Similar problems?

What do colouring maps and solving Sudokus have in common?

Both are instances of constraint satisfaction problems.
Today’s plan

• What is a Constraint Satisfaction Problem (CSP)?

• Common examples of CSPs

• How can we solve CSPs?
 – A constructive approach.
 – An iterative approach.

Constraint satisfaction problems (CSPs)

• A CSP is defined by:
 – Set of variables V_i, that can take values from domain D_i
 – Set of constraints specifying what combinations of values are allowed (for subsets of variables)
 – Constraints can be represented:
 • Explicitly, as a list of allowable values (E.g. C_1=red)
 • Implicitly, in terms of other variables (E.g. C_1=C_2)

• A CSP solution is an assignment of values to variables such that all the constraints are true.
 – Want to find any solution or find that there is no solution.
Example: Map coloring

- Color a map so that no adjacent countries have the same color, using only the colors Red, Blue and Green.
 - Variables:
 - Domains:
 - Constraints:

- How should we solve this problem? Is it tractable?

Example: Sudoku puzzle

Rule: Each number {1, 2, 3, 4} must appear once (and only once) in every row, in every column, and in every 2x2 square.

- Variables:
- Domains:
- Constraints:

How should we solve this problem? Is it tractable?
Example: Satisfying boolean expression

- Find an assignment (True or False) for each variable $x_1, x_2, ..., x_n$ such that the boolean expression evaluates to True.

E.g. Boolean expression =

$$(x_3 \lor x_2 \lor x_4) \land (x_3 \lor (\neg x_2) \lor x_1) \land (x_4 \lor x_5 \lor x_3)$$

- Variables:
- Domains:
- Constraints:

How should we solve this problem? Is it tractable?

Varieties of variables

- Boolean variables (e.g. satisfiability)
- Finite domain, discrete variables (e.g. colouring)
- Infinite domain, discrete variables (e.g. start/end of operation in scheduling)
- Continuous variables.

Problems range from solvable in poly-time (using linear programming) to NP-complete to undecidable
Varieties of constraints

- Unary: involve one variable and one constraint.
- Binary.
- Higher-order (involve 3 or more variables)
- Preferences (soft constraints): can be represented using costs and lead to constrained optimization problems.

Real-world CSPs

- Assignment problem (e.g. who teaches what class)
- Timetable problems (e.g. which class is offered when and where)
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floor planning
Constraint graph

- Binary CSP: each constraint relates at most two variables.
- Constraint graph: nodes are variables, arcs show constraints.

- The structure of the graph can be exploited to provide problem solutions.

Constraint graph example
Applying standard search

- Assume a constructive approach. Start by defining:
 - States: defined by the set of values assigned so far.
 - An initial state: all variables are unassigned.
 - Operators: assign a value to an unassigned variable.
 - Goal test: all variables assigned, no constraint violated.

- Build a search tree, continue until you find a path to the goal.

This is a general purpose algorithm that works for all CSPs!

Standard search applied to map coloring

- Is this a practical approach?
Analysis of the simple approach

- Maximum search depth = number of variables
 - Each variable has to get a value.
- Number of branches per node in the tree = \(\sum_i |D_i| \), where \(D_i \) is the size of the domain for the \(i^{th} \) variable.

 This can be a big search! Often requires lots of backtracking!

BUT: Here are a few useful observations

- Order in which variables are assigned is irrelevant -> Many paths are equivalent!
- Adding assignments cannot correct a violated constraint!

Heuristics for CSPs

- What is a heuristic?
 - A simple guide that helps in solving a hard problem.

- How does this help us solve CSPs?
 - It guides our choice of:
 - which value to choose for which variable.
 - which variable to assign next.
Heuristics for CSPs

E.g. Map coloring
- Say WA = red, NT = blue
- Choose which variable next?
- Choose SA (most constrained variable!)
 - Assign which value?
 - Let SA = green (least constraining value!)
 - What next?
 - Choose Q.
 - Let Q = red

Etc.

Summary of heuristics for CFP

- **Most Constrained Variable**
 Choose the variable which has the least possible number of choices of value.

- **Least Constraining Value**
 Assign the value which leaves the greatest number of choices for other variables.

Note: For both of these heuristics, it is useful to keep track of the possible choices of value at each variable.
Another way to solve CSPs

Iterative improvement method:

- Start with a broken but complete assignment of values to variables.
 - Broken = some variables may be assigned values that don’t satisfy some constraints.
 - Complete = each variable is assigned a value.

- Repeat until all constraints are satisfied:
 - Pick a broken constraint.
 - Randomly select one of the variables involved in this constraint.
 - Re-assign the value of that variable using the **Min-conflicts heuristic**.
 - Min-conflicts heuristic = choose value that violates the fewest constraints.

Iterative improvement example

E.g. Map coloring

- Let WA=red, NT=blue, Q=red, SA=blue, NSW=red, V=blue, T=red

- Where are the conflicts? (Useful to look at the constraint graph for this.)
 - NT≠SA, Q≠NSW, SA≠V

- How can we apply the **min-conflict heuristic** to resolve those?

- Randomly pick constraint NT≠SA. Randomly pick variable NT. Change it to green to satisfy min-conflict heuristic.
Performance of min-conflicts heuristic

- Given random initial state, works very well for many large CSP problems (almost constant time).
- This holds true for any randomly-generated CSP except in a narrow range of the ratio:

\[R = \frac{\text{number of constraints}}{\text{number of variables}} \]

N-Queens problem

- Place N queens on an NxN chess board so that no queen can attack another.
 - Variables?
 - Domain?
 - Constraints?

- Assume we try a constructive approach:
 - What variable should we select next?
 - What value should we assign it?
 - What next?
N-Queens problem

• Place N queens on an NxN chess board so that no queen can attack another.

• Assume we try an iterative approach:
 – First randomly fill in all the missing values.
 – What constraint should we pick?
 – What variable should we work on?
 – How should we fix it?

Take-home message

• CSPs are everywhere!
• CSPs can be solved using either constructive methods or iterative improvement methods.
• Heuristics are useful guides to focus the search. You should understand the basic heuristics.
• Iterative improvement methods with min-conflicts heuristic are very general, and often work best.