
COMP 102: Excursions in Computer Science
Lecture 9:  Sorting Data

Instructor:  Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp102

Acknowledgement:  Some of today’s slides were taken from:
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Sock Matching

• We’ve got a basketful of

mixed up pairs of socks.

• We want to pair them

up reaching into the

basket as few times as

we can.
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Sock Sorter A

• Strategy: Repeat until basket is empty

– Grab a sock.

– Grab another.

– If they don’t match, toss them back in the basket.

• Will this procedure ever work?

• Will it always work?
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Measuring Performance

• Let’s say we have 8 pairs of socks.

• How many times does this strategy reach into the basket?

– Min?

– Max?

– Average?

• How do these values change with increasing numbers of pairs

of socks?
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Sock Sorter B

• Strategy: Repeat until basket is empty

– Grab a sock.

– Is its match already on the bed?

– If yes, make a pair.

– If no, put it on the bed.
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Measuring Performance

• Once again, assume we have 8 pairs of socks.

• How many times does this strategy reach into the basket?

– Min?

– Max?

– Average?

• How do these values grow with increasing numbers of pairs of

socks?

• How does this compare with Sock Sorter A?
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Comparing Algorithms
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Notable if No Table

• Sock Sorter B seems like it is faster.

• One disadvantage of Sock Sorter B is that you must have a big

empty space.

• What if you can only hold 2 socks at a time?
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Sock Sorter C

• Strategy: Repeat until basket empty

– Grab a sock.

– Grab another.

– Repeat until they match:
• Toss second sock into the basket.
• Grab a replacement.
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Measuring Performance

• Once again, let’s imagine we have 8 pairs of socks.

• How many times does this strategy reach into the basket?

– Min?

– Max?

– Average?

• How do these values grow with increasing numbers of pairs of

socks?
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Comparing Algorithms
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Analysis of Sock Sorter C

• Roughly the same number of matching operations as Sock

Sorter A, but since it always holds one sock, roughly half the

number of socks taken out of the basket.
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Algorithms

• Sock Sorter A, Sock Sorter B and Sock Sorter C are three

different algorithms for solving the problem of sock sorting.

• Different algorithms can be better or worse in different ways.

– Number of operations
E.g. total # of times reaching into basket, total # of comparisons.

– Amount of memory
E.g. # of socks on the bed (or in the hand) at any given time.
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Lessons Learned

• Given notion of time (# instructions to execute) and space

(amount of memory), we can compare different algorithms.

• It’s important to use a good algorithm!

• It’s especially important to think how time and space change, as

a function of the size of the problem (i.e. # pairs of socks).
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On the usefulness of sorting
• Recall last class’s example about finding the minimum in an array.

• How many times is MinValue assigned?

– Case 1: List is in increasing order.

• Only once!

– Case 2: List is in decreasing order.
• MinValue gets assigned K times.

– Case 3:  List is in random order.
• A bit harder to estimate…

If we are going to use the list many times, better to sort it first!
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Sorting Lists
• Many problems of this type!   This is an important topic in CS.

– Sorting words in alphabetical order.

– Ranking objects according to some numerical value (price, size, …)
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Sorting web pages
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Sorting arrays

• Consider an array containing a list of names:

• How can we arrange them in alphabetical order?

Lindsey

Christopher

Nicholas

Erica

Rahul

Jane
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A simple way to sort:  Bubble sort
• Compare the first two values. If the second is larger, then swap.

• Continue with the 2nd and 3rd values, and so on.

• When you get to the end, start again.

• Repeat until no values are swapped.

Lindsey

Christopher

Nicholas

Erica

Rahul

Jane

Christopher

Lindsey

Nicholas

Erica

Rahul

Jane

Original list: Partially sorted list:

Christopher

Lindsey

Nicholas

Erica

Rahul

Jane

Christopher

Lindsey

Erica

Nicholas

Rahul

Jane

Christopher

Lindsey

Erica

Nicholas

Rahul

Jane

Joelle Pineau20COMP-102: Computers and Computing

Let’s think about Bubble sort

• Is this a good way to sort items?

– Simple to implement.  This is good!

– Guaranteed to find a fully sorted list.  This is good too!

• How do we decide whether it’s a good method?
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Useful things to consider

• How long will it take?

• How much memory will it take?

• Is there a way we can measure this?

• Best criteria:

– number of basic machine operations: move, read, write data

– amount of machine memory

• Can we think of something similar, at a higher level?
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Predicting the “cost” of a sorting program

• Number of pairwise comparisons

For Bubble sort:
• Let’s say n is the number of items in the array.
• Need n-1 comparisons on every pass through the array.
• Need n passes in total (at most).
• So n*(n-1) pairwise comparisons.

• Amount of memory we need (in addition to the original array)

For Bubble sort:
• Everything happens within the original array.
• Need to keep track of the index of the current item being compared.
• Need to keep track, during each pass, of whether a swap was done.
• So only 1 integer and 1 bit of memory.
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A more intuitive sort method: Selection sort

• Scan the full array to find the first element, and put it into 1st position.

• Repeat for the 2nd position, the 3rd, and so on until array is sorted.

Lindsey

Christopher

Nicholas

Erica

Rahul

Jane

Original list: Partially sorted list:

Christopher

Lindsey

Nicholas

Erica

Rahul

Jane

Christopher

Erica

Nicholas

Lindsey

Rahul

Jane

Christopher

Erica

Jane

Lindsey

Rahul

Nicholas

Christopher

Erica

Jane

Lindsey

Rahul

Nicholas
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What is the “cost” of Selection sort?

• Number of pairwise comparisons

– Let’s say n is the number of items in the array.
– Need n-1 comparisons on the 1st pass through the array.
– Need n-2 comparisons on the 2nd pass through the array.
– And so on until we reach the last two elements.
– So in total:  (n-1) + (n-2) + (n-3) + … + 1 = n * (n-1) / 2 pairwise comparisons.

– This is better than Bubble sort.   (But only by a factor of 2.)

• Amount of memory we need (in addition to the original array)

– Everything happens within the original array.

– Need to keep track of the index of the current item being compared.
– Need to keep track, during each pass, of the index of the best value found so far.
– So only 2 integers in memory.   Roughly the same as Bubble sort.
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Why do we care about the “cost”?

• Need to know whether we can use our program or not!

• Can we use Selection sort to alphabetically sort the words in the

English Oxford dictionary?
– About 615,000 entries in the 2nd edition (1989).

– So we would need 189 trillion pairwise comparisons!

• What if we try to sort websites according to hostnames:
– About 127.4 million active domain names (as of January 2011).

– So we would need 8.06*1015 pairwise comparisons!

• Fortunately, not much “extra” memory is needed :-))

Joelle Pineau26COMP-102: Computers and Computing

Let’s find a better way: Merge sort

• Divide-and-Conquer!   (This is our old friend “Recursion”.)

• Main idea:

1. Divide the problem into subproblems.

2. Conquer the sub-problems by solving them recursively.

3. Merge the solution of each subproblem into the solution of the
original problem.

• What does this have to do with sorting?
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Merge sort

• Example:

– Sort an array of names to be in alphabetical order.

• Algorithm:

1. Divide the array into left and right halves.

2. Conquer each half by sorting them (recursively).

3. Merge the sorted left and right halves into a fully sorted array.
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Merge sort: An example

Lindsey

Christopher

Nicholas

Erica

Rahul

Jane

Original list:

Erica

Rahul

Jane

Erica

Rahul

Erica

Rahul

Jane

Nicholas

Lindsey

Christopher

Erica

Rahul

Jane

Nicholas

Divide in 2

Lindsey

Christopher

Nicholas

Divide again

Lindsey

Christopher

Divide again

Christopher

Lindsey

Start merging Merge
again…

Nicholas

Jane
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Another example of Merge sort

• Consider sorting an array of numbers:

Joelle Pineau30COMP-102: Computers and Computing

Let’s think about Merge sort
• Possibly harder to implement than Bubble sort or Selection sort.

• Number of pairwise comparisons:
– How many times we divide into left/right sets?  At most log2(n)

– How many items to sort once everything is fully split?  None!

– How many comparisons during merge, if subsets are sorted?
• Need about n comparisons if sorted subsets have n/2 items each.

– So in total:  n comparisons per level * log2(n) levels  = n * log2(n)
– This is better than Bubble sort and Selection sort (by a lot).

• Amount of memory we need (in addition to the original array):

– Every time we merge 2 lists, we need extra memory.
– For the last merge, we need a full n-item array of extra memory.
– This is worse than Bubble sort and Selection sort, but not a big deal.
– We also need 2 integers (1 for each list) to keep track of where we are during merging.
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Merge sort is a bargain!

• Using Merge sort to alphabetically sort the words in the English Oxford

dictionary.
– Recall:  about 615,000 entries in the 2nd edition (1989).

– So we would need 11.8 million pairwise comparisons.

– Versus 1.89 trillion if using Selection sort!

• Using Merge sort to organize websites according to hostnames:
– Recall: about 127.4 million active domain names (as of January 2011).

– So we would need 3.4 billion pairwise comparisons.

– Versus 8.06*1015 if using Selection sort!
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Number of comparions

• Between Dec. 2007 and Jan. 2011 number of domains names grew from 62

millions to 127 millions.

• Number of comparisons with Bubblesort grows from 3.4*1015 to 1.6*1016.

• Number of comparisons with Mergesort grows from 1.6 to to 3.4 billion comparisons.

COMP-102: Computers and Computing
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Quick recap on the number of operations

• Number of operations (y) as a function of the problem size (n)
– Constant: y = c Best
– Linear: y = n
– Log-linear: y = n*log2(n)
– Quadratic: y = n2

– Exponential: y = 2n Worse

• Bubble sort and Selection sort take a quadratic number of comparisons.

– This is as bad as it gets, for sorting algorithms.

• Merge sort takes a linear*log number of comparisons.

– This is as good as it gets, for sorting algorithms.

• This is a worst-case analysis (i.e. maximum number of operations.)
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A word about memory

• Merge sort uses twice as much memory as Selection sort.
– This is not a big deal. If you can store the array once, you can probably store it

twice.

• But computers have 2 types of memory:
– RAM (rapid-access memory) and hard-disk memory.

– RAM is much faster, but usually there is less of it.

– As long as everything fits into RAM, no problem!

• If array is too large for RAM, then you need to worry about:
– Number of times sections of the array are copied / swapped to and from disk.
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Take-home message

• Sorting is one of the most useful algorithms.
– Applications are everywhere.

• There are many ways to solve a problem.
– For sorting: Bubble sort, Selection sort, Merge sort, and many more.

– Some methods use n*log2(n) comparisons and (almost) no extra memory!

• When choosing an algorithm to solve a problem, it’s important to think

about the cost (= time and memory) of this algorithm.

• It’s also useful to think about how “easy” the algorithm is to program

(more complicated = more possible mistakes), but this is harder to

quantify.


