
COMP 102: Excursions in Computer Science
Lecture 21: Game Playing

Instructor: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp102

Joelle Pineau2COMP-102

Overview of AI

• Typically three components:

Joelle Pineau3COMP-102

Example AI system: Chess playing

IBM Deep Blue defeated Garry Kasparov (1997)

• Perception: advanced features of the board.
Actions: choose a move.

• Reasoning: search and evaluation of
possible board positions.

http://www-03.ibm.com

www.bobby-fischer.net

Joelle Pineau4COMP-102

Game playing

• One of the oldest, most well-studied domains in AI! Why?

– People like them! People are good at playing them!

– Often viewed as an indicator of intelligence.
• State spaces are very large and complicated.
• Sometimes there is stochasticity and imperfect information.

– Clear, clean description of the environment.

– Easy performance indicator.

“Games are to AI as Grand Prix racing is to automobile design”.

Joelle Pineau5COMP-102

Start with an easy game: Tic-Tac-Toe

Joelle Pineau6COMP-102

Defining a search problem for games

• State space S: all possible configurations of the domain.

– Initial state s0 ∈ S: the start state E.g.

– Goal states G ⊂ S: the set of end states

E.g.

etc.

• Actions A: the set of moves available

Joelle Pineau7COMP-102

Defining a search problem for games

• Path: a sequence of states and operators.

• Solution of search problem: a path from s0 to sg∈G

• Utility: a numerical value associated with a state (higher is

better, lower is worse).

E.g. +1 if it’s a win,

-1 if it’s a loss,

0 if it’s a draw or game not terminated.

Joelle Pineau8COMP-102

Representing search: Graphs and Trees

• Visualize the state space search in terms of a graph.

• Graph defined by a set of nodes and a set of edges connecting

the vertices.

– Nodes correspond to states.

– Edges correspond to actions.

• We search for a solution by building a search trees and

traversing it to find a goal state.

Joelle Pineau9COMP-102

Search tree for Tic-Tac-Toe

x x x
x x x

x x x

o o
o o o

o o o

x x x x x x x x

Etc.

We want to find a strategy (i.e. way of picking moves) that wins the game.

Joelle Pineau10COMP-102

Game search challenge

• Not quite the same as simple graph searching.

• There is an opponent! The opponent is malicious!

– Opponent is trying to make things good for itself, and bad for us.

– We have to simulate the opponent’s decisions.

• Key idea:
– Define a max player (who wants to maximize the utility)

– And a min player (who wants to minimize the utility.)

Joelle Pineau11COMP-102

Example: Tic-Tac-Toe

Joelle Pineau12COMP-102

Minimax search

• Expand complete search tree, until terminal states have been

reached and their utilities computed.

• Go back up from leaves towards the current state of the game.

– At each min node: backup the worst value among the children.

– At each max node: backup the best value among the children.

Joelle Pineau13COMP-102

A simple Minimax example

MAX

MIN

MAX

3 12 8 2 14 5 2 6 11

a1 a2 a3 a1 a2 a3 a1 a2 a3

a1 a2 a3

3 2 2

3

Joelle Pineau14COMP-102

Properties of Minimax search

• Can we use minimax to solve any game?

– Solve Tic-Tac-Toe? Yes!

– Solve chess? No.

• Why not?

– Large number of actions possible (I.e. large branching factor) b≈35.

– Path to goal may be very long (I.e. deep tree) m≈100

– Large number of states!

Joelle Pineau15COMP-102

Coping with resource limitations

• Suppose we have 100 seconds to make a move, and we can

search 104 nodes per second.

– Can only search 106 nodes!

(Or even fewer, if we spend time deciding which nodes to search.)

• Possible approach:

– Only search to a pre-determined depth.

– Use an evaluation function for the nodes where we cutoff the
search.

Joelle Pineau16COMP-102

Cutting the search effort

• Use an evaluation function to evaluate non-terminal nodes.

– Helps us make a decision without searching until the end of the
game.

• Minimax cutoff algorithm:

Same as standard Minimax, except stop at some maximum

depth m and use the evaluation function on those nodes.

Joelle Pineau17COMP-102

Evaluation functions

• An evaluation function v(s) represents the “goodness” of a board

state (e.g. chance of winning from that position).
– Similar to a utility function, but approximate.

• If the features of the board can be evaluated independently, use

a linear combination:
v(s) = f1(s) + f2(s) + … + fn(s) (where s is board state)

• This function can be given by the designer or learned from

experience.

Joelle Pineau18COMP-102

Example: Chess

• Evaluation function: v(s) = f1(s) + f2(s)
 f1(s) = w1 * [(# white queens) - (# black queens)]

 f2(s) = w2 * [(# white pawns) - (# black pawns)]

Black to move
White slightly better

White to move
Black winning

Joelle Pineau19COMP-102

How precise should the evaluation fn be?

• Evaluation function is only approximate, and is usually better if we are

close to the end of the game.

• Only the order of the numbers matter: payoffs in deterministic games act

as an ordinal utility function.

Joelle Pineau20COMP-102

Minimax cutoff in Chess

• How many moves ahead can we search in Chess?

>> 106 nodes with b=35 allows us to search 4 moves ahead!

• Is this useful?

4-moves ahead ≈ novice player

8-moves ahead ≈ human master, typical PC

12-moves ahead ≈ Deep Blue, Kasparov

• Key idea:

Search few lines of play, but search them deeply. Need pruning!

Joelle Pineau21COMP-102

α-β Pruning example

3 12 8

3

≥3

Joelle Pineau22COMP-102

α-β Pruning example

3 12 8 2

3 ≤2

≥3

Joelle Pineau23COMP-102

α-β Pruning example

3 12 8 2

3 ≤2

≥3

X X

Joelle Pineau24COMP-102

α-β Pruning example

3 12 8 2 14

3 ≤2

≥3

≤14

X X

Joelle Pineau25COMP-102

α-β Pruning example

3 12 8 2 14 5

3 ≤2

≥3

≤14 ≤5

X X

Joelle Pineau26COMP-102

α-β Pruning example

3 12 8 2 14 5 2

3 ≤2

≥3 3

≤14 ≤5 2

X X

Joelle Pineau27COMP-102

α-β Pruning

• Basic idea: if a path looks worse than what we already have,

ignore it.

– If the best move at a node cannot change (regardless of what we
would find by searching) then no need to search further!

• Algorithm is like Minimax, but keeps track of best leaf value for

our player (α) and best one for the opponent (β)

Joelle Pineau28COMP-102

Properties of α-β pruning

• Pruning does not affect the final result! You will not play worse than without it.

• Good move ordering is key to the effectiveness of pruning.

– With perfect ordering, explore approximately bm/2 nodes.
• Means double the search depth, for same resources.
• In chess: this is difference between novice and expert player.

– With bad move ordering, explore approximately bm nodes.
• Means nothing was pruned.

– Evaluation function can be used to order the nodes.

The α-β pruning demonstrates the value of reasoning about which computations

are important!

Joelle Pineau29COMP-102

Human or computer - who is better?

Checkers:
– 1994: Chinook (U.of A.) beat world champion Marion Tinsley, ending 40-yr reign.

Othello:
– 1997: Logistello (NEC research) beat the human world champion.
– Today: world champions refuse to play AI computer program (because it’s too good).

Chess:
– 1997: Deep Blue (IBM) beat world champion Gary Kasparov

Backgammon:
– TD-Gammon (IBM) is world champion amongst humans and computers

Go:
– Human champions refuse to play top AI player (because it’s too weak)

Bridge:
– Still out of reach for AI players because of coordination issue.

Joelle Pineau30

Jeopardy!
• In Winter 2011, Watson, a computer program created by IBM,

made history by winning at Jeopardy!
– Main innovation of Watson: ability to answer questions posed in

natural language.

COMP-102

Joelle Pineau31

Jeopardy!

• How it works:

– Watson isn’t connected to the internet, but had access to 4TB of
stored information (incl. all of Wikipedia).

– When given a question, it extracts keywords, looks in database for
related facts, compiles list of answers, and ranks them by
confidence.

– Watson is much better at buzzing in than its human opponents. So
as long as it knows the answer, it has an edge.

Joelle Pineau32COMP-102

Take-home message

• Understand the basic components (state space, start state, end

state, utility function, etc.) required to represent the types of

games discussed today.

• Know how to build the search tree.

• Understand the how and why of Minimax, Alpha-beta pruning,

and evaluation functions.

• Have some intuition for what makes certain games harder than

others.

