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Today’s quiz
Q1. Consider the following dataset.

Let “Day” and “Weather” be the input features and
“GoHiking?” be the output.

a) What is the entropy of this set of examples?
H(D) = ??

b) What is the information gain of feature “Weather”?
IG = H(D) – H(D | Weather) = ??

c) What is the information gain of feature “Day”?
IG = H(D) – H(D | Day) = ??

Q2. Give a decision tree that correctly represents the following 
Boolean function: Y = [X1 AND X2] OR [X2 AND X3]
(Many possible correct answers.)

COMP-551: Applied Machine Learning

Day Weather GoHiking?
Mon Sunny No
Tues Cloudy No
Wed Rain No
Thurs Rain No
Fri Sunny No
Sat Sunny No
Sun Sunny Yes
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Today’s quiz
Q1. Consider the following dataset.

Let “Day” and “Weather” be the input features and
“GoHiking?” be the output.

a) What is the entropy of this set of examples?
H(D) = -(1/7)*log(1/7)/log(2)-(6/7)*log(6/7)/log(2)

b) What is the information gain of feature “Weather”?
IG = H(D) – H(D | Weather)
IG  = H(D) – ((4/7)*(-(3/4)*log(3/4)/log(2)-(1/4)*log(1/4)/log(2))) 

+ (2/7)*(0) + (1/7)*(0)

c) What is the information gain of feature “Day”?
IG = H(D) – H(D | Day) = H(D) – 0 = H(D)

Q2. Give a decision tree that correctly represents the following 
Boolean function: Y = [X1 AND X2] OR [X2 AND X3]
(Many possible correct answers.)
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Day Weather GoHiking?
Mon Sunny No
Tues Cloudy No
Wed Rain No
Thurs Rain No
Fri Sunny No
Sat Sunny No
Sun Sunny Yes
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A complete (artificial) example 

• An artificial binary classification problem with two real-valued input 

features:

COMP-551: Applied Machine Learning



Joelle Pineau5

A complete (artificial) example 

• An artificial binary classification problem with two real-valued input 

features:
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What label should 
we predict for this 
example?

*
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Parametric supervised learning

• Example: logistic regression. Input: dataset of labeled examples.

• From this, learn a parameter vector of a fixed size such that some 

error measure based on the training data is minimized.

• These methods are called parametric, and main goal is to 

summarize the data using the parameters.

– Parametric methods are typically global = one set of 
parameters for the entire data space.
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Instance based learning methods

• Key idea:  just store all training examples < xi, yi >.

• When a query is made, locally compute the value y of new 

instance based on the values of the most similar points.
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Instance based learning methods

• Key idea:  just store all training examples < xi, yi >.

• When a query is made, locally compute the value y of new 

instance based on the values of the most similar points.

• The regressor / classifier can now not be represented by a 

fixed-sized vector: representation depends on dataset
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Instance based learning methods

• Key idea:  just store all training examples < xi, yi >.

• When a query is made, locally compute the value y of new 

instance based on the values of the most similar points.

• The regressor / classifier can now not be represented by a 

fixed-sized vector: representation depends on dataset

• Different algorithms for computing the value of the new point 

based on the existing values
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Non-parametric learning methods

• Key idea:  just store all training examples < xi, yi >.

• When a query is made, computer the value of the new instance 

based on the values of the closest (most similar) points.

• Requirements:

– A distance function.

– How many closest points (neighbors) to look at?

– How do we computer the value of the new point based on the 
existing values?

COMP-551: Applied Machine Learning
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Simple idea:  Connect the dots!

COMP-551: Applied Machine Learning

What kind of distance metric?

• Euclidian distance

• Maximum/minimum di�erence along any axis

• Weighted Euclidian distance (with weights based on domain knowledge)

d(x,x0) =
nX

j=1

uj(xj � x0
j)

2

where xj denotes the value of the jth feature in the vector / instance x

• An arbitrary distance or similarity function d, specific for the application
at hand (works best, if you have one)
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Simple idea: Connect the dots!
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Simple idea:  Connect the dots!
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What kind of distance metric?

• Euclidian distance

• Maximum/minimum di�erence along any axis

• Weighted Euclidian distance (with weights based on domain knowledge)

d(x,x0) =
nX

j=1

uj(xj � x0
j)

2

where xj denotes the value of the jth feature in the vector / instance x

• An arbitrary distance or similarity function d, specific for the application
at hand (works best, if you have one)

COMP-652, Lecture 7 - September 27, 2012 15

Simple idea: Connect the dots!
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Simple idea:  Connect the dots!
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Simple idea: Connect the dots!
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Wisconsin data set, regression
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One-nearest neighbor

• Given: Training data {(xi, yi)}mi=1, distance metric d on X .

• Learning: Nothing to do! (just store data)

• Prediction: for x ⌃ X
– Find nearest training sample to x.

i⇤ ⌃ argmin
i

d(xi,x)

– Predict y = yi⇤.

COMP-652, Lecture 7 - September 27, 2012 18
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Simple idea: Connect the dots!
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One-nearest neighbor

• Given: Training data {(xi, yi)}mi=1, distance metric d on X .

• Learning: Nothing to do! (just store data)

• Prediction: for x ⌃ X
– Find nearest training sample to x.

i⇤ ⌃ argmin
i

d(xi,x)

– Predict y = yi⇤.
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One-nearest neighbor

• Given:  Training data X, distance metric d on X.

• Learning:  Nothing to do!  (Just store the data).

COMP-551: Applied Machine Learning
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One-nearest neighbor

• Given:  Training data X, distance metric d on X.

• Learning:  Nothing to do!  (Just store the data).

• Prediction: For x∈ X

Find nearest training sample xi.

i* = argmini d(xi, x)

Predict y = yi*

COMP-551: Applied Machine Learning
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What does the approximator look like?

• What do you think the decision boundary looks like?

COMP-551: Applied Machine Learning
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What does the approximator look like?

• Nearest-neighbor does not explicitly compute decision boundaries.

• But the effective decision boundaries are a subset of the Voronoi

diagram for the training data.

• Each decision boundary is a line segment that is equidistant 

between two points of opposite classes.

COMP-551: Applied Machine Learning

What does the approximator look like?

• Nearest-neighbor does not explicitly compute decision boundaries

• But the e�ective decision boundaries are a subset of the Voronoi diagram
for the training data

Each line segment is equidistant between two points of opposite classes.
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Distance metric is really important!
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What does the approximator look like?

• Example

COMP-551: Applied Machine Learning
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One-nearest neighbor

• Given:  Training data X, distance metric d on X.

• Learning:  Nothing to do!  (Just store the data).

• Prediction: For x∈ X

Find nearest training sample xi.

i* = argmini d(xi, x)

Predict y = yi*

COMP-551: Applied Machine Learning
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What kind of distance metric?

COMP-551: Applied Machine Learning
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What kind of distance metric?

• Euclidean distance.

• Weighted Euclidean distance (with weights based on domain 

knowledge): d(x, x’) = ∑j=1:m wj (xj – xj’)2

COMP-551: Applied Machine Learning



Joelle Pineau23

What kind of distance metric?

• Euclidean distance.

• Weighted Euclidean distance (with weights based on domain 

knowledge): d(x, x’) = ∑j=1:m wj (xj – xj’)2

• Maximum / minimum difference along any axis.

• An arbitrary distance or similarity function d, specific for the 

application at hand (works best, if you have one.)

COMP-551: Applied Machine Learning
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Choice of distance metric is important!
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What does the approximator look like?

• Nearest-neighbor does not explicitly compute decision boundaries

• But the e�ective decision boundaries are a subset of the Voronoi diagram
for the training data

Each line segment is equidistant between two points of opposite classes.
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Distance metric is really important!
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What does the approximator look like?

• Nearest-neighbor does not explicitly compute decision boundaries

• But the e�ective decision boundaries are a subset of the Voronoi diagram
for the training data

Each line segment is equidistant between two points of opposite classes.
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Distance metric is really important!
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Distance metric tricks

• You may need to do feature preprocessing:

– Scale the input dimensions (or normalize them).

– Remove noisy and irrelevant inputs.

– Determine weights for attributes based on cross-validation (or 
information-theoretic methods).

COMP-551: Applied Machine Learning
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Distance metric tricks

• You may need to do feature preprocessing:

– Scale the input dimensions (or normalize them).

– Remove noisy and irrelevant inputs.

– Determine weights for attributes based on cross-validation (or 
information-theoretic methods).

• Distance metric is often domain-specific.

– E.g. string edit distance in bioinformatics.

– E.g. trajectory distance in time series models for walking data.

• Distance can be learned sometimes.

COMP-551: Applied Machine Learning
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k-nearest neighbor (kNN)

• In case of noise, a single bad 

label can cause a patch to be 

misclassified

• Safer to look at more than one 

close point?

COMP-551: Applied Machine Learning
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k-nearest neighbor (kNN)

• Given:  Training data X, distance metric d on X.

• Learning:  Nothing to do!  (Just store the data).

• Prediction:

– For x∈ X, find the k nearest training samples to x.

– Let their indices be i1, i2, …, ik.

– Predict: y = mean/median of {yi1, yi2, …, yik} for regression

y = majority of {yi1, yi2, …, yik} for classification, or 
empirical probability of each class.

COMP-551: Applied Machine Learning
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Classification, 2-nearest neighbor

COMP-551: Applied Machine Learning

Classification, 2-nearest neighbor, empirical distribution
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Classification, 3-nearest neighbor
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Classification, 3-nearest neighbor
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Classification, 2-nearest neighbor, empirical distribution
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Classification, 3-nearest neighbor
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Classification, 5-nearest neighbor
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Classification, 5-nearest neighbor
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Classification, 10-nearest neighbor
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Classification, 10-nearest neighbor
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Classification, 5-nearest neighbor
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Classification, 10-nearest neighbor
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Classification, 15-nearest neighbor
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Classification, 15-nearest neighbor
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Classification, 20-nearest neighbor
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Classification, 20-nearest neighbor
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Classification, 15-nearest neighbor
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Classification, 20-nearest neighbor
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Regression, 2-nearest neighbor

COMP-551: Applied Machine Learning

Regression, 2-nearest neighbor, mean prediction
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Regression, 3-nearest neighbor
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Regression, 3-nearest neighbor

COMP-551: Applied Machine Learning

Regression, 2-nearest neighbor, mean prediction
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Regression, 3-nearest neighbor
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Regression, 5-nearest neighbor

COMP-551: Applied Machine Learning

Regression, 5-nearest neighbor
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Regression, 10-nearest neighbor
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Regression, 10-nearest neighbor

COMP-551: Applied Machine Learning

Regression, 5-nearest neighbor
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Regression, 10-nearest neighbor
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What is the best regressor?

COMP-551: Applied Machine Learning

Regression, 5-nearest neighbor
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Regression, 10-nearest neighbor
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Regression, 2-nearest neighbor, mean prediction
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Regression, 3-nearest neighbor
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Regression, 5-nearest neighbor
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Regression, 10-nearest neighbor
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Bias-variance trade-off

• What happens if k is low?

• What happens if k is high?

COMP-551: Applied Machine Learning
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Bias-variance trade-off

• What happens if k is low?

Very non-linear functions can be approximated, but we also 
capture the noise in the data.  Bias is low, variance is high.

• What happens if k is high?

The output is much smoother, less sensitive to data variation. 
High bias, low variance.

• A validation set can be used to pick the best k.
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Limitations of k-nearest neighbor (kNN)

• A lot of discontinuities!

• Sensitive to small variations in the input data.

• Can we fix this but still keep it (fairly) local?
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k-nearest neighbor (kNN)

• Given:  Training data X, distance metric d on X.

• Learning:  Nothing to do!  (Just store the data).

• Prediction:

– For x∈ X, find the k nearest training samples to x.

– Let their indices be i1, i2, …, ik.

– Predict: y = mean/median of {yi1, yi2, …, yik} for regression

y = majority of {yi1, yi2, …, yik} for classification, or 
empirical probability of each class.
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Distance-weighted (kernel-based) NN

• Given:  Training data X, distance metric d on X, weighting 

function w : R → R.

• Learning:  Nothing to do!  (Just store the data).

• Prediction:

– Given input x.

– For each xi compute wi = w(d(xi,x)).

– Predict: y = ∑i wiyi /  ∑i wi .

COMP-551: Applied Machine Learning
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Distance-weighted (kernel-based) NN

• Given:  Training data X, distance metric d on X, weighting 

function w : R → R.

• Learning:  Nothing to do!  (Just store the data).

• Prediction:

– Given input x.

– For each xi compute wi = w(d(xi,x)).

– Predict: y = ∑i wiyi /  ∑i wi .

• How should we weigh the distances?

COMP-551: Applied Machine Learning
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Some weighting functions

COMP-551: Applied Machine Learning

Distance-weighted (kernel-based) nearest neighbor

• Inputs: Training data {(xi, yi)}mi=1, distance metric d on X , weighting
function w : R ⌥⌅ R.

• Learning: Nothing to do!

• Prediction: On input x,

– For each i compute wi = w(d(xi,x)).
– Predict weighted majority or mean. For example,

y =

P
iwiyiP
iwi

• How to weight distances?

COMP-652, Lecture 7 - September 27, 2012 35

Some weighting functions

1

d(xi,x)

1

d(xi,x)2
1

c+ d(xi,x)2
e�

d(xi,x)
2

�2
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Gaussian weighting, small σ

COMP-551: Applied Machine Learning

Example: Gaussian weighting, small ⇤
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Gaussian weighting, medium ⇤
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Gaussian weighting, medium σ

COMP-551: Applied Machine Learning

Example: Gaussian weighting, small ⇤
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Gaussian weighting, medium ⇤
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Gaussian weighting, large σ
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Gaussian weighting, large ⇤
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All examples get to vote! Curve is smoother, but perhaps too smooth.

COMP-652, Lecture 7 - September 27, 2012 39

Locally-weighted linear regression

• Weighted linear regression: di�erent weights in the error function for
di�erent points (see answer to homework 1)

• Locally weighted linear regression: weights depend on the distance to
the query point

• Uses a local linear fit (rather than just an average) around the query
point

• If the distance metric is well tuned, it can lead to really good results (can
represent non-linear functions easily and faithfully)

COMP-652, Lecture 7 - September 27, 2012 40

All examples get to vote!  Curve is smoother, but perhaps too smooth?
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Scaling up

• kNN in high-dimensional feature spaces?

In high dim spaces, the distance between near and far points appears 
similar.

A few points (“hubs”) show up repeatedly in the top kNN [Radovanovic et 
al., 2009].

• kNN with larger number of datapoints?

COMP-551: Applied Machine Learning
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Scaling up

• kNN in high-dimensional feature spaces?

– In high dim spaces, the distance between points appears similar.

– A few points (“hubs”) show up repeatedly in the top kNN [Radovanovic
et al., 2009].

• kNN with larger number of datapoints?
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Scaling up

• kNN in high-dimensional feature spaces?

– In high dim spaces, the distance between points appears similar.

– A few points (“hubs”) show up repeatedly in the top kNN [Radovanovic
et al., 2009].

• kNN with larger number of datapoints?

– Can be implemented efficiently, O(log n) at retrieval time, if we use 
smart data structures:

• Condensation of the dataset (Use prototypes)
• Hash tables in which the hashing function is based on the distance metric.
• KD-trees (Tutorial: http://www.autonlab.org/autonweb/14665)
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Instance based learning

• Instance-based learning refers to techniques where previous 
samples are used directly to make predictions

• What makes instance based methods different?
– Model is typically non-parametric (no fixed parameter vector)
– Algorithms are typically lazy 
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Lazy vs eager learning

• Lazy learning:  Wait for query before generalization.

– E.g. Nearest neighbour.

• Eager learning:  Generalize before seeing query.

– E.g. Logistic regression, LDA, decision trees, neural networks.

• Which is faster?

– Training time?

– Query answering time?
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Pros and cons of lazy and eager learning
• Eager learners create global approximation.
• Lazy learners create many local approximations.
• If they use the same hypothesis space, a lazy learner can represent 

more complex functions (e.g., consider H = linear function).

COMP-551: Applied Machine Learning
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Pros and cons of lazy and eager learning
• Eager learners create global approximation.
• Lazy learners create many local approximations.
• If they use the same hypothesis space, a lazy learner can represent 

more complex functions (e.g., consider H = linear function).

• Lazy learning has much faster training time.
• Eager learner does the work off-line
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Pros and cons of lazy and eager learning
• Eager learners create global approximation.
• Lazy learners create many local approximations.
• If they use the same hypothesis space, a lazy learner can represent 

more complex functions (e.g., consider H = linear function).

• Lazy learning has much faster training time.

• Lazy learner typically has slower query answering time (depends on 
number of instances and number of features) and requires more 
memory (must store all the data).

• Eager learner does the work off-line

COMP-551: Applied Machine Learning
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Non-parametric method

• Representation for parametric method is specified in advance

– Fixed size representation

• Representation for non-parametric methods depends on dataset

– Size of representation typically linear in # of examples

COMP-551: Applied Machine Learning
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Pros and cons of non-parametric method

• Representation for parametric method is specified in advance

– Good if a good representation is known in advance

– Can easily leverage knowledge about structure

• Representation for non-parametric methods depends on dataset

– High resolution where much data available / decisions are complex

– If little is known data distribution (no good representation known)

– Still requires a good distance metric

• Non-parametric methods often require complex computations

• Non-parametric methods typically larger storage requirement

COMP-551: Applied Machine Learning
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Lazy / eager and non-parametric
• Lazy / eager: Generalization before or after seeing query?
• Parametric or not: fixed # of parameters or determined by data?

• Usually, parametric methods are also eager
• Often, non-parametric are also lazy

– But consider decision trees!

COMP-551: Applied Machine Learning
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When to use instance-based learning
• Instances map to points in Rn .  Or else a given distance metric.

• Not too many attributes per instance (e.g. <20), otherwise all 
points look at a similar distance, and noise becomes a big issue.

• Not too many irrelevant attributes: easily fooled! 
(for most distance metrics.)

• Structure of model not known in advance

• Uneven spread of data: Provides variable resolution 
approximation (based on density of points).
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Application

Hays & Efros, Scene Completion Using Millions of Photographs, CACM, 2008.

http://graphics.cs.cmu.edu/projects/scene-completion/scene_comp_cacm.pdf
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What you should know

• Difference between eager vs lazy learning.

• Key idea of non-parametric learning.

• The k-nearest neighbor algorithm for classification and 

regression, and its properties.

• The distance-weighted NN algorithm
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What you should know

• Difference between eager vs lazy learning.

• Key idea of non-parametric learning.

• The k-nearest neighbor algorithm for classification and 

regression, and its properties.

• The distance-weighted NN algorithm and locally-weighted linear 

regression.



Joelle Pineau65

Project 1 follow-up

• Please follow instructions carefully!

– I spent ~5 hours since Friday cleaning up your submissions.

– Some submitted by email a few minutes/seconds late.

– Some submitted a single tar (w/report, predictions, code).

– Some did not include their collaborators as co-authors.

– Some could not compress their code sufficiently.

– SUBMIT EARLY!   SUBMIT OFTEN!

COMP-551: Applied Machine Learning



Joelle Pineau66

Project 2

• Available today.  Due Oct. 23rd.

• Text classification task: 
– Devise a machine learning algorithm to analyze short conversations 

and automatically classify them according to the language of the 
conversation. 

– Conversations taken from your collected corpuses
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Tips for analyzing text

• Natural Language toolkit:  http://www.nltk.org/

• Common features?

– Bag of words

COMP-551: Applied Machine Learning
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Tips for analyzing text

• Natural Language toolkit:  http://www.nltk.org/

• Common features?

– Bag of words

– Term frequency – inverse document frequency (TF-IDF)

TF(t,d) = frequency of a word t in a document d

IDF(t,D) = measure of how much information the word t provides 
across corpus of documents D

TF-IDF(t,d,D) = TF(t,d) x IDF(t,D)
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Tips for analyzing text

• Natural Language toolkit:  http://www.nltk.org/

• Common features?

– Bag of words

– Term frequency – inverse document frequency (TF-IDF)

– Hashing

=> Turn a word into a fixed-length vector using a hashing function.

– Word embeddings (more on this later in the course.)

• Dimensionality reduction: don’t consider all words, limit size of 

hash table / embedding dimension.  (more on this also later.)
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Locally weighted regression
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