

		Index	ing th	e word	S	
• Pro	blem 3:	Given a set	of keywo	ords, how d	o we retri	ieve
web	pages w	ith those wo	ords?			
 Nee 	d anothe	r big array t	o store w	rords: ⇒T	he Lexic	on
		- 3 , -				
Array:		documents that contain that word (by document ID				
Array:	word	documents	that cont	ain that wo	ord (by do	cument ID
Array:	word aardvark	documents 00110100	that cont	ain that wo	ord (by do	ocument ID
Array:	word aardvark	documents 00110100	that cont	ain that wo	ord (by do	ocument ID
Array:	word aardvark	documents 00110100	that cont	ain that wo	ord (by do	ocument ID
Array:	word	documents 00110100	that cont	ain that wo	ord (by do	ocument ID
Array:	word	documents 00110100	that cont	ain that wo	ord (by do	ocument ID

- Assume each website gets an importance score ⇒ its PageRank
- The PageRank is based on the actual graph structure, not on an actual query (this will come later).
 - Let PR(n) be the PageRank of node n.
 - Let C(n) be the number of links "out" of node n.
 - Let $w_1, w_2, ..., w_k$ be the pages that have "in" links to n.

$$PR(n) = \frac{PR(w_1)}{C(w_1)} + \frac{PR(w_2)}{C(w_2)} + \dots + \frac{PR(w_k)}{C(w_k)}$$

- We have a system of N linear equations with N unknowns (N = #webpages).
 - Use linear algebra (numerical approximation, not Gaussian elimination) to solve this system of equations.

19

Joelle Pineau

COMP-102: Computers and Computing

Using PageRank for web crawling

<u>Recall the Best-first-search algorithm</u>:

- Get a starting node from somewhere.
- Add it's neighbours to the list of candidate nodes.
- Pick the candidate node with highest score.
- Add it's neighbours to the list of candidate nodes.
- Continue until no more unexplored nodes.

Use PageRank to order the list of candidate nodes.

- Keep the list in sorted order at all times.
- Every time you need to add a node, search the list of candidate nodes (e.g. using binary search) to find the spot in the list where to insert the new candidate webpage.

COMP-102: Computers and Computing

21

Joelle Pineau

- Concepts to understand:
 - Web crawling and the best-first search algorithm
 - PageRank (the main ideas that come into the equation, not necessarily how to solve the system of equations.)
 - The Repository and the Lexicon: their role and their content
- Understand the role of basic searching and sorting algorithms in the web.
- <u>Midterm</u>: Tuesday Oct.18, in class.
 Closed book. No calculators/dictionaries. All material up to lecture 13.

COMP-102: Computers and Computing

27

Joelle Pineau