COMP 551 — Applied Machine Learning
Lecture 2: Linear regression

Instructor: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcqill.ca/~jpineau/comp551

Unless otherwise noted, all material posted for this course are copyright of the
instructor, and cannot be reused or reposted without the instructor’s written permission.




Today’s Quiz (informal)

Write down the 3 most useful insights you gathered from

the article:

“A Few Useful Things to Know About Machine Learning’.
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Supervised learning

« Given a set of training examples: x; = < X;;, X5, Xi3, -

x; is the j feature of the /" example

y;is the desired output (or target) for the " example.

X; denotes the /" feature.

« We want to learn a function f: X, x X, x ...

xX,—>Y

"J

Xins Yi=

which maps the input variables onto the output domain.

tumor size  texture perimeter outcome time
18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27
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Supervised learning

» Given a dataset X x Y, find a function: f: X — Y such that f(x) is

a good predictor for the value of y.

* Formally, fis called the hypothesis.

« Output Y can have many types:

— If Y =R, this problem is called regression.

— If Yis a finite discrete set, the problem is called classification.

— If Y has 2 elements, the problem is called binary classification.
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Prediction problems

« The problem of predicting tumour recurrence is called:

classification

« The problem of predicting the time of recurrence is called:

regression

« Treat them as two separate supervised learning problems.

tumor size  texture perimeter outcome time
18.02 27.6 117.5 N 31
17.99 10.38 122.8 N 61
20.29 14.34 135.1 R 27
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Variable types

 Quantitative, often real number measurements.

— Assumes that similar measurements are similar in nature.

« Qualitative, from a set (categorical, discrete).

— E.g. {Spam, Not-spam}

 Ordinal, also from a discrete set, without metric relation, but that

allows ranking.

— E.qg. {first, second, third}
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The 1.1.d. assumption

* In supervised learning, the examples x;in the training set are

assumed to be independently and identically distributed.

— Independently: Every x;is freshly sampled according to some
probability distribution D over the data domain X.

— lIdentically: The distribution D is the same for all examples.

 Why?
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Empirical risk minimization

For a given function class F and training sample S,

» Define a notion of error (left intentionally vague for now).

Ls(f) = # mistakes made on the sample S

+ Define the Empirical Risk Minimization (ERM):
ERME(S) = argminy;, p Ls(f)

where argmin returns the function f (or set of functions) that achieves
the minimum loss on the training sample.

» Easier to minimize the error with i.i.d. assumption.
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A regression problem

* What hypothesis class should we pick?

Observe Predict

X y
0.86 249
0.09 0.83
-0.85 -0.25
0.87 3.10
-0.44  0.87
-0.43 0.02
-1.1 -0.12
040 1.81
-0.96 -0.83
0.17 043
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Linear hypothesis

* Suppose Y is a linear function of X:

wX) = wy+w,x,+...+w,X,

= Wyt 2jm:mW, X

* The w; are called parameters or weights.

« To simplify notation, we add an attribute x,=7 to the m other attributes

(also called bias term or intercept).

How should we pick the weights?

COMP-551: Applied Machine Learning 10 Joelle Pineau



Least-squares solution method

* The linear regression problem: fW(X) = Wy + 3 icimW, X

where m = the dimension of observation space, i.e. number of features.

« Goal: Find the best linear model given the data.
« Many different possible evaluation criterial
* Most common choice is to find the w that minimizes:

Err(w) = 3 i1 (Yi - WX)?

(A note on notation: Here w and x are column vectors of size m+1.)
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L east-squares solution for X € J?

N

X1

Joelle Pineau

12
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Least-squares solution method

* Re-write in matrix notation: f,(X) = Xw

Err(w) = (Y-XwW)T(Y—-Xw)

where  Xis the n x m matrix of input data,

Yis the n x 1 vector of output data,
w is the m x 1 vector of weights.

* To minimize, take the derivative w.r.t. w:

OErr(w)/ow = -2 XT (Y-Xw)

— You get a system of m equations with m unknowns.

- Set these equations to O: XT(Y-Xw)=0
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Least-squares solution method

«  We want to solve for w: XT(Y-Xw)=0

« Try alittle algebra: XTY=X"Xw
w=(X"X)"X"Y

(w denotes the estimated weights)
. The fitted data: Y=XWw=XXX)1X"Y

* To predict new data X" — Y’ Y=XWw=X (XTX)"X"Y
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Example of linear regression

What is a plausible estimate of w ?

L Y
0.86 | 2.49
0.09 | 0.83
-0.85 | -0.25
0.87 | 3.10
-0.44 | 0.87
-0.43 | 0.02
-1.10 | -0.12
0.40 | 1.81
-0.96 | -0.83
0.17 | 0.43

Try it!
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Data matrices

XX =
0.86
0.09
—0.85
0.87
0.86 0.09 —0.85 0.87 —0.44 —0.43 —1.10 0.40 —0.96 0.17 —0.44
1 1 1 1 1 1 1 1 1 1 X —0.43
—1.10
0.40
—0.96
0.17

e T T O e S e e

[ 495 —1.39
~ | —1.39 10
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Data matrices

X1y =
2.49
0.83
—0.25
3.10
0.86 0.09 —0.85 0.87 —0.44 —0.43 —1.100.40 —0.96 0.17 0.87
[ 1 1 1 1 1 1 1 1 1 1 :| X 0.02
—0.12
1.81
—0.83
| 043
6.49
8.34
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Solving the problem

495 —139 1 '[6497 [ 1.60
~1.39 10 834 | ~ | 1.05

w= (XTX)"'XxTYy = [

So the best fit line is y = 1.60z + 1.05.
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Interpreting the solution

* Linear fit for a prostate cancer dataset
— Features X = {Icavol , lweight, age, Ibph, svi, Icp, gleason, pgg45}
— Output y = level of PSA (an enzyme which is elevated with cancer).

— High coefficient weight (in absolute value) = important for prediction.

Term  Coefficient Std. Error

Intercept wo= 2.46 0.09
lcavol 0.68 0.13
lweight 0.26 0.10
age —0.14 0.10

1bph 0.21 0.10

svi 0.31 0.12

lcp —0.29 0.15
gleason —0.02 0.15
pgg45b 0.27 0.15
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Computational cost of linear regression

« What operations are necessary?

— Overall: 1 matrix inversion + 3 matrix multiplications

- XX (other matrix multiplications require fewer operations.)

«  XTis mxn and X is nxm, so we need nm? operations.
— (X"X)1

« XX is mxm, so we need m? operations.

 We can do linear regression in polynomial time, but handling large

datasets (many examples, many features) can be problematic.
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An alternative for minimizing mean-squared error (MSE)

« Recall the least-square solution: w = (X"X)7X"Y

- What if X'is too big to compute this explicitly (e.g. m ~ 106)?

« Go back to the gradient step: Err(w) = (Y —-Xw)'( Y - Xw)
oErr(w)/ow =-2 XT (Y-Xw)
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Gradient-descent solution for MSE

 (Consider the error function:
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« The gradient of the error is a vector indicating the direction to

the minimum point.

* Instead of directly finding that minimum (using the closed-form

equation), we can take small steps towards the minimum.

COMP-551: Applied Machine Learning 22 Joelle Pineau



Gradient-descent solution for MSE

- We want to produce a sequence of weight solutions, w,, w,, w,...,

such that: Err(w,) > Err(w,) > Err(w,) > ...

* The algorithm: Given an initial weight vector w,,
Do for k=1, 2, ...

@k —a, 3Err(@

« Parameter a,>0 is the step-size (or learning rate) for iteration k.
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Convergence

« Convergence depends in part on the «,.

- |If steps are too large: the w, may oscillate forever.

— This suggests that o, > 0 as k — = .

» |If steps are too small: the w, may not move far enough to reach

a local minimum.
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Robbins-Monroe conditions

 The ¢, are a Robbins-Monroe sequence if:
D k=0:00 O =
D k=0:e0 Y <

- These conditions are sufficient to ensure convergence of the w, to a

local minimum of the error function.

Eg. o =1/(k+1) (averaging)
Eg. oo=12fork=1,...,T
a, =1/22for k=T+1, ..., (T+H1)+2T

etc.
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Local minima

« Convergence is NOT to a global minimum, only to local minimum.

local and global
local maximum
maximum

local
minimum

« The blue line represents the error function. There is no guarantee

regarding the amount of error of the weight vector found by gradient

descent, compared to the globally optimal solution.
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Local minima

« Convergence is NOT to a global minimum, only to local minimum.

local and global
local » maximum
maximum

™

T

local
minimum

* For linear function approximations using Least-Mean Squares (LMS)
error, this is not an issue: only ONE global minimum!

— Local minima affects many other function approximators.
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Local minima

« Convergence is NOT to a global minimum, only to local minimum.

local and global
local » maximum
maximum

local
minimum

* For linear function approximations using Least-Mean Squares (LMS)
error, this is not an issue: only ONE global minimum!

— Local minima affects many other function approximators.

« Repeated random restarts can help (in all cases of gradient search).
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A 3" optimization method: QR decomposition (optional)

Consider the usual criteria: XY — Xw)=0

Assume X can be decomposed: X=QR

where Q is an nxm orthogonal matrix (i.e. Q"Q=/), and R is an mxm

upper triangular matrix.

Replace X in equation above: (QR)'Y = (QR)T(QR)w
Distribute the transpose: RTQ'Y = RTQ"QRw

Let Q"Q=/ and multiply by (R7)-" QTY = Rw

Solution: w =R'QTY The fitted outputs are: Y = QQ"Y

This method is more numerically stable than others, and R is fast

to compute because upper triangular.

Alternately, we can use singular value decomposition.
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What you should know

« Definition and characteristics of a supervised learning problem.
 Linear regression (hypothesis class, cost function, algorithm).

« Closed-form least-squares solution method (algorithm,

computational complexity, stability issues).

« Gradient descent method (algorithm, properties).
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To-do

« Reproduce the linear regression example (slides 15-18), solving it

using the software of your choice.

« Suggested complementary readings:

— Ch.2 (Sec. 2.1-2.4, 2.9) of Hastie et al.
— Ch.3 of Bishop.
— Ch.9 of Shalev-Schwartz et al.

*  Write down midterm date in agenda: Nov. 22, 6-8pm, Leacock 132.
« Tutorial times (appearing SOOH)Z www.cs.mcgill.ca/~jpineau/comp551/schedule.html

« Office hours (Confirmed): www.cs.mcgill.ca/~jpineau/comp551/syllabus.html
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