Quick recap of loops and variables

- **Example 1**: Calculate the sum of (integer) numbers from 1 to K.

Using a “For” loop:
Summing integers (differently)

- **Example 2**: Stop when the sum reaches a maximum.

Summing integers until the total=100:

Without a function:

With a function call:
Similar way to do this for other languages

Here is how these programs would look in the C programming language:

```c
SumIntegers(K)
int sum, count;
sum = 0;
for (count = 1; count <= K; count++)
    sum = sum + count;
return sum;
```

```c
SumWithFormula(K)
int sum;
sum = K * (K+1) / 2;
return sum;
```

A slightly harder problem

- **Example 3**: Calculate this sum for each integer K (from 1 to K)?

 E.g.: Sum(5) = 1, 3, 6, 10, 15.

 Does that remind you of anything?

 Babbage’s difference engine!

 How can we do this with modern computers?

- **Solution 1**: Run our program multiple times:

 E.g.: Sum(1) = 1, Sum(2) = 3, Sum(3) = 6, …

 Problem with this?

 Lots of extra work!

- **Solution 2**: Modify our program to return many variables.
Arrays

- An array is an ordered list of values. Sometimes called a list.

An array of size N is indexed from 1 to N.
This array holds 10 values that are indexed from 1 to 10.
(In some programming languages, arrays are indexed from 0 to N).

- An array stores many values of the same type. E.g. integers, real numbers, characters

- An array is given a name.

- A particular value in the array can be accessed, e.g. to read or modify the value.
 - To access the value, we need to call the array name and the index of the particular element we are interested in.
Declaring Arrays

• How do we tell the computer we want an array?
 – For single variables, need to specify 1 thing: **type of data**
 E.g. `integer x;`

 – In some programming languages (e.g. Java, C), you need to also specify:
 type of data AND # of data units.
 • The computer then reserves a sufficient block of memory (e.g. to store 5 integers.)

 – Other programming languages (e.g. Scratch) don’t require you to specify type or size, just the array’s name.
 • The computer automatically adjusts the amount of memory allocated as you add elements to the array.

Back to our example

• Calculating the sum of integers 1 to K, and storing the result for each integer.

 Standard “For” loop:

 With a list:

 “Don’t forget to create a list variable first!”
Creating a list variable in Scratch

Click here.

Creating a list variable in Scratch

Click here.
Back to our example

- Can we do this using the formula? Sure! But is it worth it?

Using a “For” loop:

Using the formula:

Using this array

- Get the cat to walk around in a spiral using the same values in the list:

If you run the code, you’ll see this output:
Many uses of arrays

- **Storing data** (e.g. grades, census information, appointments, …)

 E.g. List of names: [alice, bob, clara, daniel, ella, fred, gina]

 List of characters: ['a', 'e', 'i', 'o', 'u']

 List of lists… (this gets a little more complicated…)

 Remember that the values don’t have to be numbers.

- **Sorting data:**

 – Alphabetical/numerical order, increasing/decreasing, etc.

- **Searching for data:**

 – Looking for a word in a dictionary, looking for a number in a phone book.

Keeping track of data in an array

Example 4: Suppose you are rolling a standard six-sided dice, and want to keep track of how many times each number has appeared.
What about more complicated tasks?

• There are many tasks involving arrays
 • Database of course grades.
 • Matrix multiplication.
 • 3D brain imaging.
 • Etc.
• For many of these, we need multi-dimensional arrays. This is a little more complicated, but not much.

But for now, let’s focus on solving problems.

Algorithm

• An algorithm is a definite procedure for solving a given problem or performing a given task.

• Origins of the word:
 – 9th century mathematician Abu Abdullah Muhammad ibn Musaal-Khwarizmi whose works introduced Arabic numerals and algebraic concepts.
 – The word algorism originally referred only to the rules of performing arithmetic using Arabic numerals.
 – Evolved via European Latin translation of al-Khwarizmi’s name into algorithm by the 18th century.
Algorithm Design

- An **algorithm** is an ordered set of unambiguous, executable steps, defining a terminating process.

- May be described:
 - Abstractly, using human language (we call this *pseudocode*) to describe the steps for carrying out some procedure using a computer.
 - Using a *programming language* of your choice.
 - By providing a set of *machine instructions* to be executed.

Algorithm Design

- **Pseudocode** is a *programming language independent* description of the sequence of steps necessary to solve a problem.

- Algorithms that are written in pseudo-code may be then translated into a particular *programming language* to make a computer program.

- A programmer may come up with his/her own algorithm, or (s)he may implement an existing algorithm.
Algorithm

• An algorithm is an ordered set of unambiguous, executable steps, defining a terminating process.

• Is the following an algorithm?

 Calculate 1/3 exactly

• No, because $1/3 = 0.333333...$ and this algorithm does not terminate.

Algorithm

• An algorithm is an ordered set of unambiguous, executable steps, defining a terminating process.

• Is the following an algorithm?

 Find the minimum

• No, because it is ambiguous: minimum what?
Example

Task:

Given a list of numbers, find the smallest one and its position in the list.

- This is a precise problem.

- We can write an algorithm to do this.

Why would I want to do this?

- Consider finding the minimum (and maximum) of a sound signal to calibrate the signal (e.g. re-scale to match preset max/min values).
Why would I want to do this?

- Analyze stock market, to estimate minimum stock price over a given time period.

![Stock market crash of 1987](http://www.macresearch.org/molecular_docking_on_openmacgrid_part_i)

Why would I want to do this?

- Finding the best site for molecular docking is an important aspect of drug development.

![Molecular docking](http://www.macresearch.org/molecular_docking_on_openmacgrid_part_i)
Finding a Minimum - in pseudo-code

• Given x_1, x_2, \ldots, x_K, find i such that $x_i \leq x_j$, $1 \leq j \leq K$.

• **Input**: x_1, x_2, \ldots, x_K

• **Compute**:

 \[
 \begin{align*}
 MinIndex &= 1 \\
 MinValue &= x_1 \\
 \text{for } i &= 2 \text{ to } K \\
 \text{if } x_i &< MinValue \\
 \quad MinValue &= x_i \\
 \quad MinIndex &= i \\
 \text{End if} \\
 \text{End for loop}
 \end{align*}
 \]

• **Output**: $MinIndex$, $MinValue$

Finding a Minimum - in Scratch

First fill the list:

Then go through it to find the minimum:
Counting operations

- Want to find the smallest number. How many comparisons?

- Want to find two smallest numbers. How many comparisons?

Other ways to organize data: Trees

- Good way to organize hierarchical data:

- Generic form:
Other ways to organize data: Graphs

Social Graphs:
The pattern of social relationships between people

Take-home message

- Understand the concept of array, how it is defined, what it contains.
- Understand the basic notion of an algorithm.
- Know the difference between an algorithm and a program.
- Understand the algorithms for calculating the sum of integers, and finding the minimum in a list.

Coming weeks:
- Study examples of problems (and their algorithms) for searching, sorting, making graphs, encoding text, playing games, …