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Who am I?

• PhD Student of Jackie Cheung (CS Department)

• My research area: natural language processing
– Computational semantics

• Understanding how passages of text relate to each other; how they 
denote entities and events in the real world

– Commonsense reasoning
• NLP tasks that require a fair amount of commonsense reasoning 
• “John yelled at Kevin because he was so upset. Who was upset?”
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Steps to solving a supervised learning problem

1. Decide what the input-output pairs are.

2. Decide how to encode inputs and outputs.
• This defines the input space X and output space Y.

3. Choose a class of hypotheses / representations H.
• E.g. linear functions.

4. Choose an error function (cost function) to define best 

hypothesis.
• E.g. Least-mean squares.

5. Choose an algorithm for searching through space of 

hypotheses.

So far:
we have been 
focusing on 
this

Today: 
deciding on 
what the 
inputs are

With a focus on feature extraction
for language problems!
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Examples of feature analysis?

• What do you know about feature selection?  

Methods, insights, creative ideas...
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Feature Extraction Steps

“raw”
features Construction

feature 
subset PredictorSelection

constructed
features

Ideas for feature construction?



Joelle Pineau6COMP-551: Applied Machine Learning

A few strategies we discussed

• Use domain knowledge to construct “ad hoc” features.

• Normalization across different features, e.g. centering and scaling 

with xi = (x’i – μi) / σi.

• Normalization across different data instances, e.g. 

counts/histogram of pixel colors.

• Non-linear expansions when first order interactions are not 

enough for good results, e.g. products x1x2, x1x3, etc.

• Other functions of features (e.g. sin, cos, log, exponential etc.)

• Regularization (lasso, ridge).
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Feature Construction

Why do we do feature construction? 

– Increase predictor performance.

– Reduce time / memory requirements.

– Improve interpretability.

But:  Don’t lose important information!

Problem: we may end up with lots of possibly irrelevant, noisy, 

redundant features.

(here, “noisy” is in the sense that it can lead the predictor astray.)
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Applications with lots of features

• Any kind of task involving images or videos - object recognition, 

face recognition.  Lots of pixels!

• Classifying from gene expression data.  Lots of different genes!

– Number of data examples: 100

– Number of variables: 6000 to 60,000

• Natural language processing tasks. Lots of possible words!

COMP-551: Applied Machine Learning
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Features for modelling natural language

• Words

• TF-IDF

• N-grams

• Syntactic features

• Word embeddings

• Useful Python package for implementing these:

– Natural Language toolkit:  http://www.nltk.org/

COMP-551: Applied Machine Learning
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Words

• Binary (present or absent)

• Absolute frequency

– i.e., raw count

• Relative frequency

– i.e., proportion

– document length

COMP-551: Applied Machine Learning
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More options for words

• Stopwords

– Common words like “the”, “of”, “about” are unlikely to be informative 
about the contents of a document.  Remove!

• Lemmatization

– Inflectional morphology: changes to a word required by the 
grammar of a language

• e.g., “perplexing” “perplexed” “perplexes”
• (Much worse in languages other than English, Chinese, Vietnamese)

– Lemmatize to recover the canonical form; e.g., “perplex”

COMP-551: Applied Machine Learning
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Term weighting

• Not all words are equally important.

• What do you know about an article if it contains the word

• the?

• penguin?
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TF*IDF (Salton, 1988)

• Term Frequency Times Inverse Document Frequency

• A term is important/indicative of a document if it:

1. Appears many times in the document

2. Is a relative rare word overall

• TF is usually just the count of the word

• IDF is a little more complicated:

– 𝐼𝐷𝐹 𝑡, 𝐶𝑜𝑟𝑝𝑢𝑠 = log #(Docs	in	9:;<=>)
#(Docs	with	term	F)	GH

• Need a separate large training corpus for this

• Originally designed for document retrieval
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N-grams

• Use sequences of words, instead of individual words

• e.g., … quick brown fox jumped …

– Unigrams (i.e. words)
• quick, brown, fox, jumped

– Bigrams
• quick_brown, brown_fox, fox_jumped

– Trigrams
• quick_brown_fox, brown_fox_jumped

• Usually stop at N <= 3, unless you have lots and lots of data

COMP-551: Applied Machine Learning
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Rich linguistic features

• Syntactic

– Extract features from a parse tree of a sentence

– [SUBJ The chicken] [VERB crossed] [OBJ the road].

• Semantic

– e.g., Extract the semantic roles in a sentence

– [AGENT The chicken] [VERB crossed] [LOC the road].

– e.g., Features are synonym clusters (“chicken” and “fowl” are the 
same feature) à WordNet

• Trade-off: Rich, descriptive features might be more 

discriminative, but are hard (expensive, noisy) to get!

COMP-551: Applied Machine Learning



Joelle Pineau16

Word embedding models

• Problems with above:

– Number of features scales with size of vocabulary!

– Many words are semantically related and behave similarly (e.g., 
freedom vs liberty)

• Word embedding models can help us:

– Embed each word into a fixed-dimension space

– Learn correlations between words with similar meanings

COMP-551: Applied Machine Learning
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word2vec (Mikolov et al., 2013)

• Intuition:

– Words that appear in similar contexts should be semantically 
related, so they should have similar word vector representations

• Actually two models:

• Continuous bag of words (CBOW) – use context words to 
predict a target word

• Skip-gram – use target word to predict context words

• In both cases, the representation that is associated with the 

target word is the embedding that is learned.
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word2vec Architectures

18
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Practical word2vec

• Pre-trained word embeddings are available for download online

– Google News corpus

– Freebase entities

• Can also train your own word2vec model, if you have more 

specialized data

• https://www.tensorflow.org/versions/master/tutorials/word2vec

• Another popular option:

– GloVe (Pennington et al., 2014)

COMP-551: Applied Machine Learning
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Feature selection

• Thousands to millions of low level features: select the most 
relevant one to build better, faster, and easier to understand
learning machines.

X

m

n

m’

slide by Isabelle Guyon
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Feature selection techniques

• Principal Component Analysis (PCA)

– Also called (Truncated) Singular Value Decomposition, or Latent 
Semantic Indexing in NLP

• Variable Ranking

– Think of features as random variables

– Find how strong they are associated with the output prediction, 
remove the ones that are not highly associated, either before 
training and during training

• Representation learning techniques like word2vec also count

COMP-551: Applied Machine Learning
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Principal Component Analysis (PCA)

• Idea:  Project data into a lower-dimensional sub-space, 

Rm èRm’, where m’<m.

COMP-551: Applied Machine Learning
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Principal Component Analysis (PCA)

• Idea:  Project data into a lower-dimensional sub-space, 

Rm èRm’, where m’<m.

• Consider a linear mapping, xi |=> Wxi

– W is the compression matrix with dimension Rm’xm.

– Assume there is a decompression matrix Umxm’.
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Principal Component Analysis (PCA)

• Idea:  Project data into a lower-dimensional sub-space, 

Rm èRm’, where m’<m.

• Consider a linear mapping, xi |=> Wxi

– W is the compression matrix with dimension Rm’xm.

– Assume there is a decompression matrix Umxm’.

• Solve the following problem:  argminW,U Σi=1:n || xi – UWxi ||2
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Principal Component Analysis (PCA)

• Idea:  Project data into a lower-dimensional sub-space, 

Rm èRm’, where m’<m.

• Consider a linear mapping, xi |=> Wxi

– W is the compression matrix with dimension Rm’xm.

– Assume there is a decompression matrix Umxm’.

• Solve the following problem:  argminW,U Σi=1:n || xi – UWxi ||2

• Select the project dimension, m’, using cross-validation.

• Typically “center” the examples before applying PCA (subtract 

the mean).

COMP-551: Applied Machine Learning
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Eigenfaces
• Turk & Pentland (1991) used PCA method to capture face images.
• Assume all faces are about the same size
• Represent each face image as a data vector.
• Each Eigen vector is an image,

called an Eigenface.

Average image

Eigenfaces

COMP-551: Applied Machine Learning
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Training images
328 Dimensionality Reduction
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Figure 23.2 Images of faces extracted from the Yale data set. Top-Left: the original
images in R50x50. Top-Right: the images after dimensionality reduction to R10 and
reconstruction. Middle row: an enlarged version of one of the images before and after
PCA. Bottom: The images after dimensionality reduction to R2. The di↵erent marks
indicate di↵erent individuals.

Some images of faces are depicted on the top-left side of Figure 23.2. Using
PCA, we reduced the dimensionality to R10 and reconstructed back to the orig-
inal dimension, which is 502. The resulting reconstructed images are depicted
on the top-right side of Figure 23.2. Finally, on the bottom of Figure 23.2 we
depict a 2 dimensional representation of the images. As can be seen, even from a
2 dimensional representation of the images we can still roughly separate di↵erent
individuals.

COMP-551: Applied Machine Learning

Original images in R50x50. Projection to R10 and reconstruction



Joelle Pineau28

Training images
328 Dimensionality Reduction
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Some images of faces are depicted on the top-left side of Figure 23.2. Using
PCA, we reduced the dimensionality to R10 and reconstructed back to the orig-
inal dimension, which is 502. The resulting reconstructed images are depicted
on the top-right side of Figure 23.2. Finally, on the bottom of Figure 23.2 we
depict a 2 dimensional representation of the images. As can be seen, even from a
2 dimensional representation of the images we can still roughly separate di↵erent
individuals.
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Figure 23.2 Images of faces extracted from the Yale data set. Top-Left: the original
images in R50x50. Top-Right: the images after dimensionality reduction to R10 and
reconstruction. Middle row: an enlarged version of one of the images before and after
PCA. Bottom: The images after dimensionality reduction to R2. The di↵erent marks
indicate di↵erent individuals.

Some images of faces are depicted on the top-left side of Figure 23.2. Using
PCA, we reduced the dimensionality to R10 and reconstructed back to the orig-
inal dimension, which is 502. The resulting reconstructed images are depicted
on the top-right side of Figure 23.2. Finally, on the bottom of Figure 23.2 we
depict a 2 dimensional representation of the images. As can be seen, even from a
2 dimensional representation of the images we can still roughly separate di↵erent
individuals.

Projection to R2. Different marks
Indicate different individuals.

COMP-551: Applied Machine Learning

Projection to R10 and reconstruction
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Other feature selection methods

• The goal:  Find the input representation that produces the best 

generalization error.

• Two classes of approaches:

– Wrapper & Filter methods:  Feature selection is applied as a pre-
processing step.

– Embedded methods:  Feature selection is integrated in the learning 
(optimization) method, e.g. Regularization

COMP-551: Applied Machine Learning
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Variable Ranking
• Idea:  Rank features by a scoring function defined for individual 

features, independently of the context of others.  Choose the m’

highest ranked features.

• Pros / cons:

COMP-551: Applied Machine Learning
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Variable Ranking
• Idea:  Rank features by a scoring function defined for individual 

features, independently of the context of others.  Choose the m’

highest ranked features.

• Pros / cons:

– Need to select a scoring function.

– Must select subset size (m’): cross-validation

– Simple and fast – just need to compute a scoring function m times 

and sort m scores.

COMP-551: Applied Machine Learning
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Scoring function: Correlation Criteria

slide by Michel Verleysen
R( j) =

(xij −i=1:n∑ x j )(yi − y )

(xij −i=1:n∑ x j )
2 (yi − y )

2

i=1:n∑
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Scoring function: Mutual information

• Think of Xj and Y as random variables.

• Mutual information between variable Xj and target Y:

• Empirical estimate from data (assume discretized variables): 

COMP-551: Applied Machine Learning

I( j) = p(x j, yY∫ )log
p(x j, y)
p(x j )p(y)

dxdy
Xj
∫

I( j) = P(Xj = x j,Y = y)log
p(Xj = x j,Y = y)
p(Xj = x j )p(Y = y)Y∑X j

∑
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Nonlinear dependencies with MI

COMP-551: Applied Machine Learning

• Mutual information identifies nonlinear 
relationships between variables.

• Example:
– x uniformly distributed over [-1 1]
– y = x2 + noise
– z uniformly distributed over [-1 1]
– z and x are independent

slide by Michel Verleysen
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Variable Ranking
• Idea:  Rank features by a scoring function defined for individual 

features, independently of the context of others.  Choose the m’

highest ranked features.

• Pros / cons?

COMP-551: Applied Machine Learning
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Variable Ranking
• Idea:  Rank features by a scoring function defined for individual 

features, independently of the context of others.  Choose the m’

highest ranked features.

• Pros / cons?

– Need select a scoring function.

– Must select subset size (m’): cross-validation

– Simple and fast – just need to compute a scoring function m times 

and sort m scores.

– Scoring function is defined for individual features (not subsets).

COMP-551: Applied Machine Learning
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Best-Subset selection

• Idea:  Consider all possible subsets of the features, measure 

performance on a validation set, and keep the subset with the 

best performance.

• Pros / cons?

– We get the best model!

– Very expensive to compute, since there is a combinatorial number 
of subsets.

COMP-551: Applied Machine Learning
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Search space of subsets

n features, 2n – 1 possible feature subsets!

Kohavi-John, 1997

slide by Isabelle Guyon

COMP-551: Applied Machine Learning
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Subset selection in practice

• Formulate as a search problem, where the state is the feature 

set that is used, and search operators involve adding or 

removing feature set

– Constructive methods like forward/backward search

– Local search methods, genetic algorithms

• Use domain knowledge to help you group features together, to 

reduce size of search space

– e.g., In NLP, group syntactic features together, semantic features, 
etc.

COMP-551: Applied Machine Learning
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Steps to solving a supervised learning problem

1. Decide what the input-output pairs are.

2. Decide how to encode inputs and outputs.
• This defines the input space X and output space Y.

3. Choose a class of hypotheses / representations H.
• E.g. linear functions.

4. Choose an error function (cost function) to define best 
hypothesis.
• E.g. Least-mean squares.

5. Choose an algorithm for searching through space of 
hypotheses.

If doing k-fold cross-validation, re-do feature selection for each fold.

Evaluate 
on test setEvaluate on

validation set
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Regularization

• Idea:  Modify the objective function to constrain the model 

choice. Typically adding term (∑j=1:m wj
p)1/p.

– Linear regression -> Ridge regression, Lasso

• Challenge:   Need to adapt the optimization procedure (e.g. 

handle non-convex objective).

• This approach is often used for very large natural (non-

constructed) feature sets, e.g. images, speech, text, video.

COMP-551: Applied Machine Learning
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Final comments

Classic paper on this:

I. Guyon, A. Elisseeff, An introduction to Variable and Feature Selection. Journal of 

Machine Learning Research 3 (2003) pp.1157-1182

http://machinelearning.wustl.edu/mlpapers/paper_files/GuyonE03.pdf

(and references therein.)

More recently, move towards learning the features end-to-end, 

using neural network architecture (more on this next week.)


