COMP 102: Excursions in Computer Science Lecture 18: Computability

Instructor: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp102

David Hilbert			
In 1900, German mathematician David Hilbert presented 23 unsolved problems in mathematics. Several of them turned out to be very influential for 20th century mathematics 			
 See the full list: http://en.wikipedia.org/wiki/Hilbert's_prol 	blems		
Ten of these problems were the subject of a famous lecture on 8 August 1900, at the 2nd International Congress of Mathematicians, at La Sorbonne in Paris.	T		

	Syracus	e Conjectu	Ire	
Observatio	n:			
 For all n 	that we have comp	outed so far, Syracus	se(n) > 0.	
Conjecture	:			
– For all n	n>0, Syracuse(n)>	0		
But curren	ntly, no one know	vs if this progran	n always stops!	
Problem:				
If there exis	If there exists n such that $Syracuse(n) = 0$, we might not be able to prove			

