate all tests (using a normalized information gain metric) and pick 

the best one for the node.
– Continue until a desired depth or a desired number of instances (nmin) 

at the leaf is reached.

COMP-551: Applied Machine Learning
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Extremely randomized trees (Geurts et al., 2005)
• Basic algorithm:

– Construct K decision trees.
– Pick m attributes at random (without replacement) and pick a random 

test involving each attribute.
– Evaluate all tests (using a normalized information gain metric) and pick 

the best one for the node.
– Continue until a desired depth or a desired number of instances (nmin) 

at the leaf is reached.

• Comments:
– Very reliable method for both classification and regression.
– The smaller m is, the more randomized the trees are; small m is best, 

especially with large levels of noise. Small nmin means less bias and 
more variance, but variance is controlled by averaging over trees.

– Compared to single trees, can pick smaller nmin (less bias)

COMP-551: Applied Machine Learning
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Randomization

• For an ensemble to be useful, trained models need to be 

different

1. Use slightly different (randomized) datasets
• Bootstrap Aggregation (Bagging)

2. Use slightly different (randomized) training procedure
• Extremely randomized trees, Random Forests

COMP-551: Applied Machine Learning
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Randomization in general

• Instead of searching very hard for the best hypothesis, generate 
lots of random ones, then average their results.

• Examples:
– Random feature selection  Random projections.

• Advantages?

• Disadvantages?

COMP-551: Applied Machine Learning
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Randomization in general

• Instead of searching very hard for the best hypothesis, generate 
lots of random ones, then average their results.

• Examples:
– Random feature selection  Random projections.

• Advantages?
– Very fast, easy, can handle lots of data.

– Can circumvent difficulties in optimization.

– Averaging reduces the variance introduced by randomization.

• Disadvantages?
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Randomization in general

• Instead of searching very hard for the best hypothesis, generate 
lots of random ones, then average their results.

• Examples:
– Random feature selection  Random projections.

• Advantages?
– Very fast, easy, can handle lots of data.

– Can circumvent difficulties in optimization.

– Averaging reduces the variance introduced by randomization.

• Disadvantages?
– New prediction may be more expensive to evaluate (go over all trees).

– Still typically subject to overfitting.

– Low interpretability compared to standard decision trees.

COMP-551: Applied Machine Learning
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Randomization

• For an ensemble to be useful, trained models need to be 

different

1. Use slightly different (randomized) datasets
• Bootstrap Aggregation (Bagging)

2. Use slightly different (randomized) training procedure
• Extremely randomized trees, Random Forests

3. Alternative method to randomization?

COMP-551: Applied Machine Learning
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Additive models

• In an ensemble, the output on any instance is computed by 

averaging the outputs of several hypotheses.

• Idea:  Don’t construct the hypotheses independently. Instead, 

new hypotheses should focus on instances that are problematic 

for existing hypotheses.

– If an example is difficult, more components should focus on it.

COMP-551: Applied Machine Learning
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Boosting
• Boosting:

– Use the training set to train a simple predictor.

– Re-weight the training examples, putting more weight on examples 
that were not properly classified in the previous predictor.

– Repeat n times.

– Combine the simple hypotheses into a single, accurate predictor.

COMP-551: Applied Machine Learning

Boosting classifier

Data

Weak Learner

Weak Learner

Weak Learner

H1

H2

Hn

Final

hypothesis

F(H1,H2,...Hn)

D1

D2

Dn

Original 
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Notation

• Assume that examples are drawn independently from some 

probability distribution P on the set of possible data D.

• Let  JP(h) be the expected error of hypothesis h when data is 

drawn from P:  

JP(h) = ∑<x,y>J(h(x),y)P(<x,y>)

where J(h(x),y) could be the squared error, or 0/1 loss.

COMP-551: Applied Machine Learning
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Weak learners

• Assume we have some “weak” binary classifiers:

– A decision stump is a single node decision tree:   xi>t

– A single feature Naïve Bayes classifier.

– A 1-nearest neighbour classifier.

• “Weak” means JP(h)<1/2-ɣ (assuming 2 classes), where ɣ>0

– So true error of the classifier is only slightly better than random.

• Questions:
– How do we re-weight the examples?

– How do we combine many simple predictors into a single classifier?

COMP-551: Applied Machine Learning
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Example

COMP-551: Applied Machine Learning

Toy example
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Example: First step

COMP-551: Applied Machine Learning

Toy example: First step
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Example: Second step

COMP-551: Applied Machine Learning

Toy example: Second step
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Example: Third step

COMP-551: Applied Machine Learning

Toy example: Third step
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Example: Final hypothesis

COMP-551: Applied Machine Learning

Toy example: Final hypothesis
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AdaBoost (Freund & Schapire, 1995)

COMP-551: Applied Machine Learning
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AdaBoost (Freund & Schapire, 1995)

COMP-551: Applied Machine Learning
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AdaBoost (Freund & Schapire, 1995)

COMP-551: Applied Machine Learning

weight of weak learner t
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AdaBoost (Freund & Schapire, 1995)
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weight of weak learner t
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AdaBoost (Freund & Schapire, 1995)

COMP-551: Applied Machine Learning

weight of weak learner t
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Why these equations? 

COMP-551: Applied Machine Learning

• Loss function:

• Has a gradient

• Upper bound on classification loss

• Stronger signal for wrong classifications

• Stronger signal if wrong and far from boundary

L =
NX

i=1

e

�mi

mi = yi

KX

k=1

↵khk(xi)
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Why these equations? 

COMP-551: Applied Machine Learning

• Loss function:

• Update equations are derived from this loss function

L =
NX

i=1

e

�mi

mi = yi

KX

k=1

↵khk(xi)
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Properties of AdaBoost

• Compared to other boosting algorithms, main insight is to 

automatically adapt the error rate at each iteration.

COMP-551: Applied Machine Learning
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Properties of AdaBoost

• Compared to other boosting algorithms, main insight is to 

automatically adapt the weights at each iteration.

• Training error on the final hypothesis is at most:

recall:  ɣt is how much better than random is ht

• AdaBoost gradually reduces the training error exponentially fast.

COMP-551: Applied Machine Learning
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Real data set: Text categorization

COMP-551: Applied Machine Learning

Real data set: Text Categorization
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Boosting empirical evaluation

COMP-551: Applied Machine Learning

Boosting empirical evaluation
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©Carlos Guestrin 2005-2007

Boosting: Experimental Results

Comparison of C4.5, Boosting C4.5, Boosting decision

stumps (depth 1 trees), 27 benchmark datasets

[Freund & Schapire, 1996]
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Bagging vs Boosting

COMP-551: Applied Machine Learning

Bagging vs. Boosting
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Figure 4: Comparison of boosting and bagging for each of the
weak learners.

and assign each mislabel weight 1 times the number of
times it was chosen. The hypotheses computed in this
manner are then combined using voting in a naturalmanner;
namely, given , the combined hypothesis outputs the label
which maximizes .
For either error or pseudo-loss, the differences between

bagging and boosting can be summarized as follows: (1)
bagging always uses resampling rather than reweighting; (2)
bagging does not modify the distribution over examples or
mislabels, but instead always uses the uniform distribution;
and (3) in forming the final hypothesis, bagging gives equal
weight to each of the weak hypotheses.

3.3 THE EXPERIMENTS

We conducted our experiments on a collection of machine
learning datasets available from the repository at University
of California at Irvine.3 A summary of some of the proper-
ties of these datasets is given in Table 1. Some datasets are
provided with a test set. For these, we reran each algorithm
20 times (since some of the algorithms are randomized),
and averaged the results. For datasets with no provided test
set, we used 10-fold cross validation, and averaged the re-
sults over 10 runs (for a total of 100 runs of each algorithm
on each dataset).

In all our experiments, we set the number of rounds of
boosting or bagging to be 100.

3.4 RESULTS AND DISCUSSION

The results of our experiments are shown in Table 2.
The figures indicate test error rate averaged over mul-
tiple runs of each algorithm. Columns indicate which
weak learning algorithm was used, and whether pseudo-
loss (AdaBoost.M2) or error (AdaBoost.M1) was used.
Note that pseudo-loss was not used on any two-class prob-
lems since the resulting algorithmwould be identical to the
corresponding error-based algorithm. Columns labeled “–”
indicate that the weak learning algorithmwas used by itself
(with no boosting or bagging). Columns using boosting or
bagging are marked “boost” and “bag,” respectively.

One of our goals in carrying out these experiments was
to determine if boosting using pseudo-loss (rather than er-
ror) is worthwhile. Figure 3 shows how the different al-
gorithms performed on each of the many-class ( 2)
problems using pseudo-loss versus error. Each point in the
scatter plot represents the error achieved by the twocompet-
ing algorithms on a given benchmark, so there is one point

3URL “http://www.ics.uci.edu/˜mlearn/MLRepository.html”
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Figure 5: Comparison of C4.5 versus various other boosting and
bagging methods.

for each benchmark. These experiments indicate that boost-
ing using pseudo-loss clearly outperforms boosting using
error. Using pseudo-loss did dramatically better than error
on every non-binary problem (except it did slightly worse
on “iris” with three classes). Because AdaBoost.M2 did
so much better than AdaBoost.M1, we will only discuss
AdaBoost.M2 henceforth.

As the figure shows, using pseudo-loss with bagging
gave mixed results in comparison to ordinary error. Over-
all, pseudo-loss gave better results, but occasionally, using
pseudo-loss hurt considerably.

Figure 4 shows similar scatterplots comparing the per-
formance of boosting and bagging for all the benchmarks
and all three weak learner. For boosting, we plotted the er-
ror rate achieved using pseudo-loss. To present bagging in
the best possible light, we used the error rate achieved using
either error or pseudo-loss, whichever gave the better result
on that particular benchmark. (For the binary problems,
and experiments withC4.5, only error was used.)

For the simpler weak learning algorithms (FindAttr-
Test and FindDecRule), boosting did significantly and uni-
formly better than bagging. The boosting error rate was
worse than the bagging error rate (using either pseudo-loss
or error) on a very small number of benchmark problems,
and on these, the difference in performance was quite small.
On average, for FindAttrTest, boosting improved the error
rate over using FindAttrTest alone by 55.2%, compared to
bagging which gave an improvement of only 11.0% using
pseudo-loss or 8.4% using error. For FindDecRule, boost-
ing improved the error rate by 53.0%, bagging by only
18.8% using pseudo-loss, 13.1% using error.

When usingC4.5 as theweak learning algorithm, boost-
ing and bagging seem more evenly matched, although
boosting still seems to have a slight advantage. On av-
erage, boosting improved the error rate by 24.8%, bagging
by 20.0%. Boosting beat bagging by more than 2% on 6 of
the benchmarks, while baggingdid not beat boostingby this
amount on any benchmark. For the remaining 20 bench-
marks, the difference in performance was less than 2%.

Figure 5 shows in a similarmanner howC4.5 performed
compared to bagging withC4.5, and compared to boosting
with each of the weak learners (using pseudo-loss for the
non-binary problems). As the figure shows, using boosting
with FindAttrTest does quite well as a learning algorithm
in its own right, in comparison to C4.5. This algorithm
beat C4.5 on 10 of the benchmarks (by at least 2%), tied
on 14, and lost on 3. As mentioned above, its average
performance relative to using FindAttrTest by itself was
55.2%. In comparison,C4.5’s improvement in performance

6
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Bagging vs Boosting

• Bagging is typically faster, but may get a smaller error reduction 

(not by much).

• Bagging works well with “reasonable” classifiers.

• Boosting works with very simple classifiers.

E.g., Boostexter - text classification using decision stumps based on 
single words.

• Boosting may have a problem if a lot of the data is mislabeled, 

because it will focus on those examples a lot, leading to 

overfitting.

COMP-551: Applied Machine Learning
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Why does boosting work?

COMP-551: Applied Machine Learning
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Why does boosting work?

• Weak learners have high bias. By combining them, we get more 

expressive classifiers. Hence, boosting is a bias-reduction 

technique.

COMP-551: Applied Machine Learning
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Why does boosting work?

• Weak learners have high bias. By combining them, we get more 

expressive classifiers. Hence, boosting is a bias-reduction 

technique.

• Adaboost minimizes an upper bound on the misclassifcation

error, within the space of functions that can be captured by a 

linear combination of the base classifiers.

• What happens as we run boosting longer? Intuitively, we get 

more and more complex hypotheses. How would you expect bias 

and variance to evolve over time? 

COMP-551: Applied Machine Learning
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A naïve (but reasonable) analysis of error

• Expect the training error to continue to drop (until it reaches 0).

• Expect the test error to increase as we get more voters, and hf

becomes too complex. 

COMP-551: Applied Machine Learning

A naive (but reasonable) analysis of generalization error

• Expect the training error to continue to drop (until it reaches 0)

• Expect the test error to increase as we get more voters, and hf becomes
too complex.
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Actual typical run of AdaBoost
• Test error does not increase even after 1000 runs! (more than 2 

million decision nodes!) 

• Test error continues to drop even after training error reaches 0!

• These are consistent results through many sets of experiments!

• Conjecture:  Boosting does not overfit! 
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Actual typical run of AdaBoost
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• Test error does not increase even after 1000 runs! (more than 2 million
decision nodes!)

• Test error continues to drop even after training error reaches 0!

• These are consistent results through many sets of experiments!
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What you should know
• Ensemble methods combine several hypotheses into one prediction.

• They work better than the best individual hypothesis from the same 

class because they reduce bias or variance (or both). 

• Extremely randomized trees are a bias-reduction technique. 

• Bagging is mainly a variance-reduction technique, useful for complex 

hypotheses.

• Main idea is to sample the data repeatedly, train several classifiers and 

average their predictions. 

• Boosting focuses on harder examples, and gives a weighted vote to the 

hypotheses. 

• Boosting works by reducing bias and increasing classification margin. 


