
9/13/11

1

COMP 102: Computers and Computing
Lecture 4: Finite State Machines and Memory

Instructor: Joelle Pineau (jpineau@cs.mcgill.ca)

Class web page: www.cs.mcgill.ca/~jpineau/comp102

Joelle Pineau 2 COMP-102: Computers and Computing

What have we seen so far?

•  Representing many types of data (text, numbers, images, sound) using

binary representations.

•  Solving problems using logical variables, logical expressions, truth

tables, and logic gates.

Any limitations to this?

•  So far we have assumed that the state of each logical variable stays

constant over time.

 E.g. Reset the computer between each round of Rock-Paper-Scissors.

Today: Representing many configurations with memory.

9/13/11

2

Joelle Pineau 3 COMP-102: Computers and Computing

The eight-puzzle

•  Can define a sequence of moves to go from start configuration to goal

configuration.

•  Need to be able to represent any configuration in memory.

•  BUT! Need a way to describe how the configuration (a.k.a. the state)

changes over time. What state-to-state transition is allowed in 1 move?

Start state Goal state

Joelle Pineau 4 COMP-102: Computers and Computing

Other examples

•  Retractable ballpoint pen

•  Automatic door

•  Traffic-light control

•  Combination lock

•  Elevator control system

•  Language generation

What do these things have in common?

–  The state changes over time.

–  Need memory to capture the state of the system at any point in time.

9/13/11

3

Joelle Pineau 5 COMP-102: Computers and Computing

Ballpoint pen

open closed

click

click

no-click no-click

Joelle Pineau 6 COMP-102: Computers and Computing

Eight-puzzle

9/13/11

4

Joelle Pineau 7 COMP-102: Computers and Computing

Finite State Machine

•  The Finite State Machine combines a look-up table (constructed

with binary logic) with a memory device (to store the state).

•  Components of the finite state machine:

–  Set of states: S = {s1, s2, …, sn}

–  Set of observations: O = {o1, o2, …, on}

–  A transition function: describing how the state changes in response
to the observation seen.

Joelle Pineau 8 COMP-102: Computers and Computing

Transition function

•  For each state and observation, need to know what is the next

state.

•  Denote this as: T(s,o) = s’

 where s is the current state of the device

 o is the most recent observation

 s’ is the next state of the device

9/13/11

5

Joelle Pineau 9 COMP-102: Computers and Computing

Storing the state of a finite-state machine

•  Observations are set through inputs.

•  Register is used to store bits. It has an additional timing input that tells

it when to change state (think of a clock that ‘ticks’ every second).

•  The logic block implements the transition function.

Register

Logic Block
(with all the
logic gates)

Input
variables

Output
variables

last state next state

Joelle Pineau 10 COMP-102: Computers and Computing

To implement a finite-state machine (FSM)

1.  Select the set of states and the set of observations.

2.  Choose a different pattern of bits for each state

–  In traffic light example: need 3 bits for state, 1 bit for observation.

3.  Generate transition table or transition graph.

4.  Implement transition table using logic gates.

–  Input = bits representing the observation and the last state.

–  Output = bits representing the next state.

9/13/11

6

Joelle Pineau 11 COMP-102: Computers and Computing

Traffic-light controller

•  State = 2-way car traffic light

–  S = {red, yellow, green}direction 1 x {red, yellow, green}direction 2

–  S = {red-red, red-yellow, yellow-red, red-green, green-red}

–  Not all configurations of lights are included (e.g. green-green) at least
one light must be red.

•  Observation = pedestrian light request

–  O = {pressed, not pressed}

•  Memory = Current state of the light in both directions.

Joelle Pineau 12 COMP-102: Computers and Computing

Traffic-light controller: Transition function
•  State = 2-way car traffic light

–  S = {red-red, red-yellow, yellow-red, red-green, green-red}

•  Observation = pedestrian light request

–  O = {pressed, not pressed}

•  Transition function: T(current state, observation) = next state

 Here is one way to
 show the transition
 function as a graph. P

P

P
P

P
NP

NP

NP

NP
NP

9/13/11

7

Joelle Pineau 13 COMP-102: Computers and Computing

Traffic-light controller: Transition table

 State Observation Next state

 Green-Red Pressed Yellow-Red
 Green-Red Not-Pressed Yellow-Red
 Yellow-Red Pressed Red-Red
 Yellow-Red Not-Pressed Red-Green
 Red-Green Pressed Red-Yellow
 Red-Green Not-Pressed Red-Yellow
 Red-Yellow Pressed Red-Red
 Red-Yellow Not-Pressed Green-Red
 Red-Red Pressed Red-Red
 Red-Red Not-Pressed Red-Green

•  This can be seen as
just a standard truth table.

•  Simply need to pick
logical variables for the
states and observations.

•  Only subtlety: Need to
use same set of variables
for the “State” and “Next
state” variables.

•  Also need to store those
variables between time steps.

Joelle Pineau 14 COMP-102: Computers and Computing

Combination Lock

•  State = Summary of the sequence of numbers.

•  Observation = Number entered.

•  Memory = Not all numbers ever dialed need to

be stored, but need to remember enough about

recent numbers to know if the sequence opens

the lock.

9/13/11

8

Joelle Pineau 15 COMP-102: Computers and Computing

Recognizing sequences with a FSM

•  Recall: Combination Lock

–  Assume the lock opens only when it sees sequence 0 - 5 - 2.

•  States: Number of digits in the sequence that have been

recognized already = {0, 1, 2, 3, done}

•  Observations: Digits that can be selected = {0, 1, …, 9}

•  Transition function:

locked 1st digit
ok

2nd digit
ok unlocked

‘0’

Any except ‘5’

‘5’

Any digit
except ‘2’

‘2’
Any digit
except ‘0’

Joelle Pineau 16 COMP-102: Computers and Computing

Recognizing sequences with patterns

•  Consider a lock which recognizes sequences that start with “1”,

have any number of “0”’s, and end with “3”.

•  Transition function:

locked 1st digit
ok unlocked

‘1’

Any except ‘0’ or ‘3'

‘3’
Any digit
except ‘1’

‘0’

9/13/11

9

Joelle Pineau 17 COMP-102: Computers and Computing

Which sequences can be recognized?

•  Can recognize any pre-specified sequences of numbers or

letters of a finite length.
–  E.g. Misspelled word within a stream of text.

•  Cannot recognize all types of patterns.
–  E.g. Cannot build a finite-state machine that unlocks a lock

whenever you enter any palindrome: 3-2-1-1-2-3

–  Why? Palindromes can be of any length, and to recognize the 2nd
half, you need to remember every character in the first half.

 Because there are infinitely many possible first halves, this would
require a machine with an infinite number of states.

Joelle Pineau 18 COMP-102: Computers and Computing

Other tasks we cannot do with an FSM

•  Problems with non-deterministic transitions, e.g. backgammon.

•  Problems where we don’t know the set of state/observations in

advances.

•  Problems where the transitions change over time.

9/13/11

10

Joelle Pineau 19

Example: Behavior-based robotics

•  Consider building a Light Seeking robot

–  States = {Seek-light, Follow-light, Avoid-obstacle}

–  Observations = {Light, NoLight, Obstacle, NoObstacle}

•  Draw the transition graph.

•  What other states/observations could we include?

COMP-102: Computers and Computing

Joelle Pineau 20 COMP-102: Computers and Computing

Take-home message

•  Finite-state machines let us reason about functions that change

over time.

•  Understand the components of finite state machines (state,

observation, transition) and the implementation steps

(transition table, logic encoding through gates, use of

registers)

•  Understand what tasks can and cannot be done with a FSM.

