
COMP 551 – Applied Machine Learning
Lecture 3: Linear regression (cont’d)

Instructor:  Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the 
instructor, and cannot be reused or reposted without the instructor’s written permission. 
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This function looks complicated, and a linear hypothesis does not 

seem very good.

What should we do?
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Predicting recurrence time from tumor size
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This function looks complicated, and a linear hypothesis does not 

seem very good.

What should we do?

• Pick a better function?

• Use more features?

• Get more data?
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Predicting recurrence time from tumor size
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Dealing with difficult cases of (XTX)-1

• Case #1:  The weights are not uniquely defined.

Solution:   Re-code or drop some redundant columns of X.

• Case #2: The number of features/weights (m) exceeds the 

number of training examples (n).

Solution:  Reduce the number of features using various 
techniques (to be studied later.)

COMP-551: Applied Machine Learning



Joelle Pineau5

Input variables for linear regression

• Original quantitative variables X1, …, Xm

• Transformations of variables,  e.g. Xm+1 = log(Xi)

• Basis expansions, e.g. Xm+1 = Xi
2, Xm+2 = Xi

3, …

• Interaction terms, e.g. Xm+1 = Xi Xj

• Numeric coding of qualitative variables, e.g. Xm+1 = 1 if Xi is true 

and 0 otherwise.

In all cases, we can add Xm+1, …, Xm+k to the list of original 

variables and perform the linear regression.

COMP-551: Applied Machine Learning
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Example of linear regression with polynomial terms

Answer: Polynomial regression

• Given data: (x1, y1), (x2, y2), . . . , (xm, ym).

• Suppose we want a degree-d polynomial fit.

• Let Y be as before and let

X =

2
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1 . . . x2

1 x1 1
xd
2 . . . x2

2 x2 1
... ... ... ...

xd
m . . . x2

m xm 1

3

775

• Solve the linear regression Xw ⌅ Y .
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Example of quadratic regression: Data matrices

X =

2

6666666666666664

0.75 0.86 1
0.01 0.09 1
0.73 �0.85 1
0.76 0.87 1
0.19 �0.44 1
0.18 �0.43 1
1.22 �1.10 1
0.16 0.40 1
0.93 �0.96 1
0.03 0.17 1

3

7777777777777775

Y =

2

6666666666666664

2.49
0.83
�0.25
3.10
0.87
0.02
�0.12
1.81
�0.83
0.43

3

7777777777777775
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fw(x) =   w0 + w1 x +w2 x2

x2 x
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Solving the problem
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Solving for w

w = (XTX)�1XTY =


4.11 �1.64 4.95
�1.64 4.95 �1.39
4.95 �1.39 10

��1 
3.60
6.49
8.34

�
=


0.68
1.74
0.73

�

So the best order-2 polynomial is y = 0.68x2 + 1.74x+ 0.73.
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Order-2 fit

x

y

Is this a better fit to the data?
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Compared to y = 1.6x + 1.05 
for the order-1 polynomial. 
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Order-3 fit:  Is this better?
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Order-4 fit
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Order-5 fit
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Order-6 fit
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Order-7 fit



Joelle Pineau13COMP-551: Applied Machine Learning

Order-8 fit
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Order-9 fit
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This is overfitting!

• We can find a hypothesis that explains perfectly the training 

data, but does not generalize well to new data.

• In this example:  we have a lot of parameters (weights), so the 

hypothesis matches the data points exactly, 

but is wild everywhere else.

• A very important problem in machine learning.
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Overfitting

• Every hypothesis has a true error measured on all possible data 

items we could ever encounter (e.g. fw(xi) - yi ).

• Since we don’t have all possible data, in order to decide what is 

a good hypothesis, we measure error over the training set.

• Formally:  Suppose we compare hypotheses f1 and f2.

– Assume f1 has lower error on the training set.

– If f2 has lower true error, then our algorithm is overfitting.
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Overfitting

• Which hypothesis has the lowest true error?
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d=2 d=3 d=4

d=5 d=8d=7d=6

d=1
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Cross-Validation
• Partition your data into a Training Set and a Validation set.

– The proportions in each set can vary.

• Use the Training Set to find the best hypothesis in the class.

• Use the Validation Set to evaluate the true prediction error.
– Compare across different hypothesis classes (different order polynominals.) 

Answer: Polynomial regression

• Given data: (x1, y1), (x2, y2), . . . , (xm, ym).

• Suppose we want a degree-d polynomial fit.

• Let Y be as before and let

X =

2

664

xd
1 . . . x2

1 x1 1
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2 . . . x2

2 x2 1
... ... ... ...
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m . . . x2

m xm 1

3

775

• Solve the linear regression Xw ⌅ Y .
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Example of quadratic regression: Data matrices

X =

2

6666666666666664

0.75 0.86 1
0.01 0.09 1
0.73 �0.85 1
0.76 0.87 1
0.19 �0.44 1
0.18 �0.43 1
1.22 �1.10 1
0.16 0.40 1
0.93 �0.96 1
0.03 0.17 1

3

7777777777777775

Y =

2

6666666666666664

2.49
0.83
�0.25
3.10
0.87
0.02
�0.12
1.81
�0.83
0.43

3

7777777777777775
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Train:

Validate:
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k-fold Cross-Validation

• Consider k partitions of the data (usually of equal size).
• Train with k-1 subset, validate on kth subset.  Repeat k times.
• Average the prediction error over the k rounds/folds.

• Computation time is increased by factor of k.

Source: http://stackoverflow.com/questions/31947183/how-to-implement-walk-forward-testing-in-sklearn



Joelle Pineau20COMP-551: Applied Machine Learning

• Let k = n, the size of the training set

• For each order-d hypothesis class,

– Repeat n times:
• Set aside one instance <xi, yi> from the training set.
• Use all other data points to find w (optimization).
• Measure prediction error on the held-out <xi, yi>.

– Average the prediction error over all n subsets.

• Choose the d with lowest estimated true prediction error.

Leave-one-out cross-validation
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Estimating true error for d=1

x         y   
0.86 2.49
0.09 0.83
-0.85 -0.25
0.87 3.10
-0.44 0.87
-0.43 0.02
-1.1 -0.12
0.40 1.81
-0.96 -0.83
0.17 0.43

Data Cross-validation results
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Cross-validation results

• Optimal choice: d=2. Overfitting for d > 2.
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Evaluation

• We use cross-validation for model selection. 

• Available labeled data is split into two parts:

– Training set is used to select a hypothesis f from a class of 
hypotheses F (e.g. regression of a given degree).

– Validation set is used to compare the best f from each hypothesis 
class across different classes (e.g. different degree regression).

• Must be untouched during the process of looking for f within a class F.
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Evaluation

• We use cross-validation for model selection. 

• Available labeled data is split into two parts:

– Training set is used to select a hypothesis f from a class of 
hypotheses F (e.g. regression of a given degree).

– Validation set is used to compare the best f from each hypothesis 
class across different classes (e.g. different degree regression).

• Must be untouched during the process of looking for f within a class F.

• Test set:  Ideally, a separate set of (labeled) data is withheld to 
get a true estimate of the generalization error.
(Often the “validation set” is called “test set”, without distinction.)
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Validation vs Train error
38 2. Overview of Supervised Learning

High Bias

Low Variance

Low Bias

High Variance

P
re
d
ic
ti
on

E
rr
or

Model Complexity

Training Sample

Test Sample

Low High

FIGURE 2.11. Test and training error as a function of model complexity.

be close to f(x0). As k grows, the neighbors are further away, and then
anything can happen.

The variance term is simply the variance of an average here, and de-
creases as the inverse of k. So as k varies, there is a bias–variance tradeoff.

More generally, as the model complexity of our procedure is increased, the
variance tends to increase and the squared bias tends to decrease. The op-
posite behavior occurs as the model complexity is decreased. For k-nearest
neighbors, the model complexity is controlled by k.

Typically we would like to choose our model complexity to trade bias
off with variance in such a way as to minimize the test error. An obvious
estimate of test error is the training error 1

N

∑
i(yi − ŷi)2. Unfortunately

training error is not a good estimate of test error, as it does not properly
account for model complexity.

Figure 2.11 shows the typical behavior of the test and training error, as
model complexity is varied. The training error tends to decrease whenever
we increase the model complexity, that is, whenever we fit the data harder.
However with too much fitting, the model adapts itself too closely to the
training data, and will not generalize well (i.e., have large test error). In
that case the predictions f̂(x0) will have large variance, as reflected in the
last term of expression (2.46). In contrast, if the model is not complex
enough, it will underfit and may have large bias, again resulting in poor
generalization. In Chapter 7 we discuss methods for estimating the test
error of a prediction method, and hence estimating the optimal amount of
model complexity for a given prediction method and training set.
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[From Hastie et al. textbook]
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What you should know

• Definition and characteristics of a supervised learning problem.

• Polynomial regression, feature subset selection, ridge, lasso.

• Overfitting (when it happens, how to avoid it).

• Cross-validation (how and why we use it).


