COMP 551 – Applied Machine Learning Lecture 9: A brief survey of methods for feature construction and selection

Instructor: Joelle Pineau (*jpineau@cs.mcgill.ca*)

Guest Lecturer: Ali Emami (ali.emami@mail.mcgill.ca)

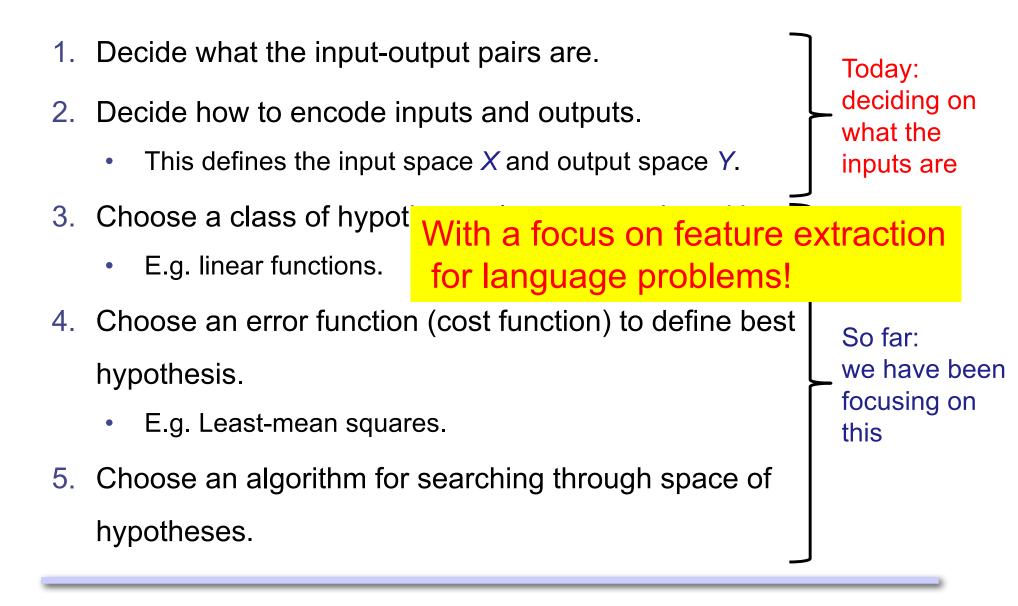
Class web page: *www.cs.mcgill.ca/~jpineau/comp551*

Unless otherwise noted, all material posted for this course are copyright of the instructor, and cannot be reused or reposted without the instructor's written permission.

Who am I?

- PhD Student of Jackie Cheung (CS Department)
- My research area: natural language processing
 - Computational semantics
 - Understanding how passages of text relate to each other; how they denote entities and events in the real world
 - Commonsense reasoning
 - NLP tasks that require a fair amount of commonsense reasoning
 - "John yelled at Kevin because he was so upset. Who was upset?"

Steps to solving a supervised learning problem

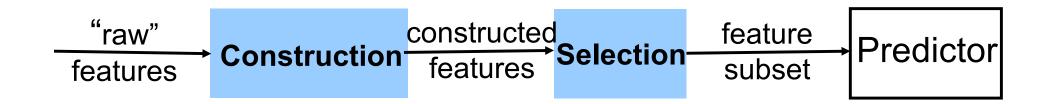


Examples of feature analysis?

• What do you know about feature selection?

Methods, insights, creative ideas...

Feature Extraction Steps



Ideas for feature construction?

A few strategies we discussed

- Use <u>domain knowledge</u> to construct "ad hoc" features.
- <u>Normalization</u> across different <u>features</u>, e.g. centering and scaling with $x_i = (x'_i - \mu_i) / \sigma_i$.
- <u>Normalization</u> across different data <u>instances</u>, e.g. counts/histogram of pixel colors.
- <u>Non-linear expansions</u> when first order interactions are not enough for good results, e.g. products x_1x_2 , x_1x_3 , etc.
- Other functions of features (e.g. sin, cos, log, exponential etc.)
- Regularization (lasso, ridge).

Feature Construction

Why do we do feature construction?

- Increase predictor performance.
- Reduce time / memory requirements.
- Improve interpretability.
- <u>But</u>: Don't lose important information!

<u>Problem</u>: we may end up with lots of possibly irrelevant, noisy, redundant features.

(here, "noisy" is in the sense that it can lead the predictor astray.)

Applications with lots of features

 Any kind of task involving images or videos - object recognition, face recognition. Lots of pixels!

- Classifying from gene expression data. Lots of different genes!
 - Number of data examples: 100
 - Number of variables: 6000 to 60,000

• Natural language processing tasks. Lots of possible words!

Features for modelling natural language

- Words
- TF-IDF
- N-grams
- Syntactic features
- Word embeddings
- Useful Python package for implementing these:
 - Natural Language toolkit: http://www.nltk.org/

Words

- Binary (present or absent)
- Absolute frequency
 - i.e., raw count
- Relative frequency
 - i.e., proportion
 - document length

Document 1

The quick brown fox jumped over the lazy dog's back.

Document2

Now is the time for all good men to come to the aid of their party. Document 1 Document 2

aid	0	1
all	0	1
back	1	0
brown	1	0
come	0	1
dog	1	0
fox	1	0
good	0	1
jump	1	0
lazy	1	0
men	0	1
now	0	1
over	1	0
party	0	1
quick	1	0
their	0	1
time	0	1

Stopword List

	for
	is
	of
	the
Г	to

COMP-551: Applied Machine Learning

More options for words

- Stopwords
 - Common words like "the", "of", "about" are unlikely to be informative about the contents of a document. Remove!
- Lemmatization
 - Inflectional morphology: changes to a word required by the grammar of a language
 - e.g., "perplexing" "perplexed" "perplexes"
 - (Much worse in languages other than English, Chinese, Vietnamese)
 - Lemmatize to recover the canonical form; e.g., "perplex"

Term weighting

- Not all words are equally important.
- What do you know about an article if it contains the word

• the?

• penguin?

TF*IDF (Salton, 1988)

- Term Frequency Times Inverse Document Frequency
- A term is important/indicative of a document if it:
 - 1. Appears many times in the document
 - 2. Is a relative rare word overall
- TF is usually just the count of the word
- IDF is a little more complicated:

- $IDF(t, Corpus) = \log \frac{\#(\text{Docs in } Corpus)}{\#(\text{Docs with term } t) + 1}$

- Need a separate large training corpus for this
- Originally designed for document retrieval

N-grams

- Use sequences of words, instead of individual words
- e.g., ... quick brown fox jumped ...
 - Unigrams (i.e. words)
 - quick, brown, fox, jumped
 - Bigrams
 - quick_brown, brown_fox, fox_jumped
 - Trigrams
 - quick_brown_fox, brown_fox_jumped
- Usually stop at N <= 3, unless you have lots and lots of data

Rich linguistic features

- Syntactic
 - Extract features from a parse tree of a sentence
 - [SUBJ The chicken] [VERB crossed] [OBJ the road].
- Semantic
 - e.g., Extract the semantic roles in a sentence
 - [AGENT The chicken] [VERB crossed] [LOC the road].
 - e.g., Features are synonym clusters ("chicken" and "fowl" are the same feature) → WordNet
- **Trade-off**: Rich, descriptive features might be more discriminative, but are hard (expensive, noisy) to get!

Word embedding models

- Problems with above:
 - Number of features scales with size of vocabulary!
 - Many words are semantically related and behave similarly (e.g., *freedom* vs *liberty*)
- Word embedding models can help us:
 - Embed each word into a fixed-dimension space
 - Learn correlations between words with similar meanings

word2vec (Mikolov et al., 2013)

- Intuition:
 - Words that appear in similar contexts should be semantically related, so they should have similar word vector representations
- Actually two models:
 - Continuous bag of words (CBOW) use context words to predict a target word
 - **Skip-gram** use target word to predict context words
- In both cases, the representation that is associated with the target word is the embedding that is learned.

word2vec Architectures

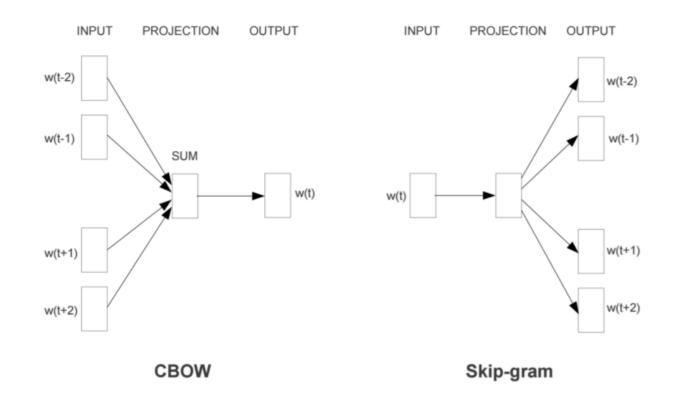


Figure 1: New model architectures. The CBOW architecture predicts the current word based on the context, and the Skip-gram predicts surrounding words given the current word.

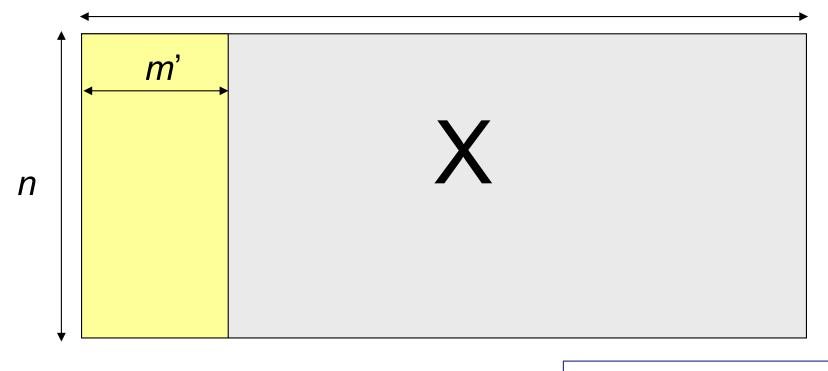
Practical word2vec

- Pre-trained word embeddings are available for download online
 - Google News corpus
 - Freebase entities
- Can also train your own word2vec model, if you have more specialized data
- https://www.tensorflow.org/versions/master/tutorials/word2vec
- Another popular option:
 - GloVe (Pennington et al., 2014)

Feature selection

 \boldsymbol{m}

 Thousands to millions of low level features: select the most relevant one to build better, faster, and easier to understand learning machines.



slide by Isabelle Guyon

COMP-551: Applied Machine Learning

Feature selection techniques

- Principal Component Analysis (PCA)
 - Also called (Truncated) Singular Value Decomposition, or Latent Semantic Indexing in NLP
- Variable Ranking
 - Think of features as random variables
 - Find how strong they are associated with the output prediction,
 remove the ones that are not highly associated, either before
 training and during training
- Representation learning techniques like word2vec also count

• **Idea**: Project data into a lower-dimensional sub-space,

• Idea: Project data into a lower-dimensional sub-space,

- Consider a linear mapping, $x_i | = Wx_i$
 - W is the compression matrix with dimension $R^{m'xm}$.
 - Assume there is a decompression matrix $U^{mxm'}$.

• **Idea**: Project data into a lower-dimensional sub-space,

- Consider a linear mapping, $x_i \mid = > W x_i$
 - W is the compression matrix with dimension $R^{m'xm}$.
 - Assume there is a decompression matrix $U^{mxm'}$.
- Solve the following problem: $\operatorname{argmin}_{W,U} \sum_{i=1:n} || x_i UWx_i ||^2$

• **Idea**: Project data into a lower-dimensional sub-space,

- Consider a linear mapping, $x_i \mid = > W x_i$
 - W is the compression matrix with dimension $R^{m'xm}$.
 - Assume there is a decompression matrix $U^{mxm'}$.
- Solve the following problem: $\operatorname{argmin}_{W,U} \sum_{i=1:n} || x_i UWx_i ||^2$
- Select the project dimension, *m*', using cross-validation.
- Typically "center" the examples before applying PCA (subtract the mean).

Eigenfaces

- Turk & Pentland (1991) used PCA method to capture face images.
- Assume all faces are about the same size
- Represent each face image as a data vector.
- Each Eigen vector is an image, called an **Eigenface**.

Average image

COMP-551: Applied Machine Learning

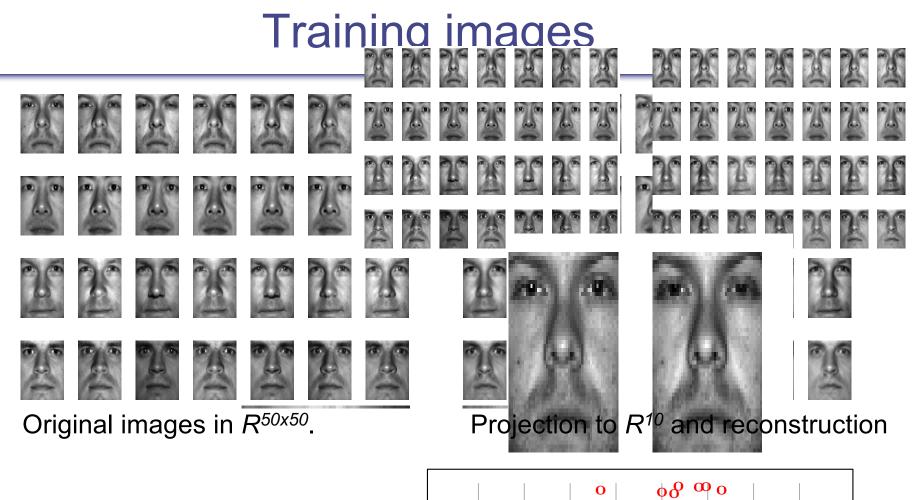
Joelle Pineau

Eigenfaces

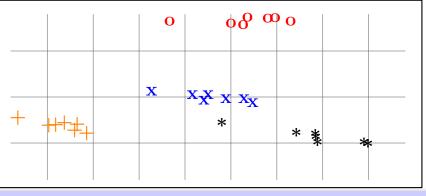
Training images

Original images in $\overline{R^{50x50}}$.

Projection to R¹⁰ and reconstruction



Projection to R^2 . Different marks Indicate different individuals.



COMP-551: Applied Machine Learning

Other feature selection methods

• **The goal**: Find the input representation that produces the best generalization error.

- <u>Two classes of approaches</u>:
 - Wrapper & Filter methods: Feature selection is applied as a preprocessing step.
 - Embedded methods: Feature selection is integrated in the learning (optimization) method, e.g. Regularization

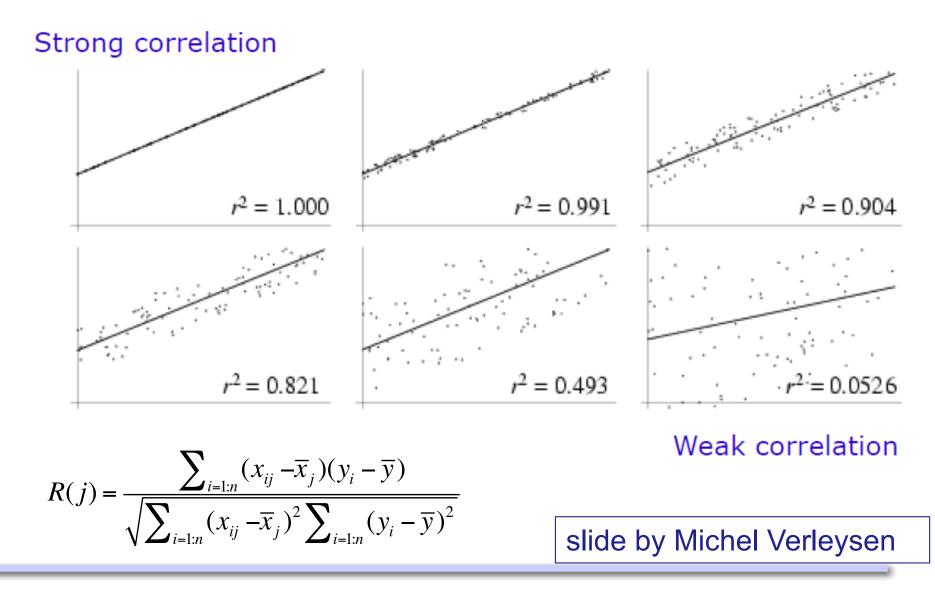
Variable Ranking

- Idea: Rank features by a scoring function defined for individual features, independently of the context of others. Choose the *m*' highest ranked features.
- Pros / cons:

Variable Ranking

- Idea: Rank features by a scoring function defined for individual features, independently of the context of others. Choose the *m*' highest ranked features.
- Pros / cons:
 - Need to select a scoring function.
 - Must select subset size (*m*'): cross-validation
 - Simple and fast just need to compute a scoring function *m* times and sort *m* scores.

Scoring function: Correlation Criteria



COMP-551: Applied Machine Learning

Scoring function: Mutual information

• Think of X_i and Y as random variables.

• Mutual information between variable X_i and target Y:

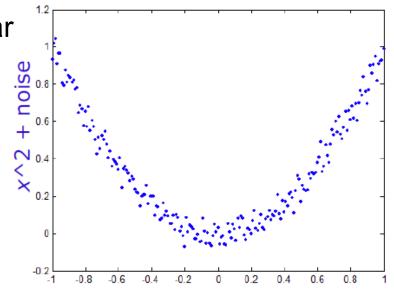
$$I(j) = \int_{X_j} \int_{Y} p(x_j, y) \log \frac{p(x_j, y)}{p(x_j) p(y)} dx dy$$

• Empirical estimate from data (assume discretized variables):

$$I(j) = \sum_{X_j} \sum_{Y} P(X_j = x_j, Y = y) \log \frac{p(X_j = x_j, Y = y)}{p(X_j = x_j)p(Y = y)}$$

Nonlinear dependencies with MI

- Mutual information identifies nonlinear relationships between variables.
- Example:
 - x uniformly distributed over [-1 1]
 - $y = x^2 + noise$
 - z uniformly distributed over [-1 1]
 - z and x are independent



1000 samples	У , У	х,у	z,y
Correlation	1	0.0460	0.0522
Mutual information	2.2582	1.1996	0.0030

slide by Michel Verleysen

Х

COMP-551: Applied Machine Learning

Variable Ranking

- Idea: Rank features by a scoring function defined for individual features, independently of the context of others. Choose the *m*' highest ranked features.
- Pros / cons?

Variable Ranking

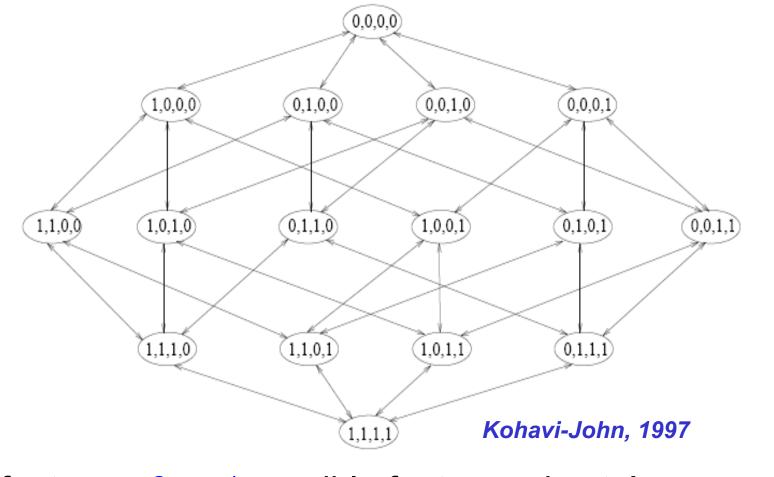
- Idea: Rank features by a scoring function defined for individual features, independently of the context of others. Choose the *m*' highest ranked features.
- Pros / cons?
 - Need select a scoring function.
 - Must select subset size (*m*'): cross-validation
 - Simple and fast just need to compute a scoring function *m* times and sort *m* scores.
 - Scoring function is defined for individual features (not subsets).

Best-Subset selection

 Idea: Consider all possible subsets of the features, measure performance on a validation set, and keep the subset with the best performance.

- Pros / cons?
 - We get the best model!
 - Very expensive to compute, since there is a combinatorial number of subsets.

Search space of subsets



n features, $2^n - 1$ possible feature subsets!

slide by Isabelle Guyon

Subset selection in practice

- Formulate as a search problem, where the state is the feature set that is used, and search operators involve adding or removing feature set
 - Constructive methods like forward/backward search
 - Local search methods, genetic algorithms
- Use domain knowledge to help you group features together, to reduce size of search space
 - e.g., In NLP, group syntactic features together, semantic features, etc.

Steps to solving a supervised learning problem

- 1. Decide what the input-output pairs are.
- 2. Decide how to encode inputs and outputs.
 - This defines the input space X and output space Y.
- 3. Choose a class of hypotheses / representations *H*.
 - E.g. linear functions.
- 4. Choose an error function (cost function) to define best hypothesis.
 - E.g. Least-mean squares.
- 5. Choose an algorithm for searching through space of hypotheses.

If doing k-fold cross-validation, re-do feature selection for each fold.

Evaluate

on test set

Evaluate on

validation set

Regularization

- Idea: Modify the objective function to constrain the model choice. Typically adding term $(\sum_{i=1:m} w_i^p)^{1/p}$.
 - Linear regression -> Ridge regression, Lasso
- Challenge: Need to adapt the optimization procedure (e.g. handle non-convex objective).
- This approach is often used for very large natural (nonconstructed) feature sets, e.g. images, speech, text, video.

Final comments

Classic paper on this:

I. Guyon, A. Elisseeff, An introduction to Variable and Feature Selection. Journal of Machine Learning Research 3 (2003) pp.1157-1182

http://machinelearning.wustl.edu/mlpapers/paper_files/GuyonE03.pdf

(and references therein.)

More recently, move towards learning the features end-to-end, using neural network architecture (more on this next week.)