COMP 551 — Applied Machine Learning
Lecture 4: Linear classification

Instructor: Joelle Pineau (jpineau@cs.mcgqill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the
instructor, and cannot be reused or reposted without the instructor’s written permission.




Today’s Quiz

1. What is meant by the term overfitting? What can cause

overfitting? How can one avoid overfitting?

2.  Which of the following increases the chances of overfitting

(assuming everything else is held constant):

a) Reducing the size of the training set.
b) Increasing the size of the training set.
c) Reducing the size of the test set.

d) Increasing the size of the test set.

e) Reducing the number of features.

f) Increasing the number of features.

COMP-551: Applied Machine Learning 2 Joelle Pineau



Evaluation

« Use cross-validation for model selection.

« Training set is used to select a hypothesis f from a class of

hypotheses F (e.g. regression of a given degree).

- Validation set is used to compare best f from each hypothesis

class across different classes (e.g. different degree regression).

* Must be untouched during the process of looking for f within a class F.

- Test set: Ideally, a separate set of (labeled) data is withheld to
get a true estimate of the generalization error.

(Often the “validation set” is called “test set”, without distinction.)
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Validation vs Train error

[From Hastie et al. textbook]
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FIGURE 2.11. Test and training error as a function of model complexity.
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Bias vs Variance

 (Gauss-Markov Theorem says:

The least-squares estimates of the parameters w have the smallest

variance among all linear unbiased estimates.

- Insight: Find lower variance solution, at the expense of some bias.

E.g. Include penalty for model complexity in error to reduce overfitting.
Err(w) = 5., (y:- wx)? + A |model_size|

A Is a hyper-parameter that controls penalty size.
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Ridge regression (aka L2-regularization)

« Constrains the weights by imposing a penalty on their size:

W98 = argminy, { Y i=1..( i - WTX)? + AZj=O:ij2 }

where A can be selected manually, or by cross-validation.

- Do allittle algebra to get the solution: w@9e = (XTX+Al)-'XTY

— The ridge solution is not equivariant under scaling of the data, so
typically need to normalize the inputs first.

— Ridge gives a smooth solution, effectively shrinking the weights, but
drives few weights to 0.
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Lasso regression (aka L1-regularization)

« Constrains the weights by penalizing the absolute value of their

size:

Wasse = argminyy { 3 i—1n( Vi - WIX)? + A =ymlw| }

* Now the objective is non-linear in the output y, and there is no
closed-form solution. Need to solve a quadratic programming

problem instead.

— More computationally expensive than Ridge regression.

— Effectively sets the weights of less relevant input features to zero.

COMP-551: Applied Machine Learning 7 Joelle Pineau



Comparing Ridge and Lasso

Ridge Lasso

Contours of equal W2 5
regression error
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A quick look at evaluation functions

- We call L(Y,f,(x)) the loss function.
— Least-square / Mean squared-error (MSE) loss:
LY, fu(X)) = 2zt (Yi- W'X)?
» Other loss functions?
— Absolute error loss: LY, T,(X)=>i—in|yi—WX|
— 0-1 loss (for classification): L(Y, f,(X) = >, 1 (V% (X))

 Different loss functions make different assumptions.

— Squared error loss assumes the data can be approximated by a
global linear model with Gaussian noise.
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Next: Linear models for classification

Linear Regression of 0/1 Response

FIGURE 2.1. A classification example in two dimensions. The classes are coded
as a binary variable (BLUE = 0, ORANGE = 1), and then fit by linear regression.
The line is the decision boundary defined by ¥ = 0.5. The orange shaded region

denotes that part of input space classified as ORANGE, while the blue region is
classified as BLUE.
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Classification problems

Fisher's Iris Data
Sepal length + Sepal width ¢+  Petal length + Petal width + | Species *+

Given data set D=<x,y,>, i=1:n, with > - 1 o2 b setosa
49 3.0 1.4 0.2 I. setosa

discrete y;, find a hypothesis which &7 52 19 o2 ! setosa
4.6 3.1 1.5 0.2 I. setosa

« 1 5.0 3.6 1.4 0.2 . setosa
beSt fItS the data' 5.4 3.9 1.7 0.4 I. setosa
4.6 3.4 1.4 0.3 I. setosa

5.0 3.4 1.5 0.2 I. setosa

4.4 29 1.4 0.2 I. setosa

— Ify;, & {0, 1} this is binary 4.9 3.1 15 0.1 I. setosa

| ficat 5.4 3.7 1.5 0.2 I setosa
classitication. 48 3.4 1.6 0.2 . setosa

4.8 3.0 1.4 0.1 I. setosa

4.3 3.0 1.1 0.1 I. setosa

5.8 4.0 1.2 0.2 I. setosa

— If y; can take more than two 57 a4 15 04 | setosa

. 5.4 3.9 1.3 0.4 I. setosa

values, the problem is called - is . 0s ! otoen
multi-class classification. i s i g8 i

51 3.8 1.5 0.3 I. setosa

5.4 3.4 1.7 0.2 I. setosa

51 3.7 1.5 0.4 I. setosa

4.6 3.6 1.0 0.2 I. setosa
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Applications of classification

« Text classification (spam filtering, news filtering, building web

directories, etc.)

« Image classification (face detection, object recognition, etc.)

* Prediction of cancer recurrence.

« Financial forecasting.

* Many, many more!
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Simple example

Given “nucleus size”, predict cancer recurrence.

Univariate input: X = nucleus size.

Binary output: Y = {NoRecurrence = 0; Recurrence = 1}

Try.: Minimize the least-square error.

NoRecurrence

nonrecurrence count

0]
10 12 14 16 18 20 22 24 26 28 30
nucleus size

Recurrence

qo 12 14 16 18 20 22 24 26 28 30
nucleus size
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Predicting a class from linear regression

 Hereredlineis: Y =X X'X)'X'Y

1.2

* How to get a binary output?

1k H MW MR b -+
1. Threshold the output: 08l
{ y <=t for NoRecurrence, 0l

y > t for Recurrence}

2. Interpret output as probability:

nonrecur (0) or recur (1)

y = Pr (Recurrence)

-HHHH -

5 10 15 20 25 30
nucleus size

« (Can we find a better model?
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Modeling for binary classification

- Two probabilistic approaches:

1. Discriminative learning: Directly estimate P(y|x).

2. Generative learning: Separately model P(x|y) and P(y). Use
Bayes rule, to estimate P(y|x):

P(xly=DP(y=1)
P(x)

P(y=1lx)=
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Probabillistic view of discriminative learning

* Suppose we have 2 classes: y €{0, 1}
*  What is the probability of a given input x having class y = 17

« Consider Bayes rule:

P(y=1|x)=P(x’y=1)= P(xly=1)P(y=1)
P(x)  P(xly=1)P(y=1)+P(x1y=0)P(y=0)
1 | .
) 1+P(xly=0)P(y=0) i 1+exp(lnP(x|y=0)P(y=0)) B 1+exp(—a)_ o
P(xly=DP(y=1) P(xly=1P(y=1)

where a1n P(xly=1)P(y=1) _1n P(y=1Ix) (By Bayes rule; P(x)

B _ _ _ on top and bottom
P(xly=0)P(y=0) P(y=01x) cancels out.)

« Here o0 has a special form, called the logistic function
and a is the log-odds ratio of data being class 1 vs. class 0.
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Discriminative learning: Logistic regression

» |dea: Directly model the log-odds with a linear function:

In P(xly=DP(y=1) _
P(xly=0)P(y=0)

* The decision boundary is the set of points for which a=0.

a=

Wy + WX, + ...+ W, X,

« The logistic function (= sigmoid curve): o(w'x) =1/(1 +e")

1_
How do we find the weights? ﬁ
Need an optimization function. j
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Fitting the weights

* Recall: o(w'x;) is the probability that y.=71 (given x;)
1-o(w’x;) be the probability that y; = 0.

* Fory €{0, 1}, the likelihood function, Pr(x,y4, ..., X,,¥, | W), is:

=1 OW'X)V (1- o(W'x;)) (V) (samples are i.i.d.)

« Goal: Minimize the log-likelihood (also called cross-entropy
error function):

- 2 =1n Yilog(o(w'xy) + (1-y;)log(1-0(w'x))
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Gradient descent for logistic regression

Error fn: Err(w) = - [ iy, ¥;log(o(w'x)) + (1-y)log(1-o(w'x)) ]

o dlog(o)/dw=1/o0
 Take the derivative:

oErr(w)/ow = -[Yi=1n Vi (1/0(W'x))(1-0(W'x)) o(wTx)x; + ...
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Gradient descent for logistic regression

Error fn: Err(w) = - [ iy, ¥;log(o(w'x)) + (1-y)log(1-o(w'x)) ]

 Take the derivative: \60/6\,\/:0(1-0)

oErr(w)/ow = -[Yi=1n Vi (1/0(W'x))(1-0(W'x)) o(wTx)x; + ...
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Gradient descent for logistic regression

Error fn: Err(w) = - [ iy, ¥;log(o(w'x)) + (1-y)log(1-o(w'x)) ]

. OwTx/dw=x
 Take the derivative: \

oErr(w)/ow = -[Yi=1nVi(1/0(W'x))(1-0(w'X)) a(wa_,-)x,- + ...
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Gradient descent for logistic regression

Error fn: Err(w) = - [ s,y ¥ilog(o(w'x)) + (1-y)log(1-o(w'x)) |

5(1-0)/dw=
« Take the derivative: (1-0)o(-1)
OEm(w)fow = - [ Y ey (1/0(WTX))(1-0(WTX)) O(WTX)xX; +

(1-y)(1/(1-o(w'x;)))(1-o(W'x;))o(W'X;)(-1) X;]
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Gradient descent for logistic regression

* Errorfn: Err(w) =-[3 -y, y;log(o(w'x) + (1-y)log(1-o(w'x) |

« Take the derivative:

OErr(w)/ow - -[S.i,yi(1/0(W'x))(1-0(W'X)) o(WTx)x; +
(1-y)(1/(1-0(w'x;)))(1-0(W'x;))o(w'x;)(-1) X;]
= - Yi=1:n X (¥; (1-0(W'x)) - (1-y)o(w'x))
= - Y =10 X; (Vi - O(W'X;))
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Gradient descent for logistic regression

Error fn: Err(w) = - [ s,y ¥ilog(o(w'x)) + (1-y)log(1-o(w'x)) ]

Take the derivative:

OErr(w)/ow - -[S.i,yi(1/0(W'x))(1-0(W'X)) o(WTx)x; +
(1-y)(1/(1-0(w'x;)))(1-0(W'x;))o(w'x;)(-1) X;]
= - Yi=1:n X (¥; (1-0(W'x)) - (1-y)o(w'x))
= - Y =10 X; (Vi - O(W'X;))

\
Now apply iteratively: Wiss = W T ak[Zi=1:n X (yi— a(wka,))]

Can also apply other iterative methods, e.g. Newton’s method,
coordinate descent, L-BFGS, etc.
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Modeling for binary classification

- Two probabilistic approaches:

1. Discriminative learning: Directly estimate P(y|x).

2. Generative learning: Separately model P(x|y) and P(y). Use
Bayes rule, to estimate P(y|x):

P(xly=DP(y=1)
P(x)

P(y=1lx)=
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What you should know

« Basic definition of linear classification problem.

« Derivation of logistic regression.

 Linear discriminant analysis: definition, decision boundary.

* Quadratic discriminant analysis: basic idea, decision boundary.

« LDA vs QDA pros/cons.

«  Worth reading further:

— Under some conditions, linear regression for classification and LDA
are the same (Hastie et al., p.109-110).

— Relation between Logistic regression and LDA (Hastie et al., 4.4.5)
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Final notes

You don’t yet have a team for Project #1? => Use myCourses.

You don’t yet have a plan for Project #1? => Start planning!

Feedback on tutorial 17
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