Reusing Software Design Models with TouchRAM

Jorg Kienzle
School of Computer Science, McGill University
Montreal, QC H3A OE9, Canada
Joerg.Kienzle@mcgill.ca

ABSTRACT

TouchRAM is a multitouch-enabled tool for agile software
design modelling aimed at developing scalable and reusable
software design models. This paper briefly summarizes the
main features of the Reusable Aspect Models modelling ap-
proach that TouchRAM is based on, and then describes how
the tool is used during the design process to incrementally
elaborate a complex software design model.

Categories and Subject Descriptors
D.2.2 [Software Engineering]: Design Tools
Keywords

model interfaces, model hierarchies, model reuse

1. INTRODUCTION

TouchRAM is a multitouch-enabled tool for agile software
design modelling aimed at developing scalable and reusable
software design models. The tool gives the designer access
to a vast library of reusable design models encoding essential
recurring design concerns. It exploits model interfaces and
aspect-oriented model weaving techniques as defined by the
Reusable Aspect Models (RAM) [4] approach to enable the
designer to rapidly apply reusable design concerns within
the design model of the software under development. The
user interface features of the tool are specifically designed
for ease of use, reuse and agility (multiple ways of input,
tool-assisted reuse, multitouch). A screenshot of TouchRAM
v1.0.1 running on a multitouch-enabled 60-inch display is
shown in Fig. 1.

This demo paper briefly summarizes the main features
of the RAM modelling language that our tool exploits to
make design model reuse possible in section 2, and then
describes the process of building a complex software design
using TouchRAM in section 3.

2. ESSENTIAL FEATURES OF RAM

TouchRAM is based on Reusable Aspect Models (RAM) [4],
an aspect-oriented multi-view modelling approach that inte-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

AOSD’13 Companion, March 24-29, 2013, Fukuoka, Japan.

Copyright 2013 ACM 978-1-4503-1873-0/13/03 ...$15.00.

Figure 1: TouchRAM in Use

grates class diagram, sequence diagram and state diagrams.
As aresult, a RAM model can describe the structure and the
behaviour of a software design concern. Currently, however,
the TouchRAM tool only provides full support for structural
modelling with class diagrams, and partial support for be-
havioural modelling with sequence diagrams.

The most important concepts of RAM that make incre-
mental software design modelling possible are model inter-
faces and model hierarchies.

2.1 Design Model Interfaces

Every RAM model has a well-defined model interface [2],
which makes it possible to package a design concern in such a
way that it is easy to use within other models. The interface
has two parts: the customization interface and the usage
interface.

The customization interface specifies how a generic de-
sign model needs to be adapted to be used within a specific
application. To increase reusability of models, a RAM mod-
eller is encouraged to develop models that are as general as
possible. As a result, many classes and methods of a RAM
model are only partially defined. For example, for classes
it is possible to define them without constructors and to
only define attributes relevant to the current design con-
cern. Likewise, methods can be defined with empty or only
partial behaviour specifications. The idea of the customiza-
tion interface is to clearly highlight those model elements
of the design that need to be completed/composed with
application-specific model elements before a generic design
can be used for a specific purpose. These model elements
are called mandatory instantiation parameters.

The usage interface is similar to a “classic interface” found
in programming languages. It is comprised of all the public
model elements, i.e., the structural and behavioural prop-
erties that the classes within the design model expose to
the outside. In other words, the usage interface presents

+ Stock create (int price)
+ int getPrice ()
+ void setPrice (int price)

StockWindow

+ StockWindow create ()
+ void updateWindow (Stock s)

ISubject |Observer
~ Set<|Observer> getObservers () - - -
+ void startObserving ([Subject s)

+ void stopObserving ()
~ void |update ([Subject s)

~ void addObserver (|Observer a)
~ void removeObserver (|Observer a)

Figure 2: Reusing the Observer Design Pattern

an abstraction of the functionality encapsulated within the
model to the user of such a model. It describes how the
rest of the application can trigger the functionality provided
by the model by instantiating classes and invoking opera-
tions on them. At the same time, the usage interface hides
the internal details of the design model from the rest of the
application, which does not need to know how the function-
ality is decomposed into classes/methods and how objects
interact at run-time to achieve the functionality.

The bottom half of Fig. 2 shows the interface of the RAM
model for the Observer design pattern [3], a software design
pattern in which an object, called the subject, maintains a
list of dependents, called observers. The functionality pro-
vided by the Observer model is to make sure that, when-
ever the subject’s state changes, all observers are notified
by calling an update operation. The mandatory instantia-
tion parameters that make up the customization interface
are highlighted in Fig. 2 by adding a “|” prefix to the name
of the class/method/attribute. In case of the Observer de-
sign model, the mandatory instantiation parameters are the
|Subject class, which also defines at least one |modify op-
eration, and the |Observer class, which must provide an
|update operation.

The usage interface of the Observer model is straight-
forward. The |Subject class must provide at least one
public operation that modifies its state, and the |Observer
class provides two operations, namely startObserving and
stopObserving, that allow an observer instance to register,
rsp. deregister, with a subject instance.

2.2 Design Model Hierarchies

RAM allows a modeller to build complex models of any
size by putting together many interdependent, simple mod-
els. This is achieved through model hierarchies. To use the
functionality provided by a (base) RAM model B within the
design of a model A, the designer must specify instantiation
directives that map all mandatory instantiation parameters
of the customization interface of B to model elements of
A. Using these directives, the TouchRAM tool can compose
both models to yield a “woven” model that combines the
model elements from both designs.

Fig. 2 depicts a situation where a modeller applies the Ob-
server design model (model shown in the bottom half of the
figure) to a StockExchange application model (model shown
in the top half of the figure). The modeller has already
mapped the |Subject class of the lower-level model to the
Stock class, and the |Observer class to the StockWindow
class, and is now in the process of mapping the |modify op-
eration of |Subject. Since |modify is part of the class | Sub-

ject in the lower-level model, and |Subject was already
mapped to Stock in the higher-level aspect, TouchRAM
marks only the methods of Stock with matching parame-
ters as selectable.

RAM supports two kinds of model dependencies, model
extensions and model customizations. When A extends B,
the modeller’s intent is to add additional structural and/or
behavioural model elements to B that provide additional,
alternative or complementary properties to what already ex-
ists in B. The extension model A augments the interface of
the base model B with additional structure and behaviour. A
customization is useful when a modeller’s intent is to adapt
the structure and behaviour provided by a base model B
to be useful in a specific context. Within a customization
model A, a modeller alters or augments existing base model
properties to render them useful for a new purpose. When
using customization, typically most mandatory instantiation
parameters of the base B are completed, i.e., mapped to
complete model elements in A.

In the example shown in Fig. 2, the StockFExchange ap-
plication model customizes the generic Observer model: it
uses the Observer design internally to redraw the contents of
the StockWindow when the state of the corresponding Stock
instance changes. Customization is shown in TouchRAM by
a ~ sign in front of the instantiation directive that specifies
the parameter mappings; extension is visualized by a + sign.

In RAM, a model C can depend on one or several models
B;, which in turn can depend on models A;;, etc., thus creat-
ing a model hierarchy. For each pair of models, instantiation
directives in the upper model specify how the elements in the
lower model are to be combined with the model elements of
the higher model. Using these directives, TouchRAM can
recursively combine all models of the hierarchy to yield a
design model that shows the complete design. How this fea-
ture is exploited to create a design of a real-world application
model is shown in the following section.

3. SOFTWARE DESIGN WITH TOUCHRAM

Software design modelling with TouchRAM integrates well
with modern software design processes, e.g., prototyping or
iterative methodologies, as the design and implementation
of the application is conducted in phases. First, a simple ver-
sion of the application is developed that only provides core
functionality and services. Detailed and additional function-
alities are added in subsequent iterations.

3.1 Design Modularization Strategies

Completeness: The most important criteria for design-
ing with model hierarchies is coherent modularization. Each
model specifies a logical design step towards the final de-
sign model, and therefore needs to contain all the structural
and/or behavioural elements pertaining to that logical step.
This is important for internal consistency of the model: it
simplifies reasoning about the design concern as well as mak-
ing coherent changes to the modelled structure and/or be-
haviour, if needed. An additional advantage of completeness
of individual models is that, by construction, any composed
model is therefore also complete.

Size: Each individual RAM model should be small, as
it has been shown in psychological studies that the active
working memory of a human is limited [5]. Examining or
building a model of a system induces a certain mental effort
on the modeller. This effort is correlated with the model size,

SetPricelnput
_ String stockName
- int chosenPrice

+ String getStockName ()
+ int getChosenPrice ()

StockManager

SetPriceAction
- void executePriceSetting (LocalContext ¢)| | [F{ |
zs

Stock StockWindow

+ void addStock (String key , Stock value) ~int price

+ Stock getStockByName (String key)
+ StockManager getStockManager ()

+ void setPrice (int newPrice)| |+ StockWindow create (String title)

+ int getPrice () + void updateWindow (Stock s)

Figure 3: The Stock Exchange Model

and influences the amount of working memory the modelling
activity utilizes [6]. When an individual undertakes a mental
task (e.g. attempting to analyze a model or answer questions
about a model) that exceeds their working memory capacity,
errors are likely to occur [7].

Vertical Design Decomposition: One way of modu-
larizing a complex software design is to follow a top-down
and/or bottom-up strategy, depending on whether the focus
is to first elaborate high-level abstractions and functional-
ity, or rather to initially flesh out certain important low-level
details of parts of the design. For instance, if detailed func-
tional requirements for the software under development have
been elaborated, the initial design phase might begin with
deciding on a high-level architecture for the system, and how
the required functionality is to be decomposed into subfunc-
tionalities and allocated to different components. On the
other hand, if a certain subfunctionality is crucial to the
functioning of the software under development, or if reusing
an existing software artifact such as a middleware is manda-
tory or highly cost-effective, then low-level details of a spe-
cific required functionality might be designed first in order
to determine if the design is actually feasible.

To enable such top-down or bottom-up design, abstrac-
tion and information hiding are key to tame the inherent
complexity of a system [?]. Information hiding is the activ-
ity of consciously deciding what parts of a software module
should be exposed to the outside, i.e., the “rest” of the soft-
ware under development, and what parts should be hidden
from external use. In RAM this is done by exposing only
the structural and behavioural properties that are relevant
to use the model in the model’s interface. The design de-
tails pertaining to how this functionality is provided are not
relevant to the user. This is why most higher-level models
that reuse functionality provided by other models use model
customization, since the customized model interfaces of the
lower-level models are automatically hidden from the user.

Horizontal Design Decomposition: When transition-
ing from one iteration of the software design to the next, it
is typical to consider additional functionality. As a result,
the core parts of the existing design are complemented with
additional functionality, or new components are introduced
that take care of providing the additional functionality and
the existing design is adapted to integrate the new com-
ponents. This form of incremental design is supported in
TouchRAM using model extensions, which can adapt and
extend existing model interfaces.

3.2 Example Design

Fig. 3 shows a high-level design model of parts of the
StockEzchange application. In addition to the class Stock,

StockExchange
i
- SN i

l Pam\IIeIExeculion] lNelworkCommand]

s vl N [
- N e S
- / / =% e ' \
) S SN VN
S ST T I
oo @ Ve N v
ZeroToMany m I Copyable I I y-Ordered I l‘m‘hﬂf‘ icati I

Figure 4: StockExchange Design Model Hierarchy

which encapsulates the business data for the application,
there is also a class StockWindow, which subclasses JFrame
and uses JLabels to display the current stock name and
price. JFrame and JLabel are classes provided by the Java
runtime as part of the Java GUI framework Swing. To maxi-
mally exploit reuse of existing implementations, TouchRAM
allows any Java class to be imported into a RAM model as
a so-called implementation class.

The main advantage of using TouchRAM for software de-
sign modelling is to reuse existing design models (and their
implementations). TouchRAM comes with a Reusable De-
sign Concern Model Library (RDCML), which contains pre-
modelled solutions for recurring design concerns. The li-
brary is organized into the following categories:

e The design patterns category contains aspects for the
basic structural, behavioural and creational design pat-
terns (e.g., Singleton, Observer, Command, etc.)

e The utility category contains aspects that provide ba-
sic functionalities like copying (Copyable aspect) and
naming (Named aspect), as well as data structures in-
volving multiple objects, such as Map.

e The networking category contains aspects relevant to
networking, such as Serializer, SocketCommunication
and NetworkedCommand.

e The workflow category contains aspects that are use-
ful whenever the application needs to define and ex-
ecute flexible workflows. For example, the current li-
brary supports sequential, conditional, timed, nested
and parallel execution of activities.

e The transactions category contains aspects that pro-
vide support for state checkpointing, state recovery
and concurrency control.

The StockExchange application model, for example, de-
pends on 6 models from the RDCML as shown by the 6
instantiation directives in the bottom half of Fig. 3. It cus-
tomizes the model Named to add a name attribute as well
as getter and setter operations to the Stock class. It cus-
tomizes Map to allow the StockManager class to find a Stock
instance based on a name String. It customizes the Sin-
gleton design model to ensure that there is only a single,
global instance of the StockManager running in the appli-
cation, and it customizes the Observer to refresh the stock
window whenever the price of a stock changes.

The above are all examples of quite simple design models.
To show off the benefit of reuse, we also designed the Stock-
Ezchange application to be able to act as a server, listening
on the network for incoming messages that inform the appli-
cation of stock price changes. The RDCML contains a work-
flow execution middleware, which provides abstractions to
define and execute complex workflows that can be used, for
instance, to specify the interaction protocol of a server. In

Menu
Toggle View
SEE

Weave All

- WorkiowNode getNodes (}
- void addstaruptiode (WorkfowNiode n |
Workflowhode getStaruphiodes {)

Gobaloniad
I
[+ Giobaiconext cetGbatConext (|
| ciobaiContext crsate ()

LocContext

[CocaiCantext copy { LocaiCantext 2 1
- LocaiContext create (LocaiConiext a)

SePrcancion
I
[a0 erecuePicoseting (LocalConier ¢)|

o erscte TocaiContex ¢

I
[Serversooer creare (oo
- Socket accept ()

[weto Cnpuoet <)

= Woame
[« int getchosenprice ()
- Setcinputuevs> gewvalues ()
| vois costioy ()

| v]

[7 155 crooserveriiodes (ocalConext < |
Parals Excutonfiods.

- TCocaContext ¢)
- vois sstiextioge (Sting outpaiName . WorkiowNisds n)
- loupaitincce geiouipain { Sting outpathasme |

|- vois acdOutpath (Sting pattnam , [Outpathiode n)

Figure 5: Woven Stock Exchange Application

our example, the StockEzchange application model defines a
SetPriceAction class, which is mapped to the |Customiz-
ableSequence class provided by the Workflow model. This
makes it possible to change the price of some stock within a
workflow that is executed by the middleware. In addition, in
order to trigger this action remotely, StockExchange defines
a SetPricelInput class that is used to store the input param-
eters of the action, i.e., the stock name and new price. This
class is mapped to the |CustomizableInput class defined by
the Input model that extends Workflow.

A design that supports execution workflows based on re-
mote commands received over the network is inherently com-
plex. It requires, for instance, the definition of many classes
that represent workflow concepts, the creation of listener
threads that wait on TCP/IP ports, and the definition of
serialization protocols for data that need to be transmitted
over the network. This is why these functionalities, provided
by the RDCML, have not been designed within one model,
but again modularized and built using other design models
of the RDCML. The entire model hierarchy that comprises
the design model of our simple StockEzchange application is
shown in Fig. 4.

To give the reader a sense of the power of the model reuse
capabilities offered by TouchRAM, Fig. 5 shows the final
design model of the StockEzchange application, obtained by
composing StockEzchange with the 14 design models from
the RDCML it directly or indirectly depends on. The com-
position took approximately 2 seconds to execute on a stan-
dard 2.5GHz machine with a JVM configured to run with
1GB of RAM. The resulting model has 41 classes and 44
relationships between them, and a total of 157 operations.

4. CONCLUSION

This demo paper summarizes how TouchRAM, a multitouch-
enabled tool for agile software design modelling, can be used
to elaborate a complex software design model. For more in-

formation on the multitouch user interface and the model
transformation technology that TouchRAM is based on, the
interested reader is referred to [1]. The current version of
TouchRAM and the reusable design concern model library
can be downloaded from http://www.cs.mcgill.ca/ joerg/
SEL/TouchRAM.html. The tool runs on any reasonably
modern Mac/Linux/Windows operating system, provided
that Java 1.5 is installed and the graphics card supports
Open/GL. Optionally, to use the multitouch features, a TUIO
supported multitouch input device must be connected.

5. REFERENCES

[1] AL ABED, W., BONNET, V., SCHOTTLE, M., ALAM,
O., AND KIENZLE, J. TouchRAM: A
multitouch-enabled tool for aspect-oriented software
design. In SLE 2012 (October 2012), no. 7745 in
LNCS, Springer, pp. 275 — 285.

[2] AL ABED, W., AND KIENZLE, J. Information Hiding
and Aspect-Oriented Modeling. In 1/th Aspect-Oriented
Modeling Workshop (October 2009), pp. 1-6.

[3] GaMmMA, E.; HELM, R., JOHNSON, R., AND VLISSIDES,
J. Design Patterns. Addison Wesley, Reading, MA,
USA, 1995.

[4] KIENZLE, J., AL ABED, W., AND KLEIN, J.
Aspect-Oriented Multi-View Modeling. In AOSD 2009
(March 2009), ACM Press, pp. 87 — 98.

[5] MILLER, G. The magical number seven, plus or minus
two: some limits on our capacity for processing
information. Psychological review 63, 2 (1956), 81.

[6] Paas, F., TUOVINEN, J., TABBERS, H., AND
VAN GERVEN, P. Cognitive load measurement as a
means to advance cognitive load theory. Educational
psychologist 38, 1 (2003), 63-71.

[7] SWELLER, J. Cognitive load during problem solving:
Effects on learning. Cognitive science 12, 2 (1988),
257-285.

